1
|
Li Y, Chen W, Yin J, Xia S, Jiang Y, Ge Q, Liu J, Wang M, Hou Z, Bai Y, Shi P. Biomineralized ZIF-8 Encapsulating SOD from Hydrogenobacter Thermophilus: Maintaining Activity in the Intestine and Alleviating Intestinal Oxidative Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402812. [PMID: 39350464 DOI: 10.1002/smll.202402812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Indexed: 12/13/2024]
Abstract
Oxidative stress is a major factor leading to inflammation and disease occurrence, and superoxide dismutase (SOD) is a crucial antioxidative metalloenzyme capable of alleviating oxidative stress. In this study, a novel thermostable SOD gene is obtained from the Hydrogenobacter thermophilus strain (HtSOD), transformed and efficiently expressed in Escherichia coli with an activity of 3438 U mg-1, exhibiting excellent thermal stability suitable for scalable production. However, the activity of HtSOD is reduced to less than 10% under the acidic environment. To address the acid resistance and gastrointestinal stability issues, a biomimetic mineralization approach is employed to encapsulate HtSOD within the ZIF-8 (HtSOD@ZIF-8). Gastrointestinal simulation results show that HtSOD@ZIF-8 maintained 70% activity in simulated gastric fluid for 2 h, subsequently recovering to 97% activity in simulated intestinal fluid. Cell and in vivo experiments indicated that HtSOD@ZIF-8 exhibited no cytotoxicity and do not impair growth performance. Furthermore, HtSOD@ZIF-8 increased the relative abundance of beneficial microbiota such as Dubosiella and Alistipes, mitigated oxonic stress and intestinal injury by reducing mitochondrial and total reactive oxygen species (ROS) levels in diquat-induced. Together, HtSOD@ZIF-8 maintains and elucidates activity in the intestine and biocompatibility, providing insights into alleviating oxidative stress in hosts and paving the way for scalable production.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Weihua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Siting Xia
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Qianqian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Jinping Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| |
Collapse
|
2
|
Zhao X, Du B, Wan M, Li J, Qin S, Nian F, Tang D. Analysis of the antioxidant activity of toons sinensis extract and their biological effects on broilers. Front Vet Sci 2024; 10:1337291. [PMID: 38260193 PMCID: PMC10800727 DOI: 10.3389/fvets.2023.1337291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Plant extracts are rich in a variety of nutrients and contain a large number of bioactive compounds, and compared with traditional feed additives, they have advantages such as wide sources, natural safety and rich nutrition. This study employed in vitro antioxidant and animal experiments to comprehensively evaluate the use of Toona sinensis extract (TSE) in broiler production. 508 1-day-old Cobb 500 broilers were randomly assigned to the 7 experimental groups with 6 replications and 12 birds/replicate. Two groups received Vitamin C (VC) 300 g/t and Vitamin E 500 g/t, and five dose groups of TSE received 0, 300, 600, 900, and 1,200 g/t of TSE in their feed. The study spanned 42 days, with a starter phase (1-21 days) and a finisher phase (22-42 days). The results showed that compared to ascorbic acid, TSE had the scavenging ability of 2,2-Diphenyl-1-picrylhydrazyl and hydroxyl radical, with IC50 values of 0.6658 mg/mL and 33.1298 mg/mL, respectively. Compared to TSE 0 group, broilers fed with 1,200 g/t TSE showed significant weight gain during the starter phase and increased the feed-to-weight gain ratio during both the starter and finisher phases. Additionally, broilers receiving 1,200 g/t TSE had enhanced dry matter and organic matter utilization. Concerning meat quality, broilers in the 1,200 g/t TSE group demonstrated increased cooked meat yield, and pH value, as well as higher antioxidant capacity (T-AOC), dismutase (SOD), and glutathione peroxidase (GSH-PX) in serum. In addition, there was no significant difference in ileal microflora due to TSE supplementation. In summary, this study confirms the positive impact of a dietary inclusion of 1,200 g/t TSE on broiler growth, meat quality, and serum antioxidants.
Collapse
Affiliation(s)
- Xiangmin Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Baolong Du
- Yizhou District Animal Disease Prevention and Control Center, Hami, China
| | - Minyan Wan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinlu Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Cao YH, Chen TT, Peng X, Wu RR, Li X, Liu GF, Shen LX, Chen XJ, Yang Z, Liu ZY, Sun ZL, Wu Y. Effect of Dietary Gelsemium elegans Benth. Extract on the Growth, Slaughter Performance, Meat Quality, Intestinal Morphology, and Microflora of Yellow-Feathered Chickens. J Poult Sci 2023; 60:2023023. [PMID: 37691877 PMCID: PMC10482210 DOI: 10.2141/jpsa.2023023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
The plant species Gelsemium elegans Benth. (GEB) promotes pig and sheep growth; however, little is known about its effects in chickens. In this study, a GEB extract (GEBE) was prepared, and its effects on the growth, slaughter, antioxidant performance, meat quality, serum biochemical indices, intestinal morphology, and microflora of yellow-feathered chickens were evaluated. In total, 600 chickens aged 15 days were randomly divided into four groups with five replicates each and fed a basal diet containing 0% (control), 0.25% (0.25 GEBE), 0.75% (0.75 GEBE), or 1.25% (1.25 GEBE) GEBE until 49 days of age. Chickens were then killed, and their meat, organs, and serum and cecal contents were collected. GEBE reduced the feed conversion ratio, particularly in the 0.75 and 1.25 GEBE groups. Furthermore, the GEBE diet improved meat tenderness and reduced the meat expressible moisture content and liver malondialdehyde content, indicating high meat quality. Whereas the 0.25 GEBE diet increased the level of Lactobacillus acidophilus in the cecum, the 0.75 GEBE diet decreased the Escherichia coli level therein. These findings demonstrate that GEBE may improve the meat quality and cecal microbiota of yellow-feathered chickens, providing a basis for identifying candidate alternatives to conventional antibiotics as growth promoting feed additives.
Collapse
Affiliation(s)
- Yu-Hang Cao
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Ting-Ting Chen
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Xiong Peng
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Rong-Rong Wu
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Xiang Li
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang
410329, China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang
410329, China
| | - Li-Xia Shen
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Xiao-Jun Chen
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Zi Yang
- Academician Workstation, Changsha Medical University,
Changsha 410219, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural
University, Changsha 410128, China
| |
Collapse
|
4
|
Cao G, Wang H, Yu Y, Tao F, Yang H, Yang S, Qian Y, Li H, Yang C. Dietary bamboo leaf flavonoids improve quality and microstructure of broiler meat by changing untargeted metabolome. J Anim Sci Biotechnol 2023; 14:52. [PMID: 37024991 PMCID: PMC10080799 DOI: 10.1186/s40104-023-00840-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/13/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Dietary bamboo leaf flavonoids (BLFs) are rarely used in poultry production, and it is unknown whether they influence meat texture profile, perceived color, or microstructure. RESULTS A total of 720 one-day-old Arbor Acres broilers were supplemented with a basal diet with 20 mg bacitracin/kg, 50 mg BLFs/kg, or 250 mg BLFs/kg or without additions. Data showed that the dietary BLFs significantly (P < 0.05) changed growth performance and the texture profile. In particular, BLFs increased birds' average daily gain and average daily feed intake, decreased the feed:gain ratio and mortality rate, improved elasticity of breast meat, enhanced the gumminess of breast and leg meat, and decreased the hardness of breast meat. Moreover, a significant (P < 0.05) increase in redness (a*) and chroma (c*) of breast meat and c* and water-holding capacity of leg meat was found in BLF-supplemented broilers compared with control broilers. In addition, BLFs supplementation significantly decreased (P < 0.05) the β-sheet ratio and serum malondialdehyde and increased the β-turn ratio of protein secondary structure, superoxide dismutase, and glutathione peroxidase of breast meat and total antioxidant capacity and catalase of serum. Based on the analysis of untargeted metabolome, BLFs treatment considerably altered 14 metabolites of the breast meat, including flavonoids, amino acids, and organic acids, as well as phenolic and aromatic compounds. CONCLUSIONS Dietary BLFs supplementation could play a beneficial role in improving meat quality and sensory color in the poultry industry by changing protein secondary structures and modulating metabolites.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Huixian Wang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Yang Yu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Fei Tao
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Huijuan Yang
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Shenglan Yang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Ye Qian
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, 313300, People's Republic of China
| | - Hui Li
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, 313300, People's Republic of China
| | - Caimei Yang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
5
|
Cao J, Zhang S, Hao Y, Fan K, Wang L, Zhao X, He X. Amorphous solid dispersion preparation via co-precipitation improves the dissolution, oral bioavailability and intestinal health enhancement properties of magnolol. Poult Sci 2023; 102:102676. [PMID: 37104903 PMCID: PMC10160586 DOI: 10.1016/j.psj.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
Magnolol (MAG) is a multifunctional plant polyphenol with anti-inflammatory, antibacterial, antioxidant and antitumor properties. In poultry, it has been shown to improve growth performance, antioxidant, immune functions and intestinal health. However, its applications are limited by poor solubility and low oral bioavailability. This study aimed at improving the water solubility of MAG through solid dispersion and investigating its effects in Arbor Acre (AA) broilers. Hydroxypropyl methylcellulose succinic acid (HPMCAS) was used as a carrier to prepare magnolol solid dispersions (MAG-HPMCAS SD) via antisolvent coprecipitation, which were characterized thereafter. Optimal formulation proportions for SD were screened by in vitro dissolution assays, while its effects on improving absorption were investigated via in vivo pharmacokinetic assays. In addition, we evaluated the effects of MAG-HPMCAS SD on growth performance, antioxidant status, and gut microbiota in AA broilers. The powder samples prepared via antisolvent coprecipitation did not exhibit a crystal diffraction peak of MAG in powder X-ray diffractions or melting point peak in differential scanning calorimetry, proving the successful preparation of an amorphous solid dispersion system. The in vitro dissolution assay showed that the cumulative dissolution rate of MAG-HPMCAS(LF) SD (2:8, w/w) was 100%. Pharmacokinetic analyses revealed that the peak concentration (Cmax) of MAG-HPMCAS SD was 5.07 ± 0.73 μg/mL, which was 1.76 times greater than that of MAG. In addition, AUC0-48 and t1/2 of MAG-HPMCAS SD were 40.49 ± 6.29 g·h/mL and 9.15 ± 3.23 h, respectively, which were 2.17 and 2.56 times higher than those of MAG. Supplementation of MAG-HPMCAS SD in AA broilers significantly increased ADG (7-14 d and 15-21 d) and reduced feed conversion ratio (15-21 d) (P < 0.05). Bacterial diversity in the MAG-HPMCAS SD-supplemented group was greater than in the Control and MAG-supplemented group. Supplementation of MAG-HPMCAS SD stimulated the proliferation of beneficial bacteria, such as Lactobacillaceae and Bifidobacteriaceae. In conclusion, the MAG-HPMCAS SD prepared by coprecipitation improved the dissolution rate, the bioavailability of MAG, growth promotion, antioxidant effects and gut health in broilers.
Collapse
|
6
|
Gao J, Yang Z, Zhao C, Tang X, Jiang Q, Yin Y. A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. SCIENCE CHINA. LIFE SCIENCES 2022:10.1007/s11427-022-2246-4. [PMID: 36586071 DOI: 10.1007/s11427-022-2246-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2023]
Abstract
Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.
Collapse
Affiliation(s)
- Jingxia Gao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhe Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chongqi Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China. .,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
7
|
Galli GM, Strapazzon JV, Marchiori MS, Molosse VL, Deolindo GL, Fracasso M, Copetti PM, Morsch VM, Baldissera MD, Mendes RE, Boiago MM, da Silva AS. Addition of a Blend Based on Zinc Chloride and Lignans of Magnolia in the Diet of Broilers to Substitute for a Conventional Antibiotic: Effects on Intestinal Health, Meat Quality, and Performance. Animals (Basel) 2022; 12:ani12233249. [PMID: 36496770 PMCID: PMC9740953 DOI: 10.3390/ani12233249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to determine whether adding a blend based on zinc chloride and lignans from magnolia to the diet of broilers could replace conventional performance enhancers. For this study, 360 chickens were divided into four groups, with six repetitions per group (n = 15), as follows: CN, without promoter; GPC, control, 50 mg/kg of enramycin growth promoter; T-50, additive blend at a dose of 50 g/ton; and T-100, additive blend at a dose of 100 g/ton. Chickens fed with the additive blend at 50 g/ton showed a production efficiency index equal to that in the GPC group (p < 0.05). At 42 days, the lowest total bacterial count (TBC) was found in the T-100 group, followed by that in the GPC group (p < 0.001). For E. coli, the lowest count was observed in the T-100 group, followed by that in the CP and T-50 groups (p < 0.001). Higher villus/crypt ratios were observed in birds belonging to the T-100 and T-50 groups than in the GPC and NC groups (p < 0.001). Greater water retention was found in the T-50 group than in NC and T-100 groups (p < 0.048). The lowest water loss during cooking was also noted in the T-50 group (p < 0.033). We concluded that adding the antimicrobial blend, primarily at 50 g/ton, maintains the efficiency of the index of production and improves the intestinal health and meat quality of the birds.
Collapse
Affiliation(s)
- Gabriela M. Galli
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - João V. Strapazzon
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Maiara S. Marchiori
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Vitor L. Molosse
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Guilherme L. Deolindo
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Mateus Fracasso
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Priscila M. Copetti
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Vera M. Morsch
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Matheus D. Baldissera
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Av. Roraima, n 1000, Cidade Universitária, Camobi 97105-900, RS, Brazil
| | - Ricardo E. Mendes
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense, Rodovia SC 283—km 17, Concordia 89703-720, SC, Brazil
| | - Marcel M. Boiago
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
| | - Aleksandro S. da Silva
- Animal Science Graduate Program, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Beloni Trombeta Zanini, n 680-E, Santo Antonio 89815-630, SC, Brazil
- Correspondence: ; Tel.: +55-49-20499560
| |
Collapse
|
8
|
Chen F, He J, Wang X, Lv T, Liu C, Liao L, Li Z, Zhou J, He B, Qiu H, Lin Q. Effect of Dietary Ramie Powder at Various Levels on the Growth Performance, Meat Quality, Serum Biochemical Indices and Antioxidative Capacity of Yanling White Geese. Animals (Basel) 2022; 12:ani12162045. [PMID: 36009636 PMCID: PMC9404410 DOI: 10.3390/ani12162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the effects of different levels of ramie powder (Boehmeria nivea (L.) Gaudich.) (i.e., 0%, 6%, 12% and 24%) on the production performance, serum biochemical indices, antioxidative capacity and intestinal development of Yanling white geese, a total of 256 geese at 56 days of age were randomly divided into four groups and fed a control diet and the control diet supplemented with 6%, 12% and 24% ramie powder, respectively, for 42 days. The results show that dietary supplementation with 12% ramie powder significantly increased the average final weight (p < 0.05) and tended to improve the average daily gain (ADG) and feed/gain ratio (F/G) of the test geese (0.05 < p < 0.10). Moreover, the dietary inclusion of 12 and 24% ramie powder improved meat qualities by reducing the L* value (p < 0.05) and cooking loss (0.05 < p < 0.10) of thigh muscle. Compared with the control group, the ramie powder supplementation at different levels increased the serum activities of glutathione peroxidase and glutathione, promoting the antioxidative capacity of the body (0.05 < p < 0.10). This study demonstrates that moderate ramie powder is beneficial to the production performance of Yanling white geese and has the potential to be used as a poultry feed ingredient. In conclusion, 12% was the proper supplementation rate of ramie powder in Yanling white geese feed.
Collapse
Affiliation(s)
- Fengming Chen
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Jieyi He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
| | - Tuo Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
| | - Liping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
| | - Zibo Li
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Jun Zhou
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - Bingsheng He
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - HuaJiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (H.Q.); (Q.L.)
| | - Qian Lin
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410125, China
- Correspondence: (H.Q.); (Q.L.)
| |
Collapse
|
9
|
Zhou L, Li H, Hou G, Wang J, Zhou H, Wang D. Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler. Animals (Basel) 2022; 12:ani12131661. [PMID: 35804560 PMCID: PMC9265100 DOI: 10.3390/ani12131661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigates the effects of vine tea (Ampelopsis grossedentata) extract (AGE) on meat quality, gut microbiota and cecal content metabolites of Wenchang broilers. A total of 240 female Wenchang broilers aged 70 days were randomly allocated into four groups with five replicates of twelve broilers each. Broilers were fed a corn-soybean basal diet supplemented with AGE at 0 (T1), 0.2% (T2), 0.4% (T3) and 0.6% (T4) until 124 days of age. The whole feeding trial lasted 54 days. Results suggest that the content of total triglycerides and low-density lipoprotein cholesterol in serum of broilers are linearly reduced with dietary AGE supplementation (p < 0.05). The T3 and T4 groups had higher (p < 0.05) a* value in thigh and breast muscles than the T1 group. Additionally, the dietary supplementation of AGE decreased the shear force and drip loss of both thigh and breast muscles linearly (p < 0.05). Compared with the T1 group, AGE supplementation increased the levels of inosine monophosphate (IMP) significantly (p < 0.05) in both the thigh and breast muscles. Furthermore, an increase (p < 0.05) in the total unsaturated fatty acid (USFA), polyunsaturated fatty acids (PUFA) and the ratio of unsaturated fatty acids to saturated fatty acid (USFA: SFA) in both the thigh and breast muscles in the T3 group was observed. Higher abundance of Bacteroidota (p < 0.05) and lower abundance of Firmicutes (p < 0.05) were observed in the T3 group. The abundance of Faecalibacterium was significantly decreased (p < 0.05) in the T3 group compared with the T1 group. Cholesterol sulfate and p-cresol sulfate were identified as differential metabolites between the T1 and T3 groups. It suggested that 0.4% of AGE supplementation significantly downregulated the levels of p-cresol sulfate and cholesterol sulfate (p < 0.05) and the hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity compared with the control. Our present study demonstrates that dietary supplementation with AGE can improve the quality and flavor by increasing the IMP and PUFA content in the muscle of Wenchang broilers. Furthermore, dietary AGE supplementation with 0.4% can regulate the cholesterol metabolism of Wenchang broilers.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
| | - Hui Li
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (H.L.); (J.W.)
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
| | - Jian Wang
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (H.L.); (J.W.)
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Correspondence: (H.Z.); (D.W.)
| | - Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.)
- Correspondence: (H.Z.); (D.W.)
| |
Collapse
|
10
|
Chen F, Zhang H, Zhao N, Du E, Jin F, Fan Q, Guo W, Huang S, Wei J. Effects of magnolol and honokiol blend on performance, egg quality, hepatic lipid metabolism, and intestinal morphology of hens at late laying cycle. Animal 2022; 16:100532. [DOI: 10.1016/j.animal.2022.100532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
|
11
|
The Effects of Magnolol Supplementation on Growth Performance, Meat Quality, Oxidative Capacity, and Intestinal Microbiota in Broilers. Poult Sci 2022; 101:101722. [PMID: 35196587 PMCID: PMC8866717 DOI: 10.1016/j.psj.2022.101722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 12/25/2022] Open
|
12
|
Du E, Fan Q, Zhao N, Zhang W, Wei J, Chen F, Huang S, Guo W. Supplemental magnolol improves the antioxidant capacity and intestinal health of broiler chickens. Anim Sci J 2021; 92:e13665. [PMID: 34874084 DOI: 10.1111/asj.13665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Magnolol is a multifunctional polyphenol rich in Magnolia officinalis. The objective of this study was to investigate the effects of magnolol on growth performance, carcass traits, antioxidant capacity, and gut health of broiler chickens. A total of 240 1-day-old broilers were randomly allocated into five dietary treatments: control (Ctrl); control diet supplemented with 100, 200, or 300 mg/kg of magnolol (M100, M200, and M300); and control diet supplemented with 200 mg/kg of bacitracin zinc (PC). The results showed that magnolol linearly decreased the feed conversion ratio between d 0 and d 14, linearly decreased the amount of malondialdehyde and increased the activity of total superoxide dismutase (T-SOD) in both serum and ileal mucosa on d 42 with increasing magnolol levels (p < 0.05). Moreover, the ileal villus height, the ileal villus height to crypt depth ratio, and the jejunal gene expressions of SOD1, glutathione peroxidase, and Claudin1 were linearly up-regulated with increasing magnolol levels (p < 0.05). The supplementation of magnolol had no effect on carcass traits or cecal short chain fatty acids (p > 0.05). The results indicated that magnolol could be applied in the diet of broiler chickens to benefit their antioxidant capacity and intestinal health.
Collapse
Affiliation(s)
- Encun Du
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiwen Fan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fang Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
13
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed.
Part 9: Polymyxins: colistin. EFSA J 2021; 19:e06861. [PMID: 34729089 PMCID: PMC8546797 DOI: 10.2903/j.efsa.2021.6861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific concentrations of colistin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of colistin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these antimicrobials.
Collapse
|
14
|
Chen F, Zhang H, Du E, Fan Q, Zhao N, Jin F, Zhang W, Guo W, Huang S, Wei J. Supplemental magnolol or honokiol attenuates adverse effects in broilers infected with Salmonella pullorum by modulating mucosal gene expression and the gut microbiota. J Anim Sci Biotechnol 2021; 12:87. [PMID: 34365974 PMCID: PMC8351427 DOI: 10.1186/s40104-021-00611-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Salmonella pullorum is one of the most harmful pathogens to avian species. Magnolol and honokiol, natural compounds extracted from Magnolia officinalis, exerts anti-inflammatory, anti-oxidant and antibacterial activities. This study was conducted to evaluate the effects of dietary supplemental magnolol and honokiol in broilers infected with S. pullorum. A total of 360 one-day-old broilers were selected and randomly divided into four groups with six replicates: the negative control group (CTL), S. pullorum-infected group (SP), and the S. pullorum-infected group supplemented with 300 mg/kg honokiol (SPH) or magnolol (SPM). RESULTS The results showed that challenging with S. pullorum impaired growth performance in broilers, as indicated by the observed decreases in body weight (P < 0.05) and average daily gains (P < 0.05), along with increased spleen (P < 0.01) and bursa of Fabricus weights (P < 0.05), serum globulin contents, and the decreased intestine villus height and villus/crypt ratios (P < 0.05). Notably, supplemental magnolol and honokiol attenuated these adverse changes, and the effects of magnolol were better than those of honokiol. Therefore, we performed RNA-Seq in ileum tissues and 16S rRNA gene sequencing of ileum bacteria. Our analysis revealed that magnolol increased the α-diversity (observed species, Chao1, ACE, and PD whole tree) and β-diversity of the ileum bacteria (P < 0.05). In addition, magnolol supplementation increased the abundance of Lactobacillus (P < 0.01) and decreased unidentified Cyanobacteria (P < 0.05) both at d 14 and d 21. Further study confirmed that differentially expressed genes induced by magnolol and honokiol supplementation enriched in cytokine-cytokine receptor interactions, in the intestinal immune network for IgA production, and in the cell adhesion molecule pathways. CONCLUSIONS Supplemental magnolol and honokiol alleviated S. pullorum-induced impairments in growth performance, and the effect of magnolol was better than that of honokiol, which could be partially due to magnolol's ability to improve the intestinal microbial and mucosal barrier.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
15
|
Lv H, Tang Y, Zhang H, Li S, Fan Z. Astragalus polysaccharide supplementation improves production performance, egg quality, serum biochemical index and gut microbiota in Chongren hens. Anim Sci J 2021; 92:e13550. [PMID: 33899985 DOI: 10.1111/asj.13550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
This research aimed to determine whether the astragalus polysaccharide (AP) can improve the production performance and gut microbiota in Chongren hens.120 Chongren hens (240-d old) were randomly allocated into 4 treatments with 30 hens and fed with a control basal diet (CON) or CON supplemented with the different levels of AP (100, 200, and 400 mg/kg) for 56 d. The egg production and feed conversion ratio were decreased (p < .05) with the levels of AP. The yolk weight, yolk color, eggshell thickness, eggshell redness index and egg shell yellowness were increased (p < .05). AP supplementation increased CAT and T-AOC and SOD, and decreased MDA (p < .05). Supplementation of AP decreased IL-2, IL-6 and TNF-α levels (p < .05), but increased the IL-4 level in the liver (p < .05). The villus heights of duodenum, jejunum ileum, the crypt depth and V/C in the jejunum were increased (p < .05). Dietary supplementation of 200 mg/kg AP increased (P relative abundances of Firmicutes and Lactobacteriaceae in the cecum of Chongren hens. In conclusion, addition of AP improved the production performance, egg quality, antioxidant function, and intestinal morphology in hens, which might be associated with the gut microbiota.
Collapse
Affiliation(s)
- Hongwei Lv
- Jiangxi Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Nanchang, China.,College of Animal Science and Technology, Hunan agricultural University, Changsha, China.,Hunan Research Center for Poultry Safety Production Engineering, Changsha, China
| | - Yanqiang Tang
- Jiangxi Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Nanchang, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan agricultural University, Changsha, China.,Hunan Research Center for Poultry Safety Production Engineering, Changsha, China
| | - Siming Li
- Jiangxi Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Nanchang, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan agricultural University, Changsha, China.,Hunan Research Center for Poultry Safety Production Engineering, Changsha, China
| |
Collapse
|
16
|
Chen F, Zhang H, Du E, Jin F, Zheng C, Fan Q, Zhao N, Guo W, Zhang W, Huang S, Wei J. Effects of magnolol on egg production, egg quality, antioxidant capacity, and intestinal health of laying hens in the late phase of the laying cycle. Poult Sci 2020; 100:835-843. [PMID: 33518137 PMCID: PMC7858092 DOI: 10.1016/j.psj.2020.10.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Magnolol is a multifunctional plant polyphenol. To evaluate the effects of magnolol on laying hens in the late laying period, 360 (50-week-old) laying hens were randomly assigned to 4 dietary treatments: a non-supplemented control diet (C), and control diets supplemented with 100, 200, and 300 mg/kg of magnolol (M100, M200, and M300), respectively. Each treatment had 6 replicates with 15 hens per replicate. Results showed that dietary supplementation of 200 and 300 mg/kg of magnolol increased the laying rate and the M200 group had a lower feed conversion ratio (P < 0.05). Magnolol supplementation (200 and 300 mg/kg) could linearly increase albumen height and Haugh unit of fresh eggs in the late phase of the laying cycle (P < 0.01). And magnolol linearly alleviated the decline of the albumen height and Haugh unit of eggs stored for 14 d (P < 0.01). The total superoxide dismutase activity in the ovaries of M100 group was greater than that in the other treatments (P < 0.05). As dietary magnolol levels increased, villus height of jejunum and ileum linearly increased (P < 0.01). M200 and M300 groups had higher expression level of occludin in the ileum compared with group C (P < 0.01). The level of nitric oxide production and inducible nitric oxide synthase expression in the ileum of M200 group were lower than that in the C group (P < 0.05). In conclusion, dietary supplementation of 200 and 300 mg/kg magnolol can improve hen performance, albumen quality of fresh and storage eggs, and hepatic lipid metabolism in the late laying cycle. Also, magnolol has a good effect on increasing villi and improving the intestinal mucosal mechanical barrier function.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis of Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Chao Zheng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China.
| |
Collapse
|
17
|
Wei R, Song Q, Hu S, Xu H, Liu H, Kang B, Li L, Zeng X, Chen L, Han C. Overfeeding influence on antioxidant capacity of serum, liver, gut, and breast muscle in Gang Goose and Tianfu Meat Goose. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|