1
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
Bacillus licheniformis–fermented products and enramycin differentially modulate microbiota and antibiotic resistome in the cecal digesta of broilers. Poult Sci 2022; 101:102010. [PMID: 35841645 PMCID: PMC9293667 DOI: 10.1016/j.psj.2022.102010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
|
3
|
Liang L, Wang P, Zhao X, He L, Qu T, Chen Y. Single-molecule real-time sequencing reveals differences in bacterial diversity in raw milk in different regions and seasons in China. J Dairy Sci 2022; 105:5669-5684. [DOI: 10.3168/jds.2021-21445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/21/2022] [Indexed: 12/21/2022]
|
4
|
Jin YY, Guo Y, Zheng CT, Liu WC. Effect of heat stress on ileal microbial community of indigenous yellow-feather broilers based on 16S rRNA gene sequencing. Vet Med Sci 2022; 8:642-653. [PMID: 35040272 PMCID: PMC8959285 DOI: 10.1002/vms3.734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives The broiler chickens are susceptible to heat stress (HS), including the indigenous broilers raised in tropical and subtropical regions. HS caused intestinal dysfunction and disrupted the gut microbiota. However, the researches about the effects of HS on ileal microbiome of indigenous broilers are limited. Therefore, this experiment used 16S rRNA sequencing to analyse the ileal microbial community in indigenous yellow‐feather broilers under HS. Material and methods The single factor completely random design was used in the present study, and forty 8‐week‐old Chinese indigenous yellow‐feather broilers (Huaixiang chickens) were randomly divided into two treatments: normal temperature (NT) group and HS group. There are five replications with four broilers per replicate in each group. The broilers in NT group were raised at 21.3 ± 1.2°C during the whole experimental period, the broilers in HS group were exposed to 32.5 ± 1.4°C for 8 h/day from 9:00 am to 17:00 pm and the temperature of rest time is consistent with NT group. The experiment lasted for 4 weeks. Results The results showed that HS exposure had no significant effects on the alpha diversity index of ileal microflora of broilers, including the Shannon, Simpson, Chao1 and ACE indexes (p > 0.05). At the genus level, HS significantly reduced the relative abundance of Campylobacter (p < 0.05), and increased the abundance of Delftia (p < 0.05). In addition, prediction of microbial community function indicated that HS significantly enhanced the abundance of the microflora related to lipid metabolism, carbohydrate metabolism and xenobiotics biodegradation and metabolism and reduced the abundance of the microflora related to nucleotide metabolism and amino acid metabolism. Conclusions Taken together, the present study revealed that chronic HS (4 weeks) exposure changes the abundance of the ileal microflora of broilers. These findings provided new insights into the role of HS in influencing ileal microbial community in indigenous broilers.
Collapse
Affiliation(s)
- Yong-Yan Jin
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, P. R. China.,Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, P. R. China
| | - Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, P. R. China
| | - Chun-Tian Zheng
- Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, P. R. China
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong Province, P. R. China
| |
Collapse
|
5
|
Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals (Basel) 2021; 11:ani11113280. [PMID: 34828011 PMCID: PMC8614244 DOI: 10.3390/ani11113280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are major disruptors of the gastrointestinal microbiota, depleting bacterial species beneficial for the host health and favoring the emergence of potential pathogens. Furthermore, the intestine is a reactor of antibiotic resistance emergence, and the presence of antibiotics exacerbates the selection of resistant bacteria that can disseminate in the environment and propagate to further hosts. We reviewed studies analyzing the effect of antibiotics on the intestinal microbiota and antibiotic resistance conducted on animals, focusing on the main food-producing and companion animals. Irrespective of antibiotic classes and animal hosts, therapeutic dosage decreased species diversity and richness favoring the bloom of potential enteropathogens and the selection of antibiotic resistance. These negative effects of antibiotic therapies seem ineluctable but often were mitigated when an antibiotic was administered by parenteral route. Sub-therapeutic dosages caused the augmentation of taxa involved in sugar metabolism, suggesting a link with weight gain. This result should not be interpreted positively, considering that parallel information on antibiotic resistance selection was rarely reported and selection of antibiotic resistance is known to occur also at low antibiotic concentration. However, studies on the effect of antibiotics as growth promoters put the basis for understanding the gut microbiota composition and function in this situation. This knowledge could inspire alternative strategies to antibiotics, such as probiotics, for improving animal performance. This review encompasses the analysis of the main animal hosts and all antibiotic classes, and highlights the future challenges and gaps of knowledge that should be filled. Further studies are necessary for elucidating pharmacodynamics in animals in order to improve therapy duration, antibiotic dosages, and administration routes for mitigating negative effects of antibiotic therapies. Furthermore, this review highlights that studies on aminoglycosides are almost inexistent, and they should be increased, considering that aminoglycosides are the first most commonly used antibiotic family in companion animals. Harmonization of experimental procedures is necessary in this research field. In fact, current studies are based on different experimental set-up varying for antibiotic dosage, regimen, administration, and downstream microbiota analysis. In the future, shotgun metagenomics coupled with long-reads sequencing should become a standard experimental approach enabling to gather comprehensive knowledge on GIM in terms of composition and taxonomic functions, and of ARGs. Decorticating GIM in animals will unveil revolutionary strategies for medication and improvement of animals' health status, with positive consequences on global health.
Collapse
|
6
|
Liu Y, Lin Q, Huang X, Jiang G, Li C, Zhang X, Liu S, He L, Liu Y, Dai Q, Huang X. Effects of Dietary Ferulic Acid on the Intestinal Microbiota and the Associated Changes on the Growth Performance, Serum Cytokine Profile, and Intestinal Morphology in Ducks. Front Microbiol 2021; 12:698213. [PMID: 34326826 PMCID: PMC8313987 DOI: 10.3389/fmicb.2021.698213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
The present study investigated the effects of ferulic acid (FA) on the growth performance, serum cytokine profile, intestinal morphology, and intestinal microbiota in ducks at the growing stage. 300 female Linwu ducks at 28 days of age with similar body weights were randomly divided into five groups. Each group contained six replicates of 10 birds. The dietary treatments were corn-soybean-based diet supplemented with FA at the concentrations of 0 (control), 100, 200, 400, and 800 mg/kg diet. The results demonstrated that dietary FA at the levels of 200, 400, and 800 mg/kg increased the average daily gain (P = 0.01), 400 and 800 mg/kg FA increased the final body weight (P = 0.02), 100, 200, and 800 mg/kg FA increased the serum glutathione (P = 0.01), and 100, 400, and 800 mg/kg FA increased the glutathione peroxidase activities in birds (P < 0.01). Additionally, 200, 400, and 800 mg/kg dietary FA lowered the serum levels of interleukin-2 (P = 0.02) and interleukin-6 (P = 0.04). Moreover, the morphometric study of the intestines indicated that 400 mg/kg FA decreased the crypt depth in jejunum (P = 0.01) and caecum (P = 0.04), and increased the ratio of villus height to crypt depth in jejunum (P = 0.02). Significant linear and/or quadratic relationships were found between FA concentration and the measured parameters. 16S rRNA sequencing revealed that dietary FA increased the populations of genera Faecalibacterium, Paludicola, RF39, and Faecalicoccus in the cecum (P < 0.05), whereas decreased the populations of Anaerofilum and UCG-002 (P < 0.05). The Spearman correlation analysis indicated that phylum Proteobacteria were negatively, but order Oscillospirales, and family Ruminococcaceae were positively related to the parameters of the growth performance. Phylum Bacteroidetes, class Negativicutes and family Rikenellaceae were negatively associated with the parameters of the antioxidative capability. And phylum Cyanobacteria, Elusimicrobia, and Bacteroidetes, class Bacilli, family Rikenellaceae, and genus Prevotella were positively associated with the parameters of the immunological capability. Thus, it was concluded that the supplementations of 400 mg/kg FA in diet was able to improve the growth performance, antioxidative and immunological capabilities, intestinal morphology, and modulated the gut microbial construction of Linwu ducks at the growing stage.
Collapse
Affiliation(s)
- Yang Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xuan Huang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Guitao Jiang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xu Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd., Linyi, China
| | - Lingyun He
- Animal Husbandry and Fisheries Affairs Center, Huaihua, China
| | - Yali Liu
- Hunan Perfly Biotech Co., Ltd., Changsha, China
| | - Qiuzhong Dai
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| |
Collapse
|
7
|
Wang JM, Gan XM, Pu FJ, Wang WX, Ma M, Sun LL, Hu JW, Hu B, Zhang RP, Bai LL, Li L, Liu HH. Effect of fermentation bed on bacterial growth in the fermentation mattress material and cecum of ducks. Arch Microbiol 2021; 203:1489-1497. [PMID: 33398398 DOI: 10.1007/s00203-020-02145-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
The composition of microorganisms in the gastrointestinal tract is closely related to the intestinal microenvironments and the exterior growth environments of host. In this study, 16S rDNA sequencing technology was adopted to investigate the influence of fermentation bed on the cecum microorganisms of ducks. Two feeding density treatment groups were set up, including group A (n = 4brids/m2) and group B (n = 6brids/m2). Samples were collected from the intermediate core fermentation layer (10-20 cm) of the fermented mattress materials and from the intestinal contents of ducks at 4, 6 and 8 weeks, respectively. Results showed that Bacteroidetes (20.12-27.17%) and Ruminococcaceae UCG-014 (2.97-10.1%) were the predominant microorganisms in duck cecum, while the Truepera (5.08-6.29%), Pricia (4.44-5.44%) and Luteimonas (3.62-4.99%) were the dominant microorganisms in fermentation mattress material. The cecum bacteria exhibited great difference among different growth periods of the ducks. Increasing the stocking density of ducks had a negative effect on the beneficial bacteria in the cecum. The microbial populations in fermentation mattress material were very different from that in the cecal. In summary, our findings can provide a scientific data for the rational use of fermentation bed feeding mode in poultry production.
Collapse
Affiliation(s)
- Jian- Mei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xin- Meng Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fa-Jun Pu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Wan- Xia Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Min Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ling-Li Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ji-Wei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Rong-Ping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Li-Li Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - He-He Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Yang X, Guo X, Liu W, Tian Y, Gao P, Ren Y, Zhang W, Jiang Y, Man C. The complex community structures and seasonal variations of psychrotrophic bacteria in raw milk in Heilongjiang Province, China. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Gao J, Zhang X, Yu J, Lei Y, Zhao S, Jiang Y, Xu Z, Cheng J. Cr(VI) removal performance and the characteristics of microbial communities influenced by the core-shell maifanite/ZnAl-layered double hydroxides (LDHs) substrates for chromium-containing surface water. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Niu J, Zhang J, Wei L, Ma X, Zhang W, Nie C. Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk. Appl Microbiol Biotechnol 2020; 104:4345-4357. [PMID: 32232527 DOI: 10.1007/s00253-020-10538-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/13/2023]
Abstract
In the present study, effects of cottonseed meal fermented by Candida tropicalis (FCSM) on fat deposition, cecum microbiota, and metabolites and their interactions were studied in broilers. A total of 180 1-day-old broilers were randomly assigned into two groups with six replicates of 15 birds in each. The birds were offered two diets consisted one control, i.e., supplemented with 0% FCSM (CON) and an experimental, with 6% FCSM (FCSM). Illumina MiSeq sequencing and liquid chromatography-mass spectrometry were used to investigate the profile changes of the cecum microbes and metabolites and the interactions among fat deposition, microbes, and metabolites. Results showed that at the age of 21 days, both the abdominal fat and subcutaneous fat thickness of the experimental birds decreased significantly (P < 0.05) in response to the dietary FCSM supplementation. The predominant microbial flora in cecum consisted Bacteroidetes (53.55%), Firmicutes (33.75%), and Proteobacteria (8.61%). FCSM diet increased the relative abundance of Bacteroides but decreased obese microbial including Faecalibacterium, Lachnospiraceae, Ruminococcaceae, and Anaerofilum. Cecum metabolomics analysis revealed that lipids, organic acids, vitamins, and peptides were significantly altered by adding FCSM in diet. Correlation analysis showed that abdominal fat and subcutaneous fat thickness related negatively with Bacteroides while the same related positively with Faecalibacterium, Lachnospiraceae, and Ruminococcaceae. Moreover, abdominal fat and subcutaneous fat thickness were related negatively with nicotinic acid, sebacic acid, thymidine, and succinic acid. These findings indicated that FCSM reduced the fat deposition by regulating cecum microbiota and metabolites in broilers. The results are contributory to the development of probiotics and the improvement in the production of broilers.
Collapse
Affiliation(s)
- Junli Niu
- College of Animal Science & Technology, Shihezi University, North Street 4, Xinjiang, 832000, China
| | - Jun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lianqing Wei
- College of Animal Science & Technology, Shihezi University, North Street 4, Xinjiang, 832000, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wenju Zhang
- College of Animal Science & Technology, Shihezi University, North Street 4, Xinjiang, 832000, China.
| | - Cunxi Nie
- College of Animal Science & Technology, Shihezi University, North Street 4, Xinjiang, 832000, China. .,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
11
|
Adhesion and invasion of Campylobacter jejuni in chickens with a modified gut microbiota due to antibiotic treatment. Vet Microbiol 2019; 240:108504. [PMID: 31902497 DOI: 10.1016/j.vetmic.2019.108504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022]
Abstract
Campylobacter jejuni (C. jejuni) is a predominant cause of foodborne illness in humans, while its colonization in chickens is usually asymptomatic. Antibiotics are not routinely used to treat chickens against C. jejuni, but in the face of other bacterial diseases, C. jejuni may be exposed to antibiotics. In this study, chickens were treated with antibiotics (AT) to modify the gut microbiota composition and compared with untreated chickens (Conv) with respect to changes in C. jejuni-colonization and bacterial-intestine interaction. Groups of AT and Conv chickens were inoculated after an antibiotic-withdrawal time of eight days with one of three different C. jejuni isolates to identify possible strain variations. Significantly higher numbers of colony forming units of C. jejuni were detected in the cecal content of AT birds, with higher colonization rates in the spleen and liver compared to Conv birds independent of the inoculated strain (p < 0.05). Clinical signs and histopathological lesions were only observed in C. jejuni-inoculated AT birds. For the first time we demonstrated C. jejuni invasion of the cecal mucosa in AT chickens and its inter- and intracellular localization by using antigen-straining, and electronic microscopy. This study provides the first circumstantial evidence that antibiotic treatment with lasting modification of the microbiota may provide a suitable environment for C. jejuni invasion also in chickens which may subsequently increase the risk of C. jejuni-introduction into the food chain.
Collapse
|
12
|
Xia Y, Kong J, Zhang G, Zhang X, Seviour R, Kong Y. Effects of dietary supplementation with lysozyme on the structure and function of the cecal microbiota in broiler chickens. PLoS One 2019; 14:e0216748. [PMID: 31216277 PMCID: PMC6583987 DOI: 10.1371/journal.pone.0216748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
Lysozyme is known to eliminate intestinal pathogens in poultry and improve their growth performance. However, whether it can replace antibiotic growth promoters without the associated risk of the emergence of antibiotic-resistant bacterial strains is not known, and the effects of lysozyme supplementation on the composition, biodiversity, and function of the chicken gut microbiota remain unclear. Here, we used the 16S rRNA gene and ITS fragment Illumina sequencing combined with transcriptomic analysis to address this issue. A total of 400 1-d-old Di Gao chicks were allocated randomly to five groups, each consisting of four replicates (20 birds/group). The chicks were fed a starter (1–21 d) and a grower (22–42 d) diet supplemented with 0 (control), 40 (LYS40), 100 (LYS100), or 200 ppm (LYS200) lysozyme, or 400 ppm flavomycin as an antibiotic control for 6 weeks. Lysozyme administration did not contribute significantly (P > 0.05) to the growth of the broiler chickens. No significant (P > 0.05) differences in the diversity and composition of the bacterial and fungal communities in the cecal microbiota of chickens in the different diet groups were found. However, lysozyme supplementation led to a significant (P < 0.05) enrichment of genes involved in the synthesis/degradation of bacterial outer membranes and cell walls, cross-cell substrate transport, and carbohydrate metabolic processes, thus possibly promoting the cecal microbiota carbon and energy metabolism. Bacteroides contributed 31.9% of glycoside hydrolase genes (17,681–24,590), 26.1% of polysaccharide lyase genes (479–675), 20.7% of carbohydrate esterase genes (3,509–4,101), 8.8% of auxiliary activity genes (705–1,000), 16.2% of glycosyltransferase genes (5,301–6,844), and 13.9% of carbohydrate-binding module genes (8838–15,172) identified in the cecal samples. Thus, they were the main players in the breakdown of non-starch polysaccharides in the cecum, although Parabacteroides, Alistipes, Prevotella, Clostridium, Blastocystis, Barnesiella, Blautia, Faecalibacterium, Subdoligranulum, Megamonas, Eubacterium, Ruminococcus, Paenibacillus, Bifidobacterium, Akkermansia, and other bacteria also participated.
Collapse
Affiliation(s)
- Yun Xia
- Department of Life Science and Technology, Kunming University, Kunming, China
- * E-mail: (YK); (YX)
| | - James Kong
- Computer Science, York University, York, Canada
| | - Guobing Zhang
- Department of Life Science and Technology, Kunming University, Kunming, China
| | - Xuxiang Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Robert Seviour
- Microbiology Department, La Trobe University, Bundoora, Victoria, Australia
| | - Yunhong Kong
- Department of Life Science and Technology, Kunming University, Kunming, China
- * E-mail: (YK); (YX)
| |
Collapse
|
13
|
Zhu N, Wang J, Yu L, Zhang Q, Chen K, Liu B. Modulation of Growth Performance and Intestinal Microbiota in Chickens Fed Plant Extracts or Virginiamycin. Front Microbiol 2019; 10:1333. [PMID: 31275268 PMCID: PMC6591263 DOI: 10.3389/fmicb.2019.01333] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/28/2019] [Indexed: 02/01/2023] Open
Abstract
In this study, the effects of plant extracts (PEs) and virginiamycin (VIRG) on broiler growth performance, as well as on host intestinal microbiota composition and function were investigated. A total of 288 one-day-old male Cobb broiler chickens were randomly divided into four treatment groups (with six replicates per group). The duodenal, ileal, and cecal content of six broilers per treatment group after 14 and 28 days of treatment were sampled. This material was used for high-throughput Illumina sequencing of the V3–V4 region of the 16S rRNA gene. The results showed that chickens fed 400 mg/kg plant extracts (HPE group) had significantly higher average body weights at day 28 as compared to the control group (CT; P < 0.05), and lower feed-to-meat ratios over days 15–42 (P < 0.01). Within the HPE group at day 14, the relative abundances of two bacterial phyla and 10 bacterial genera increased significantly in the ileal microbiota, and the relative abundance of three bacterial phyla and four bacterial genera decreased. The relative abundance of the genus Lactobacillus in the cecal microbiota decreased from 21.48% (CT group) to 8.41% (fed 200 mg/kg PEs; LPE group), 4.2% (HPE group), and 6.58% (fed 30 mg/kg virginiamycin; VIRG group) after 28 days. In contrast, Faecalibacterium and unclassified Rikenellaceae increased in abundance in the HPE group (from 18 to 28.46% and from 10.83 to 27.63%, respectively), while Bacteroides (36.7%) and Lachnospiraceae increased in abundance in the VIRG group. PICRUSt function analysis showed that the ileal microbiota of the PE treatment groups were more enriched in genes related to the meolism of cofactors and vitamins. In addition, the cecal microbiotas of the LPE and HPE groups were enriched in genes predicted to encode enzymes within 15 and 20 pathways, respectively. These pathways included protein digestion and absorption, amino acid metabolism, lipid biosynthesis, lipopolysaccharide biosynthesis, the citrate cycle (TCA cycle), and lipoic acid metabolism. Similarly, the VIRG group was enriched in 55 metabolic pathways (17 in the duodenum, 18 in the ileum, and 20 in the cecum) on day 28 (P < 0.05). Thus, the results indicated that the observed increase in broiler growth performance after PE or VIRG supplementation might be attributed to an improvement in intestinal microbial composition and metabolic function.
Collapse
Affiliation(s)
- Nianhua Zhu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Longfei Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiman Zhang
- Guangdong Ruisheng Technology Co., Ltd., Guangzhou, China
| | - Kai Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Baosheng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|