1
|
de Freitas AC, Reolon HG, Abduch NG, Baldi F, Silva RMO, Lourenco D, Fragomeni BO, Paz CCP, Stafuzza NB. Proteomic identification of potential biomarkers for heat tolerance in Caracu beef cattle using high and low thermotolerant groups. BMC Genomics 2024; 25:1079. [PMID: 39538142 PMCID: PMC11562314 DOI: 10.1186/s12864-024-11021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Heat stress has deleterious effects on physiological and performance traits in livestock. Within this context, using tropically adapted cattle breeds in pure herds or terminal crossbreeding schemes to explore heterosis is attractive for increasing animal production in warmer climate regions. This study aimed to identify biological processes, pathways, and potential biomarkers related to thermotolerance in Caracu, a tropically adapted beef cattle breed, by proteomic analysis of blood plasma. To achieve this goal, 61 bulls had their thermotolerance evaluated through a heat tolerance index. A subset of 14 extreme animals, including the seven most thermotolerant (HIGH group) and the seven least thermotolerant (LOW group), had their blood plasma samples used for proteomic analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The differentially regulated proteins detected between HIGH and LOW groups were used to perform functional enrichment analysis and a protein-protein interaction network analysis. RESULTS A total of 217 proteins were detected only in the HIGH thermotolerant group and 51 only in the LOW thermotolerant group. In addition, 81 and 87 proteins had significantly higher and lower abundancies in the HIGH group, respectively. Regarding proteins with the highest absolute log-fold change values, we highlighted those encoded by DUSP5, IGFALS, ROCK2, RTN4, IRAG1, and NNT genes based on their functions. The functional enrichment analysis detected several biological processes, molecular functions, and pathways related to cellular responses to stress, immune system, complement system, and hemostasis in both HIGH and LOW groups, in addition to terms and pathways related to lipids and calcium only in the HIGH group. Protein-protein interaction (PPI) network revealed as important nodes many proteins with roles in response to stress, hemostasis, immune system, inflammation, and homeostasis. Additionally, proteins with high absolute log-fold change values and proteins detected as essential nodes by PPI analysis highlighted herein are potential biomarkers for thermotolerance, such as ADRA1A, APOA1, APOB, APOC3, C4BPA, CAT, CFB, CFH, CLU, CXADR, DNAJB1, DNAJC13, DUSP5, FGA, FGB, FGG, HBA, HBB, HP, HSPD1, IGFALS, IRAG1, KNG1, NNT, OSGIN1, PROC, PROS1, ROCK2, RTN4, RYR1, TGFB2, VLDLR, VTN, and VWF. CONCLUSIONS Identifying potential biomarkers, molecular mechanisms and pathways that act in response to heat stress in tropically adapted beef cattle contributes to developing strategies to improve performance and welfare traits in livestock under tropical climates.
Collapse
Affiliation(s)
- Ana Claudia de Freitas
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Agricultural Research Agency of the State of Minas Gerais (EPAMIG), Patos de Minas, MG, 38709-899, Brazil
| | - Henrique G Reolon
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Natalya G Abduch
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | | | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Claudia C P Paz
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, SP, 15130-000, Brazil
| | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, SP, 14160-900, Brazil.
| |
Collapse
|
2
|
Kosaruk W, Brown JL, Towiboon P, Punyapornwithaya V, Pringproa K, Thitaram C. Measures of Oxidative Status Markers in Relation to Age, Sex, and Season in Sick and Healthy Captive Asian Elephants in Thailand. Animals (Basel) 2023; 13:ani13091548. [PMID: 37174585 PMCID: PMC10177462 DOI: 10.3390/ani13091548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress is a pathological condition that can have adverse effects on animal health, although little research has been conducted on wildlife species. In this study, blood was collected from captive Asian elephants for the assessment of five serum oxidative status markers (reactive oxygen species (ROS) concentrations; malondialdehyde, MDA; albumin; glutathione peroxidase, GPx; and catalase) in healthy (n = 137) and sick (n = 20) animals. Health problems consisted of weakness, puncture wounds, gastrointestinal distress, eye and musculoskeletal problems, and elephant endotheliotropic herpesvirus hemorrhagic disease (EEHV-HD). Fecal samples were also collected to assess glucocorticoid metabolites (fGCMs) as a measure of stress. All data were analyzed in relation to age, sex, sampling season, and their interactions using generalized linear models, and a correlation matrix was constructed. ROS and serum albumin concentrations exhibited the highest concentrations in aged elephants (>45 years). No sex differences were found for any biomarker. Interactions were observed for age groups and seasons for ROS and catalase, while GPx displayed a significant interaction between sex and season. In pairwise comparisons, significant increases in ROS and catalase were observed in summer, with higher ROS concentrations observed only in the adult female group. Lower catalase activity was exhibited in juvenile males, subadult males, adult females, and aged females compared to subadult and adult elephants (males and females) in winter and the rainy season. There was a positive association between catalase activity and fGCMs (r = 0.23, p < 0.05), and a number of red blood cell parameters were positively associated with several of these biomarkers, suggesting high oxidative and antioxidative activity covary in red cells (p < 0.05). According to health status, elephants with EEHV-HD showed the most significant changes in oxidative stress markers, with MDA, GPx, and catalase being higher and albumin being lower than in healthy elephants. This study provides an analysis of understudied health biomarkers in Asian elephants, which can be used as additional tools for assessing the health condition of this species and suggests age and season may be important factors in data interpretation.
Collapse
Affiliation(s)
- Worapong Kosaruk
- Doctoral Degree Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Janine L Brown
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Patcharapa Towiboon
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kidsadagon Pringproa
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
3
|
Bai H, Kawahara M, Takahashi M. Identification of menaquinone-4 (vitamin K2) target genes in bovine endometrial epithelial cells in vitro. Theriogenology 2023; 198:183-193. [PMID: 36592516 DOI: 10.1016/j.theriogenology.2022.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
The effect of vitamin K on bovine endometrial epithelial cells has not been thoroughly investigated. The objective of this study was to examine the effect of the biologically active form of vitamin K, menaquinone-4, on gene expression in bovine endometrial epithelial cells. First, we examined the mRNA and protein expression levels of UBIAD1, a menaquinone-4 biosynthetic enzyme. Second, we screened for potential target genes of menaquinone-4 in bovine endometrial epithelial cells using RNA-sequencing. We found 50 differentially expressed genes; 42 were upregulated, and 8 were downregulated. Among them, a dose-dependent response to menaquinone-4 was observed for the top three upregulated (TRIB3, IL6, and TNFAIP3) and downregulated (CDC6, ORC1, and RRM2) genes. It has been suggested that these genes play important roles in reproductive events. In addition, GDF15 and VEGFA, which are important for cellular functions as they are commonly involved in pathways, such as positive regulation of cell communication, cell differentiation, and positive regulation of MAPK cascade, were upregulated in endometrial epithelial cells by menaquinone-4 treatment. To the best of our knowledge, this is the first study showing the expression of UBIAD1 in the bovine uterus. Moreover, the study determined menaquinone-4 target genes in bovine endometrial epithelial cells, which may positively affect pregnancy with alteration of gene expression in cattle uterus.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-8589, Japan; Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, 060-0815, Japan.
| |
Collapse
|
4
|
Hossen S, Sukhan ZP, Kim SC, Hanif MA, Kong IK, Kho KH. Molecular Cloning and Functional Characterization of Catalase in Stress Physiology, Innate Immunity, Testicular Development, Metamorphosis, and Cryopreserved Sperm of Pacific Abalone. Antioxidants (Basel) 2023; 12:antiox12010109. [PMID: 36670971 PMCID: PMC9854591 DOI: 10.3390/antiox12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Catalase is a crucial enzyme of the antioxidant defense system responsible for the maintenance of cellular redox homeostasis. The aim of the present study was to evaluate the molecular regulation of catalase (Hdh-CAT) in stress physiology, innate immunity, testicular development, metamorphosis, and cryopreserved sperm of Pacific abalone. Hdh-CAT gene was cloned from the digestive gland (DG) of Pacific abalone. The 2894 bp sequence of Hdh-CAT had an open reading frame of 1506 bp encoding 501 deduced amino acids. Fluorescence in situ hybridization confirmed Hdh-CAT localization in the digestive tubules of the DG. Hdh-CAT was induced by different types of stress including thermal stress, H2O2 induction, and starvation. Immune challenges with Vibrio, lipopolysaccharides, and polyinosinic-polycytidylic acid sodium salt also upregulated Hdh-CAT mRNA expression and catalase activity. Hdh-CAT responded to cadmium induced-toxicity by increasing mRNA expression and catalase activity. Elevated seasonal temperature also altered Hdh-CAT mRNA expression. Hdh-CAT mRNA expression was relatively higher at the trochophore larvae stage of metamorphosis. Cryopreserved sperm showed significantly lower Hdh-CAT mRNA expression levels compared with fresh sperm. Hdh-CAT mRNA expression showed a relationship with the production of ROS. These results suggest that Hdh-CAT might play a role in stress physiology, innate immunity, testicular development, metamorphosis, and sperm cryo-tolerance of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Soo Cheol Kim
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea
| | - Md. Abu Hanif
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
- Correspondence: ; Tel.: +82-616-597-168; Fax: +82-616-597-169
| |
Collapse
|
5
|
Siddiqui SH, Khan M, Park J, Lee J, Choe H, Shim K, Kang D. COPA3 peptide supplementation alleviates the heat stress of chicken fibroblasts. Front Vet Sci 2023; 10:985040. [PMID: 36908511 PMCID: PMC9998527 DOI: 10.3389/fvets.2023.985040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Heat stress inhibits cellular proliferation and differentiation through the production of reactive oxygen species. Under stress conditions, antioxidant drugs promote stable cellular function by reducing the stress level. We sought to demonstrate 9-mer disulfide dimer peptide (COPA3) supplementation stabilizes fibroblast proliferation and differentiation even under heat stress conditions. In our study, fibroblasts were assigned to two different groups based on the temperature, like 38°C group presented as Control - and 43°C group presented as Heat Stress-. Each group was subdivided into two groups depending upon COPA3 treatment, like 38°C + COPA3 group symbolized Control+ and the 43°C + COPA3 group symbolized as Heat Stress+. Heat stress was observed to decrease the fibroblast viability and function and resulted in alterations in the fibroblast shape and cytoskeleton structure. In contrast, COPA3 stabilized the fibroblast viability, shape, and function. Moreover, heat stress and COPA3 were found to have opposite actions with respect to energy production, which facilitates the stabilization of cellular functions by increasing the heat tolerance capacity. The gene expression levels of antioxidant and heat shock proteins were higher after heat stress. Additionally, heat stress promotes the mitogen-activated protein kinase/ extracellular signal-regulated kinase-nuclear factor erythroid 2-related factor 2 (MAPK/ERK-Nrf2). COPA3 maintained the MAPK/ERK-Nrf2 gene expressions that promote stable fibroblast proliferation, and differentiation as well as suppress apoptosis. These findings suggest that COPA3 supplementation increases the heat tolerance capacity, viability, and functional activity of fibroblasts.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, United States.,Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea.,3D Tissue Culture Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hosung Choe
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Molecular, Physiological and Hematological Responses of Crossbred Dairy Cattle in a Tropical Savanna Climate. BIOLOGY 2022; 12:biology12010026. [PMID: 36671719 PMCID: PMC9855086 DOI: 10.3390/biology12010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A comprehensive study was conducted to assess the effects of seasonal transition and temperature humidity index (THI) on the adaptive responses in crossbred dairy cows reared in a tropical savanna region. A total of 40 lactating dairy cattle reared by small-scale dairy farmers in Bengaluru, India, were selected for this study. The research period comprised the transitioning season of summer to monsoon, wherein all traits were recorded at two points, one representing late summer (June) and the other early monsoon (July). A set of extensive variables representing physiological responses (pulse rate, respiration rate, rectal temperature, skin surface temperature), hematological responses (hematological profile), production (test day milk yield, milk composition) and molecular patterns (PBMC mRNA relative expression of selective stress response genes) were assessed. A significant effect of seasonal transition was identified on respiration rate (RR), skin surface temperature, mean platelet volume (MPV), platelet distribution width (PDWc), test day milk yield and on milk composition variables (milk density, lactose, solids-not-fat (SNF) and salts). The THI had a significant effect on RR, skin surface temperature, platelet count (PLT), plateletcrit (PCT) and PDWc. Lastly, THI and/or seasonal transition significantly affected the relative PBMC mRNA expression of heat shock protein 70 (HSP70), interferon beta (IFNβ), IFNγ, tumor necrosis factor alpha (TNFα), growth hormone (GH) and insulin-like growth factor-1 (IGF-1) genes. The results from this study reveal environmental sensitivity of novel physiological traits and gene expressions to climatic stressors, highlighting their potential as THI-independent heat stress biomarkers.
Collapse
|
7
|
Chotimanukul S, Suwimonteerabutr J, Techakumphu M, Swangchan-Uthai T. In Vitro Effects of Short-Term and Long-Term Heat Exposures on the Immune Response and Prostaglandin Biosynthesis in Bovine Endometrial Cells. Animals (Basel) 2022; 12:ani12182359. [PMID: 36139219 PMCID: PMC9495028 DOI: 10.3390/ani12182359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide heat stress (HS) conditions have a negative impact on dairy cow fertility. However, understanding of the effect of heat stress on endometrial functions is still unclear. The present study aimed to investigate the effects of differential heat exposure conditions on the immune response and prostaglandin biosynthesis of bovine endometrium challenged with bacterial lipopolysaccharide (LPS). Cultures of endometrial cells were grown to confluence at 37 °C (control) and 40.4 °C for 24 h after confluence (short-term heat exposure) and 40.4 °C for 8 days from the beginning of the culture (long-term heat exposure), prior to a challenge by 100 ng/mL LPS for 12 h. LPS altered ALOX12, IL8, IL1B, S100A8, PTGES and AKR1B1 expressions, as well as secretory IL8 and PGF2α. Short-term heat exposure decreased S100A8, IL8 and PGF2α compared with the control temperature, while long-term heat exposure decreased S100A8 and PGF2α. In contrast, HSPA5 expression was not altered by heat exposure or LPS. Indeed, the short-term heat treatment was insufficient for accomplishing the responses of the endometrium to LPS treatment for IL8, S100A8 and PTGES expressions when compared with other temperature conditions. Our findings showed that heat exposure could compromise endometrium immune response and prostaglandin biosynthesis in different ways based on elevated temperature duration, which could reduce subsequent fertility.
Collapse
Affiliation(s)
- Sroisuda Chotimanukul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Theerawat Swangchan-Uthai
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-(0)819794552
| |
Collapse
|
8
|
Adur MK, Seibert JT, Romoser MR, Bidne KL, Baumgard LH, Keating AF, Ross JW. Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period. J Anim Sci 2022; 100:6620802. [PMID: 35772767 PMCID: PMC9246672 DOI: 10.1093/jas/skac129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.
Collapse
Affiliation(s)
- Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Ma Y, Khan MZ, Xiao J, Alugongo GM, Chen X, Li S, Wang Y, Cao Z. An Overview of Waste Milk Feeding Effect on Growth Performance, Metabolism, Antioxidant Status and Immunity of Dairy Calves. Front Vet Sci 2022; 9:898295. [PMID: 35656173 PMCID: PMC9152456 DOI: 10.3389/fvets.2022.898295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Waste milk (WM) is a part of the milk produced on dairy farms, which is usually unsuitable for human consumption. The WM contains transition milk, mastitis milk, colostrum, milk with somatic cells, blood (Hemolactia), harmful pathogens, pathogenic and antibiotic residues. Due to the high cost of milk replacer (MR), dairy farmers prefer raw WM to feed their calves. It has been well established that WM has a greater nutritive value than MR. Hence WM can contribute to improved growth, rumen development, and immune-associated parameters when fed to dairy calves. However, feeding raw WM before weaning has continuously raised some critical concerns. The pathogenic load and antibiotic residues in raw WM may increase the risk of diseases and antibacterial resistance in calves. Thus, pasteurization has been recommended as an effective method to decrease the risk of diseases in calves by killing/inhibiting the pathogenic microorganisms in the raw WM. Altogether, the current review provides a brief overview of the interplay between the positive role of raw WM in the overall performance of dairy calves, limitations of raw WM as a feed source and how to overcome these issues arising from feeding raw WM.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhijun Cao
| |
Collapse
|
10
|
KAWANO K, YANAGAWA Y, NAGANO M, KATAGIRI S. Effects of heat stress on the endometrial epidermal growth factor profile and fertility in dairy cows. J Reprod Dev 2022; 68:144-151. [PMID: 35095040 PMCID: PMC8979802 DOI: 10.1262/jrd.2021-120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endometrial epidermal growth factor (EGF) profile is an indicator of uterine function and fertility in cattle. The present study aimed to investigate the effects of heat stress on the
endometrial EGF profile and fertility in lactating Holstein cows. The endometrial EGF profiles of 365 cows in the Hokkaido and Kyushu regions were examined between June and September (heat
stress period, n = 211) and between October and January (control period, n = 154). EGF profiles were investigated using uterine endometrial tissues obtained by biopsy 3 days after estrus
(Day 3). The proportion of cows with an altered EGF profile was higher between June and September than between October and January (41.2 vs. 16.2%, P < 0.05). The effects
of rectal temperature on Days 0 and 3 on the endometrial EGF profile were also assessed in cows (n = 79) between June and September in the Kyushu region. A single embryo was transferred to
cow on Day 7 to evaluate fertility (n = 67). Regardless of the rectal temperature on Day 3, the proportion of cows with an altered EGF profile was higher (64.1 vs. 30.0%, P
< 0.05) and the pregnancy rate after embryo transfer (ET) was lower (26.7 vs. 51.4%, P < 0.05) in cows with a rectal temperature ≥ 39.5°C on Day 0 than in cows with a
rectal temperature < 39.5°C on Day 0. The present results indicate that alterations in the endometrial EGF profile induced by an elevated body temperature on Day 0 contributed to
reductions in fertility in lactating dairy cows during the heat stress period.
Collapse
Affiliation(s)
- Kohei KAWANO
- Laboratory of Theriogenology, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yojiro YANAGAWA
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masashi NAGANO
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Seiji KATAGIRI
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
11
|
Lourenço JPDA, Cappellozza BI, Bertin RD, Miranda VFB, Junior WMC, de Sousa OA, Vasconcelos JLM. Evaluation of different cooling management strategies for lactating Holstein × Gir dairy cows. Transl Anim Sci 2021; 5:txab199. [PMID: 34729461 PMCID: PMC8558264 DOI: 10.1093/tas/txab199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Heat stress negatively impacts production, reproduction, and health of ruminants and strategies to alleviate these losses are warranted. Therefore, four experiments evaluated different cooling strategies on vaginal temperature (VT) of Holstein × Gir cows. Experiment 1 compared different amounts of water (2- or 4-L) over a 1-hour period from 1000 to 1100 h and 1600 to 1700 h. Experiment 2 evaluated the effects of sprinkling duration (in hours; 1- or 2-H), whereas Experiment 3 evaluated the effects of water amount (4- or 8-L) applied for 1- or 2-H. Lastly, the effects of a cooling strategy on specific hours of the day, starting at either 0700 (T-1) or 1100 h (T-2; Experiment 4), were evaluated. In all experiments, 12 Holstein × Gir cows were used in a 2 × 2 Latin Square Design containing two periods of 6 days each. Temperature and humidity index (THI) were recorded hourly and VT was recorded every 10-min throughout the experiments. As expected, an hour effect was observed for THI (P < 0.0001), which peaked early in the afternoon. In Experiment 1, a treatment × hour interaction was observed (P < 0.0001) for VT, as animals assigned to receive 4-L had a reduced VT at 1100, 1600, 1700, and 2300 h (P ≤ 0.03). During the cooling applications, cows receiving 4-L for 1 h had a reduced VT from 60 to 150 min (P ≤ 0.04). In Experiment 2, a treatment × hour interaction was observed (P < 0.0001) for VT, as animals assigned to receive 4-L of water for 2-H had a reduced VT at 1200 h (P = 0.05). Moreover, during the cooling process, VT was reduced for 2-H cows from 140 to 170 min after the beginning of the cooling process (P ≤ 0.05). In Experiment 3, animals assigned to receive 4-L + 2H had a reduced VT at 1200, 1700, 1800, and 1900 h (P < 0.001). A treatment × hour interaction was observed (P < 0.0001), as VT was reduced for 4-L + 2-H cows from 130 to 180 min after the beginning of the cooling process (P ≤ 0.05). In Experiment 4, by the time when the first cooling cycle of T-1 was applied (0700 h), T-1 cows consistently had (P ≤ 0.05) a reduced VT up to the hottest hours and greatest THI of the day (1400 and 1500 h). This pattern was maintained until the end of the last cooling cycle, whereas T-2 cows had a reduced VT. In summary, 4 L of water over a 5-min cycle for a period of 2 hours twice a day maintained VT of Holstein × Gir cows at lower levels. Moreover, the hour at which the first cooling cycle starts also should be considered when evaluating the efficacy of a cooling strategy for an entire day.
Collapse
Affiliation(s)
- João Paulo de A Lourenço
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Rafaela D Bertin
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Victor F B Miranda
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Wilson M C Junior
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Osvaldo A de Sousa
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Nutricorp, Araras, SP, Brazil
| | - José Luiz M Vasconcelos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
12
|
Murata H, Kunii H, Kusama K, Sakurai T, Bai H, Kawahara M, Takahashi M. Heat stress induces oxidative stress and activates the KEAP1-NFE2L2-ARE pathway in bovine endometrial epithelial cells. Biol Reprod 2021; 105:1114-1125. [PMID: 34296252 DOI: 10.1093/biolre/ioab143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heat stress adversely affects the reproductive function in cows. Although a relationship between heat stress and oxidative stress has been suggested, it has not been sufficiently verified in bovine endometrial epithelial cells. Here, we investigated whether oxidative stress is induced by heat stress in bovine endometrial epithelial cells under high temperature. Luciferase reporter assays showed that the reporter activity of heat shock element (HSE) and antioxidant responsive element (ARE) was increased in endometrial epithelial cells cultured under high temperature compared to that in cells cultured under basal (thermoneutral) temperature. Also, nuclear factor, erythroid 2 like 2 (NFE2L2), a master regulator of cellular environmental stress response, stabilized and the expression levels of antioxidant enzyme genes increased under high temperature. Immunostaining confirmed the nuclear localization of NFE2L2 in endometrial epithelial cells cultured under high temperature. Quantitative polymerase chain reaction analysis showed that the expression levels of representative inflammatory cytokine genes, such as prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin 8, were significantly decreased in endometrial epithelial cells cultured under high temperature compared to those in cells cultured under basal temperature. Thus, our results suggest that heat stress induces oxidative stress, whereas NFE2L2 plays a protective role in bovine endometrial epithelial cells cultured under heat stress conditions.
Collapse
Affiliation(s)
- Hirona Murata
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Hiroki Kunii
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Toshihiro Sakurai
- School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama-shi, Fukushima 963-8611, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo 060-8589, Japan.,Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|