1
|
Song S, Li F, Zhao B, Zhou M, Wang X. Ultraviolet Light Causes Skin Cell Senescence: From Mechanism to Prevention Principle. Adv Biol (Weinh) 2024:e2400090. [PMID: 39364703 DOI: 10.1002/adbi.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The skin is an effective protective barrier that significantly protects the body from damage caused by external environmental factors. Furthermore, skin condition significantly affects external beauty. In today's era, which is of material and spiritual prosperity, there is growing attention on skincare and wellness. Ultraviolet radiation is one of the most common external factors that lead to conditions like sunburn, skin cancer, and skin aging. In this review, several mechanisms of UV-induced skin cell senescence are discussed, including DNA damage, oxidative stress, inflammatory response, and mitochondrial dysfunction, which have their own characteristics and mutual effects. As an illustration, mitochondrial dysfunction triggers electron evasion and the generation of more reactive oxygen species, leading to oxidative stress and the activation of the NLRP3 inflammasome, which in turn causes mitochondrial DNA (mt DNA) damage. Based on the current mechanism, suitable prevention and treatment strategies are proposed from sunscreen, dietary, and experimental medications respectively, aimed at slowing down skin cell aging and providing protection from ultraviolet radiation. The effects of ultraviolet rays on skin is summarized, offering insights and directions for future studies on mechanism of skin cell senescence, with an anticipation of discovering more effective prevention and cure methods.
Collapse
Affiliation(s)
- Shujia Song
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Fuxing Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Bingxiang Zhao
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| |
Collapse
|
2
|
Huber K. Review: Welfare in farm animals from an animal-centred point of view. Animal 2024; 18:101311. [PMID: 39265500 DOI: 10.1016/j.animal.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024] Open
Abstract
This review aimed to enlighten aspects of welfare from the farm animal-centred point of view rarely addressed such as those anatomical and physiological alterations induced in farm animals to obtain high performance. Hence, the major working hypothesis was that high-producing farm animals developed an imbalance between body structural and functional capacities and the genetic procedures applied to obtain industrial production of animal protein. This is called "disproportionality", a feature which cannot be compensated by feeding and management approaches. Consequences of disproportionality are the insidious development of disturbances of the metabolism, low-grade systemic inflammation and as a final stage, production diseases, developing throughout the productive life span of a farm animal and affecting animal welfare. Based on scientific evidence from literature, the review discusses disproportional conditions in broilers, laying hens, sows, piglets, dairy cows, bulls and calves as the most important farm animals for production of milk, meat, foetuses and eggs. As a conclusion, farm animal welfare must consider analysing issues from an animal-centered point of view because it seems evident that, due to genetics and management pressures, most of farm animals are already beyond their physiological limitations. Animal welfare from an animal-centered point must be addressed as an ethical step to establish limits to the strength placed on the animal's anatomical and physiological functionality. It may allow more sustainable and efficient farm animal production and the availability of healthy animal-derived protein for human nutrition worldwide.
Collapse
Affiliation(s)
- K Huber
- Institute of Animal Science (460d), University of Hohenheim, Fruwirthstrasse 35, 70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Pramana A, Kurnia D, Firmanda A, Rossi E, Ar NH, Putri VJ. Using palm oil residue for food nutrition and quality: from palm fatty acid distillate to vitamin E toward sustainability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39258508 DOI: 10.1002/jsfa.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
Increasing global palm oil production yields a valuable palm fatty acid distillate (PFAD) - a rich vitamin E (Vit-E) source and multifunctional ingredient in the food agro-industry - that can be utilized to achieve sustainability. This article reviews trends in the use and role of PFAD and its Vit-E in the food sector and proposes an integrated agro-industrial concept toward sustainability. Vit-E can be separated from PFAD with diverse and impactful pharmaceutical activities, including antioxidant, anti-inflammatory, anticancer and anti-ultraviolet effects. Based on in vivo experimental tests, PFAD and Vit-E supplementation can enhance the productivity and quality of livestock-based food products. PFAD is a plasticizer and antistatic packaging material in food packaging systems, and its derivatives can be used as food additives. Meanwhile, the Vit-E molecule in packaging can extend food shelf life by maintaining color stability, reducing lipid oxidation and rancidity, adding antimicrobial properties, and influencing changes in packaging properties such as water vapor, tensile strength, melting point and other physical properties. Toward sustainability, an integrated agro-industrial design has been proposed to implement clean production, increase the added value of palm oil industry residues, minimize environmental risks and increase profits to achieve long-term social welfare. In conclusion, PFAD residues and their Vit-E content have shown broad benefits in the food sector and prospects toward sustainability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Dihan Kurnia
- Department of Animal Science, Politeknik Pertanian Negeri Payakumbuh, Lima Puluh Kota, Indonesia
| | - Afrinal Firmanda
- Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok, Indonesia
| | - Evy Rossi
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Nur Hasnah Ar
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Vivin Jenika Putri
- Department of Agricultural Technology, Faculty of Agricultural, Lancang Kuning University, Pekanbaru, Indonesia
| |
Collapse
|
4
|
Shastak Y, Pelletier W. Review of Liquid Vitamin A and E Formulations in Veterinary and Livestock Production: Applications and Perspectives. Vet Sci 2024; 11:421. [PMID: 39330800 PMCID: PMC11435926 DOI: 10.3390/vetsci11090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Vitamins A and E are vital fat-soluble micronutrients with distinct yet intertwined roles in various biological processes. This review delves into their functions, nutritional requirements across different animal species, the consequences of deficiencies, and the impact of liquid formulations on veterinary medicine and livestock production. Vitamin A exists in multiple forms, essential for vision, immunity, and growth, while vitamin E acts primarily as an antioxidant, safeguarding cell membranes from oxidative damage. Hypovitaminosis in these vitamins can lead to severe health consequences, affecting vision, immunity, growth, reproduction, and neurological functions. Hence, supplementation, particularly through innovative liquid formulations, becomes pivotal in addressing deficiencies and enhancing overall animal health and productivity. Injectable forms of vitamins A and E show promise in enhancing reproductive performance, growth, and immune function in livestock. Administering these vitamins through drinking water offers a convenient way to enhance livestock health and productivity, particularly during times of stress or increased nutritional needs. Liquid vitamin A and E drops offer a flexible and effective solution in veterinary practice, allowing precise dosing and easy administration, particularly for companion animals. Future research may aim to optimize formulations and explore targeted therapies and precision feeding via nutrigenomics, promising advancements in veterinary medicine and livestock production.
Collapse
Affiliation(s)
- Yauheni Shastak
- Nutrition & Health Division, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
5
|
Luan J, Jin Y, Zhang T, Feng X, Geng K, Zhang M, Geng C. Effects of dietary vitamin E supplementation on growth performance, slaughter performance, antioxidant capacity and meat quality characteristics of finishing bulls. Meat Sci 2023; 206:109322. [PMID: 37666007 DOI: 10.1016/j.meatsci.2023.109322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
This study was conducted to investigate the effects of dietary supplementation of vitamin E (VE) on growth performance, slaughter performance, antioxidant capacity and meat quality characteristics of finishing bulls. Twenty Yanbian cattle (bulls) with initial body weight (BW) 485 ± 42 kg were randomly divided into two groups (control and treatment groups) and participated in a100-day finishing trial. The control group (CON) was fed a basal diet (total mixed ration, TMR). The treatment group was fed a basal diet supplemented with VE (provided as α-tocopherol acetate, 700 IU/bull/day). VE supplementation significantly increased the average daily gain (ADG) of finishing bulls, the beef marbling score, meat color parameters (a* [redness]), intramuscular fat content, the concentration of catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), VE and matrix metalloproteinases (MMP-13) in the serum and muscle tissue (P < 0.05). VE supplementation significantly decreased drip loss and cooking loss of the beef, the concentration of nitric oxide (NO) in the serum and muscle tissue, the concentration of malondialdehyde in the muscle tissue (P < 0.05), and tended to decrease the feed: gain (P = 0.077) and shear force (P = 0.062) of the beef. In conclusion, VE supplementation can improve the meat quality parameters of finishing bulls, especially the improvement of beef tenderness. The improvement of beef tenderness by VE supplementation may be related to the increase of MMPs concentration, and a potential mechanism for the secretion of MMPs by VE supplementation may be related to its antioxidant capacity.
Collapse
Affiliation(s)
- Jiaming Luan
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yinghai Jin
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Tai Zhang
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xin Feng
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Kai Geng
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Min Zhang
- Agricultural College, Yanbian University, Yanji 133002, China; Ministry of Education, Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Yanbian University, Yanji 133002, China
| | - Chunyin Geng
- Agricultural College, Yanbian University, Yanji 133002, China; Ministry of Education, Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Yanbian University, Yanji 133002, China.
| |
Collapse
|
6
|
Szewczyk K, Górnicka M. Dietary Vitamin E Isoforms Intake: Development of a New Tool to Assess Tocopherols and Tocotrienols Intake in Adults. Nutrients 2023; 15:3759. [PMID: 37686791 PMCID: PMC10490030 DOI: 10.3390/nu15173759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Due to the documented health benefits of tocopherols and tocotrienols as bioactive compounds, it seems important to assess their intake. The aim of this study was to develop a new tool and its application for assessment of tocopherol and tocotrienol intake in adults. Dietary data were collected by semiquantitative FFQ (VitE-FFQ) and by a 1-day dietary record in a group of 447 subjects. The database of the US Department of Agriculture (USDA) was used to calculate the individual isoforms of vitamin E and develop the tool-VIT_E.CAL. The assessment of measuring agreement between the two methods was conducted by analysis of the correlations and Bland-Altman plots. The average α-tocopherol intake was 11.3 mg/day for the data obtained using the FFQ method and 12.8 mg/day for the results obtained using the 1-day dietary record. Depending on the adopted recommendation, only 40-57% of the subjects had adequate vitamin E intake. The intake of α-tocopherol did not exceed the UL value in any of the respondents. The dominant forms of vitamin E in the diet of the studied group were α- and γ- forms (55% and 38% of the total sum) among tocopherols and β- and γ- forms (49% and 24% of the total sum) among tocotrienols. VIT_E.CAL allows us to calculate not only the total amount of vitamin E but also its eight isoforms. It can be a useful tool to assess individual and group intake of various forms of vitamin E in the diet. The use of VIT_E.CAL enables the proper assessment of vitamin E (as α-tocopherol and not α-tocopherol equivalent) in the diet of Poles, and most likely also in the European diet. The obtained results indicate the need to take into account the content of individual forms of vitamin E in food/diet, which will allow for a reliable assessment of its consumption. It also seems necessary to standardize the nomenclature regarding the name of vitamin E and its use for correct nutritional assessment.
Collapse
Affiliation(s)
| | - Magdalena Górnicka
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 02-776 Warsaw, Poland;
| |
Collapse
|
7
|
Vidya Muthulakshmi M, Srinivasan A, Srivastava S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS OMEGA 2023; 8:3586-3605. [PMID: 36743063 PMCID: PMC9893489 DOI: 10.1021/acsomega.2c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Vitamin E is a dietary supplement synthesized only by photosynthetic organisms and, hence, is an essential vitamin for human well-being. Because of the ever-increasing demand for natural vitamin E and limitations in existing synthesis modes, attempts to improve its yield using plant in vitro cultures have gained traction in recent years. With inflating industrial production costs, integrative approaches to conventional bioprocess optimization is the need of the hour for multifold vitamin E productivity enhancement. In this review, we briefly discuss the structure, isomers, and important metabolic routes of biosynthesis for vitamin E in plants. We then emphasize its vital role in human health and its industrial applications and highlight the market demand and supply. We illustrate the advantages of in vitro plant cell/tissue culture cultivation as an alternative to current commercial production platforms for natural vitamin E. We touch upon the conventional vitamin E metabolic pathway engineering strategies, such as single/multigene overexpression and chloroplast engineering. We highlight the recent progress in plant systems biology to rationally identify metabolic bottlenecks and knockout targets in the vitamin E biosynthetic pathway. We then discuss bioprocess optimization strategies for sustainable vitamin E production, including media/process optimization, precursor/elicitor addition, and scale-up to bioreactors. We culminate the review with a short discussion on kinetic modeling to predict vitamin E production in plant cell cultures and suggestions on sustainable green extraction methods of vitamin E for reduced environmental impact. This review will be of interest to a wider research fraternity, including those from industry and academia working in the field of plant cell biology, plant biotechnology, and bioprocess engineering for phytochemical enhancement.
Collapse
Affiliation(s)
- M. Vidya Muthulakshmi
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Aparajitha Srinivasan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Smita Srivastava
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
8
|
Effects of Dietary Vitamin E on Intramuscular Fat Deposition and Transcriptome Profile of the Pectoral Muscle of Broilers. J Poult Sci 2023; 60:2023006. [PMID: 36756043 PMCID: PMC9884639 DOI: 10.2141/jpsa.2023006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Vitamin E is an essential micronutrient for animals. The aim of this study was to determine the effect of vitamin E on intramuscular fat (IMF) deposition and the transcriptome profile of the pectoral muscle in broiler chickens. Arbor Acres chickens were divided into five treatment groups fed a basal diet supplemented with 0, 20, 50, 75, and 100 IU/kg dietary DL-α-tocopheryl acetate (vitamin E), respectively. Body weight, carcass performance, and IMF content were recorded. Transcriptome profiles of the pectoral muscles of 35-day-old chickens in the control and treatment groups (100 IU/kg of vitamin E) were obtained by RNA sequencing. The results showed that diets supplemented with 100 IU/kg of vitamin E significantly increased IMF deposition in chickens on day 35. In total, 159 differentially expressed genes (DEGs), including 57 up-regulated and 102 down-regulated genes, were identified in the treatment (100 IU/kg vitamin E) group compared to the control group. These DEGs were significantly enriched in 13 Gene Ontology terms involved in muscle development and lipid metabolism; three signaling pathways, including the mitogen-activated protein kinase and FoxO signaling pathways, which play key roles in muscular and lipid metabolism; 28 biofunctional categories associated with skeletal and muscular system development; 17 lipid metabolism functional categories; and three lipid metabolism and muscle development-related networks. The DEGs, pathways, functional categories, and networks identified in this study provide new insights into the regulatory roles of vitamin E on IMF deposition in broilers. Therefore, diets supplemented with 100 IU/kg of vitamin E will be more beneficial to broiler production.
Collapse
|
9
|
Effect of Diet and Essential Oils on the Fatty Acid Composition, Oxidative Stability and Microbiological Profile of Marchigiana Burgers. Antioxidants (Basel) 2022; 11:antiox11050827. [PMID: 35624691 PMCID: PMC9137589 DOI: 10.3390/antiox11050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this study is to evaluate the effects of including linseed (L) or linseed plus vitamin E (LE) in the diet of Marchigiana young bulls on the oxidative stability, color measurements, microbiological profile and fatty acid composition (FA) of burgers treated with and without a blend of essential oils (Rosmarinus officinalis and Origanum vulgare var. hirtum) (EOs). For this aim, the burgers were analysed for pH, thiobarbituric-acid-reactive substance (TBARS) content, Ferric Reducing/Antioxidant Power Assay (FRAP), vitamin E and colour measurements (L, a*, b) at 3, 6, 9, 12 days of storage: the TBARs were the highest in group L compared to C and LE after 12 days of storage (0.98, 0.73, and 0.63 mg MDA/kg, respectively). The TBARS content was also influenced by the use of EO compared to burgers not treated with EO (p < 0.05). The vitamin E content was influenced by the diet (p < 0.01), but not by the EO. The meat of the L group showed the lowest value of redness (a*) compared to C and LE (p < 0.01), while the use of EO did not affect colour parameters. The microbiological profile of the burgers showed a lower Pseudomonas count for L and LE at T0 (2.82 ± 0.30 and 2.30 ± 0.52 Log CFU/g, respectively) compared to C (3.90 ± 0.38 Log CFU/g), while the EO did not influence the microbiological profile. The FA composition was analysed at 0 and 12 days. The burgers from the LE group showed the highest value of polyunsaturated FA compared to the L and C groups (p < 0.05). Our findings suggest that the inclusion of vitamin E in a concentrate rich in polyunsaturated fatty acids is useful to limit intramuscular fat oxidation and to preserve the colour stability of burgers from young Marchigiana bulls enriched with healthy fatty acids. Moreover, linseed and vitamin E had a positive effect on microbial loads and growth dynamics, containing microbial development through time.
Collapse
|
10
|
Sridharan B, Jagannathan V, Rajesh NG, Viswanathan P. Combined effect of polyacrylic acid and vitamin E in preventing calcium oxalate crystal deposition in the kidneys of experimental hyperoxaluric rats. Cell Biochem Funct 2022; 40:138-149. [PMID: 34981535 DOI: 10.1002/cbf.3683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
Our study explores the combined effect of polyacrylic acid and vitamin E as prophylactic and curative agent against ethylene glycol (EG) induced calcium oxalate stone formation in Wistar rats. Male Wistar rats (54) were divided into nine groups, including control. The experimental groups were equally segregated into two for preventive study (4) and curative study (4). Urolithiasis was induced with 0.75% (v/v) EG in drinking water. Polyacrylic acid (10 mg/kg) and vitamin E (300 IU/day) were supplemented from day 1 for preventive and day 30 for curative studies. Restoration of urinary lithogenic factors (calcium, oxalate, phosphate, citrate and magnesium) and renal function (urea and creatinine in serum) by intervening agents were accomplished compared to urolithic rats (P < .001). Abnormal localization and increased expression of Tamm-Horsfall Protein, osteopontin and transferrin were observed in the kidneys of urolithic rats (P < .001) from immunohistochemistry and immunoblotting analysis. Polyacrylic acid and vitamin E supplementation have regulated the expression of the urinary macromolecules. Pro-inflammatory cytokines in kidney were significantly reduced (P < .001) by the intervening agents compared to urolithic rats. Therefore, polyacrylic acid and vitamin E in combination could be a potential formulation for better management of urolithiasis.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Renal Research Lab, Centre for Biomedical Research, Department of Biosciences, Vellore Institute of Technology, Vellore, India
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan, Republic of China
| | - Venkataseshan Jagannathan
- Renal Research Lab, Centre for Biomedical Research, Department of Biosciences, Vellore Institute of Technology, Vellore, India
| | - Nachiappa Ganesh Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Biomedical Research, Department of Biosciences, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
11
|
Sridharan B, Jagannathan V, Rajesh NG, Viswanathan P. Combined effect of polyacrylic acid and vitamin E in preventing calcium oxalate crystal deposition in the kidneys of experimental hyperoxaluric rats. Cell Biochem Funct 2022. [DOI: https://doi.org/10.1002/cbf.3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Badrinathan Sridharan
- Renal Research Lab, Centre for Biomedical Research, Department of Biosciences Vellore Institute of Technology Vellore India
- Department of Applied Chemistry Chaoyang University of Technology Taichung Taiwan, Republic of China
| | - Venkataseshan Jagannathan
- Renal Research Lab, Centre for Biomedical Research, Department of Biosciences Vellore Institute of Technology Vellore India
| | - Nachiappa Ganesh Rajesh
- Department of Pathology Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER) Puducherry India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Biomedical Research, Department of Biosciences Vellore Institute of Technology Vellore India
| |
Collapse
|
12
|
Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods 2021; 10:foods10040872. [PMID: 33923499 PMCID: PMC8073878 DOI: 10.3390/foods10040872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Consumption of red meat contributes to the intake of many essential nutrients in the human diet including protein, essential fatty acids, and several vitamins and trace minerals, with high iron content, particularly in meats with high myoglobin content. Demand for red meat continues to increase worldwide, particularly in developing countries where food nutrient density is a concern. Dietary and genetic manipulation of livestock can influence the nutritional value of meat products, providing opportunities to enhance the nutritional value of meat. Studies have demonstrated that changes in livestock nutrition and breeding strategies can alter the nutritional value of red meat. Traditional breeding strategies, such as genetic selection, have influenced multiple carcass and meat quality attributes relevant to the nutritional value of meat including muscle and fat deposition. However, limited studies have combined both genetic and nutritional approaches. Future studies aiming to manipulate the composition of fresh meat should aim to balance potential impacts on product quality and consumer perception. Furthermore, the rapidly emerging fields of phenomics, nutrigenomics, and integrative approaches, such as livestock precision farming and systems biology, may help better understand the opportunities to improve the nutritional value of meat under both experimental and commercial conditions.
Collapse
|
13
|
Zhao H, Chen Y, Wang S, Wen C, Zhou Y. Effects of dietary natural vitamin E supplementation on laying performance, egg quality, serum biochemical indices, tocopherol deposition and antioxidant capacity of laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.2002733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Haoran Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shiqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|