1
|
McDougall FK, Boardman WS, Speight N, Stephenson T, Funnell O, Smith I, Graham PL, Power ML. Carriage of antibiotic resistance genes to treatments for chlamydial disease in koalas ( Phascolarctos cinereus): A comparison of occurrence before and during catastrophic wildfires. One Health 2023; 17:100652. [PMID: 38024267 PMCID: PMC10665209 DOI: 10.1016/j.onehlt.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Growing reports of diverse antibiotic resistance genes in wildlife species around the world symbolises the extent of this global One Health issue. The health of wildlife is threatened by antimicrobial resistance in situations where wildlife species develop disease and require antibiotics. Chlamydial disease is a key threat for koalas in Australia, with infected koalas frequently entering wildlife hospitals and requiring antibiotic therapy, typically with chloramphenicol or doxycycline. This study investigated the occurrence and diversity of target chloramphenicol and doxycycline resistance genes (cat and tet respectively) in koala urogenital and faecal microbiomes. DNA was extracted from 394 urogenital swabs and 91 faecal swabs collected from koalas in mainland Australia and on Kangaroo Island (KI) located 14 km off the mainland, before (n = 145) and during (n = 340) the 2019-2020 wildfires. PCR screening and DNA sequencing determined 9.9% of samples (95%CI: 7.5% to 12.9%) carried cat and/or tet genes, with the highest frequency in fire-affected KI koalas (16.8%) and the lowest in wild KI koalas sampled prior to fires (6.5%). The diversity of cat and tet was greater in fire-affected koalas (seven variants detected), compared to pre-fire koalas (two variants detected). Fire-affected koalas in care that received antibiotics had a significantly higher proportion (p < 0.05) of cat and/or tet genes (37.5%) compared to koalas that did not receive antibiotics (9.8%). Of the cat and/or tet positive mainland koalas, 50.0% were Chlamydia-positive by qPCR test. Chloramphenicol and doxycycline resistance genes in koala microbiomes may contribute to negative treatment outcomes for koalas receiving anti-chlamydial antibiotics. Thus a secondary outcome of wildfires is increased risk of acquisition of cat and tet genes in fire-affected koalas that enter care, potentially exacerbating the already significant threat of chlamydial disease on Australia's koalas. This study highlights the importance of considering impacts to wildlife health within the One Health approach to AMR and identifies a need for greater understanding of AMR ecology in wildlife.
Collapse
Affiliation(s)
- Fiona K. McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Wayne S.J. Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Tamsyn Stephenson
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Ian Smith
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Petra L. Graham
- School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Michelle L. Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
2
|
Chen CJ, Casteriano A, Green AC, Govendir M. A retrospective study on antibacterial treatments for koalas infected with Chlamydia pecorum. Sci Rep 2023; 13:12670. [PMID: 37542093 PMCID: PMC10403558 DOI: 10.1038/s41598-023-39832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Chlamydiosis remains the leading infectious disease and is one of the key factors responsible for the dramatic reduction of koala populations in South-East Queensland (SEQ) and New South Wales (NSW) regions of Australia. Possible infection outcomes include blindness, infertility, painful cystitis, and death if left untreated. Studies have reported the treatment efficacy of chloramphenicol and doxycycline, which are the two most commonly administered treatments in diseased koalas, in clinical settings. However, none have directly compared the treatment efficacy of these antibacterials on koala survival. A retrospective study was essential to identify any relationships between the demographical information, and the animals' responses to the current treatment regimens. Associations were explored between six explanatory (sex; maturity; location; clinical signs, treatment; treatment duration) and two outcome variables (survival; post-treatment PCR). Results showed that female koalas had a statistical trend of lower odds of surviving when compared to males (OR = 0.36, p = 0.05). Koalas treated with chloramphenicol for ≥ 28 days had greater odds of surviving than when treated for < 28 days (OR = 8.8, p = 0.02), and those koalas administered doxycycline had greater odds of testing PCR negative when compared to chloramphenicol treatments (OR = 5.45, p = 0.008). There was no difference between the antibacterial treatments (chloramphenicol, doxycycline, and mixed/other) and the survival of koalas. Female koalas had greater odds of exhibiting UGT signs only (OR = 4.86, p < 0.001), and also greater odds of having both ocular and UGT clinical signs (OR = 5.29, p < 0.001) when compared to males. Of the koalas, 28.5% initially had no clinical signs but were PCR positive for C. pecorum. This study enables further understanding of the complex nature between chlamydial infection and response to antibacterial treatment.
Collapse
Affiliation(s)
- Chien-Jung Chen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia.
| | - Andrea Casteriano
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Alexandra Clare Green
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Yuan X, Liu J, Li R, Zhou J, Wei J, Jiao S, Wang ZA, Du Y. Chitosan Oligosaccharides Coupling Inhibits Bacterial Biofilm-Related Antibiotic Resistance against Florfenicol. Molecules 2020; 25:molecules25246043. [PMID: 33371321 PMCID: PMC7767115 DOI: 10.3390/molecules25246043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
The formation of bacterial biofilms has increased the resistance of bacteria to various environmental factors and is tightly associated with many persistent and chronic bacterial infections. Herein we design a strategy conjugating florfenicol, an antibiotic commonly used in the treatment of streptococcus, with the antimicrobial biomaterial, chitosan oligosaccharides. The results demonstrated that the florfenicol-COS conjugate (F-COS) efficiently eradicated the mature Streptococcus hyovaginalis biofilm, apparently inhibiting drug resistance to florfenicol. A quantity of 250 μg/mL F-COS showed effective inhibitory activity against planktonic cells and biofilm of the bacteria, and a 4-fold improvement of the F-COS compared to unmodified florfenicol was observed. Furthermore, the conjugate showed a broad-spectrum activity against both Gram-positive and Gram-negative bacteria. It suggested that F-COS might have a potential for application in the treatment of biofilm-related infections.
Collapse
Affiliation(s)
- Xianghua Yuan
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (X.Y.); (J.Z.)
| | - Jing Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (R.L.); (J.W.); (S.J.)
| | - Ruilian Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (R.L.); (J.W.); (S.J.)
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlin Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (X.Y.); (J.Z.)
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (R.L.); (J.W.); (S.J.)
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (R.L.); (J.W.); (S.J.)
| | - Zhuo A. Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (R.L.); (J.W.); (S.J.)
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.A.W.); (Y.D.); Tel.: +86-10-8254-5070 (Z.A.W.)
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (R.L.); (J.W.); (S.J.)
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.A.W.); (Y.D.); Tel.: +86-10-8254-5070 (Z.A.W.)
| |
Collapse
|
4
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
5
|
Booth R, Nyari S. Clinical comparison of five anti-chlamydial antibiotics in koalas (Phascolarctos cinereus). PLoS One 2020; 15:e0236758. [PMID: 32730301 PMCID: PMC7392309 DOI: 10.1371/journal.pone.0236758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/12/2020] [Indexed: 11/27/2022] Open
Abstract
Chlamydiosis is the most significant infectious disease of koalas (Phascolarctos cinereus). It is primarily a systemic sexually transmitted disease caused by Chlamydia pecorum and was responsible for 46% of the 2348 koala admissions to Australia Zoo Wildlife Hospital between 2013 and 2017. Treatment of chlamydiosis in koalas is complicated by three major factors. Firstly, koalas rely on bacterial fermentation of their high fibre diet making antibiotic therapy a risk. Secondly, they possess efficient metabolic pathways for the excretion of plant toxins and potentially of therapeutic agents. Thirdly, wild koalas, often present to rehabilitation facilities with chronic and severe disease. Traditional anti-chlamydial antibiotics used in other species may cause fatal dysbiosis in koalas or be excreted before they can be effective. We compared five anti-chlamydial antibiotics, azithromycin, chloramphenicol, doxycycline, enrofloxacin and florfenicol, which were used to treat 86 wild koalas with chlamydiosis presented to Australia Zoo Wildlife Hospital under consistent conditions of nutrition, housing, husbandry and climate. Response to treatment was assessed by recovery from clinical signs, and clearance of detectable Chlamydia via quantitative PCR. Doxycycline was the most effective anti-chlamydial antibiotic of the five, producing a 97% cure rate, followed by chloramphenicol (81%), enrofloxacin (75%), florfenicol (66%) and azithromycin (25%). The long-acting injectable preparation of doxycycline was well tolerated by koalas when administered via the subcutaneous route, and the weekly dosing requirement is a major advantage when treating wild animals. These findings indicate that doxycycline is the current drug of choice for the treatment of chlamydiosis in koalas, with chloramphenicol being the best alternative.
Collapse
Affiliation(s)
- Rosemary Booth
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
- * E-mail:
| | - Sharon Nyari
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
6
|
Bommana S, Polkinghorne A. Mini Review: Antimicrobial Control of Chlamydial Infections in Animals: Current Practices and Issues. Front Microbiol 2019; 10:113. [PMID: 30778341 PMCID: PMC6369208 DOI: 10.3389/fmicb.2019.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
Chlamydia are a genus of successful obligate intracellular pathogens spread across humans, wildlife, and domesticated animals. The most common species reported in livestock in this genus are Chlamydia abortus, Chlamydia psittaci, Chlamydia suis, and Chlamydia pecorum. Chlamydial infections trigger a series of inflammatory disease-related sequelae including arthritis, conjunctivitis, pneumonia, and abortion. Other bacteria in the phylum Chlamydiae have also been reported in livestock and wildlife but their impact on animal health is less clear. Control of chlamydial infections relies on the use of macrolides, fluoroquinolones, and tetracyclines. Tetracycline resistance (TETR) reported for porcine C. suis strains in association with the use of tetracycline feed is a potentially significant concern given experimental evidence highlighting that the genetic elements inferring TETR may be horizontally transferred to other chlamydial species. As documented in human Chlamydia trachomatis infections, relapse of infections, bacterial shedding post-antibiotic treatment, and disease progression despite chlamydial clearance in animals have also been reported. The identification of novel chlamydiae as well as new animal hosts for previously described chlamydial pathogens should place a renewed emphasis on basic in vivo studies to demonstrate the efficacy of existing and new antimicrobial treatment regimes. Building on recent reviews of antimicrobials limited to C. trachomatis and C. suis, this review will explore the use of antimicrobials, the evidence and factors that influence the treatment failure of chlamydial infections in animals and the future directions in the control of these important veterinary pathogens.
Collapse
Affiliation(s)
- Sankhya Bommana
- The Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Adam Polkinghorne
- The Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
7
|
Robbins A, Loader J, Timms P, Hanger J. Optimising the short and long-term clinical outcomes for koalas (Phascolarctos cinereus) during treatment for chlamydial infection and disease. PLoS One 2018; 13:e0209679. [PMID: 30589897 PMCID: PMC6307739 DOI: 10.1371/journal.pone.0209679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
Koalas (Phascolarctos cinereus) have suffered severe declines in the northern extent of their range due to a variety of threats, including habitat destruction, trauma from cars and dogs, climate change and importantly, disease. The most significant pathogen in koalas is Chlamydia pecorum, which causes inflammation and fibrosis at mucosal sites, resulting in blindness, infertility and death in severe cases. Chlamydia treatment can be problematic in koalas as the response to treatment is often poor in chronic cases and antimicrobial choice is limited. Thus, chlamydial disease is a severely threatening process for koala conservation. We investigated the short and long-term clinical outcomes for 167 koalas with Chlamydia that underwent capture, telemetric monitoring and intensive veterinary management as part of a large-scale population management program in South East Queensland. Chlamydia treatments included the standard regimen of daily subcutaneous chloramphenicol injections (60mg/kg) for 14 to 28-days, and a variety of non-standard regimens such as topical antimicrobials only (for ocular disease), surgical treatment only (for bilateral reproductive tract disease), and other antimicrobials/treatment lengths. To assess these regimens we analysed clinical records, field monitoring data and swab samples collected from the urogenital tract and ocular conjunctiva. Overall, in contrast to other studies, treatment was generally successful with 86.3% of treated koalas released back into the wild. The success of treatment rose to 94.8% however, when the standard treatment regimen was employed. Further, 100% of koalas that were also treated with surgical ovariohysterectomy (n = 12) remained healthy for a median of 466 days of post-treatment monitoring, demonstrating the benefits of surgical treatment. Previous studies reported 45-day chloramphenicol regimens, but the shorter standard regimen still achieved microbiological cure and reduces the risk of negative sequelae associated with treatment and/or captivity and treatment costs. Despite these positive clinical outcomes, alternatives to chloramphenicol are warranted due to its decreasing availability.
Collapse
Affiliation(s)
- Amy Robbins
- Endeavour Veterinary Ecology Pty Ltd, Toorbul, Queensland, Australia
- Genecology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Joanne Loader
- Endeavour Veterinary Ecology Pty Ltd, Toorbul, Queensland, Australia
| | - Peter Timms
- Genecology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Jonathan Hanger
- Endeavour Veterinary Ecology Pty Ltd, Toorbul, Queensland, Australia
| |
Collapse
|
8
|
Nyari S, Khan SA, Rawlinson G, Waugh CA, Potter A, Gerdts V, Timms P. Vaccination of koalas (Phascolarctos cinereus) against Chlamydia pecorum using synthetic peptides derived from the major outer membrane protein. PLoS One 2018; 13:e0200112. [PMID: 29953523 PMCID: PMC6023247 DOI: 10.1371/journal.pone.0200112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pecorum is a mucosal infection, which causes debilitating disease of the urinary tract, reproductive tract and ocular sites of koalas (Phascolarctos cinereus). While antibiotics are available for treatment, they are detrimental to the koalas' gastrointestinal tract microflora leaving the implementation of a vaccine as an ideal option for the long-term management of koala populations. We have previously reported on the successes of an anti-chlamydial recombinant major outer membrane protein (rMOMP) vaccine however, recombinant protein based vaccines are not ideal candidates for scale up from the research level to small-medium production level for wider usage. Peptide based vaccines are a promising area for vaccine development, because peptides are stable, cost effective and easily produced. In this current study, we assessed, for the first time, the immune responses to a synthetic peptide based anti-chlamydial vaccine in koalas. Five healthy male koalas were vaccinated with two synthetic peptides derived from C. pecorum MOMP and another five healthy male koalas were vaccinated with full length recombinant C. pecorum MOMP (genotype G). Systemic (IgG) and mucosal (IgA) antibodies were quantified and pre-vaccination levels compared to post-vaccination levels (12 and 26 weeks). MOMP-peptide vaccinated koalas produced Chlamydia-specific IgG and IgA antibodies, which were able to recognise not only the genotype used in the vaccination, but also MOMPs from several other koala C. pecorum genotypes. In addition, IgA antibodies induced at the ocular site not only recognised recombinant MOMP protein but also, whole native chlamydial elementary bodies. Interestingly, some MOMP-peptide vaccinated koalas showed a stronger and more sustained vaccine-induced mucosal IgA antibody response than observed in MOMP-protein vaccinated koalas. These results demonstrate that a synthetic MOMP peptide based vaccine is capable of inducing a Chlamydia-specific antibody response in koalas and is a promising candidate for future vaccine development.
Collapse
Affiliation(s)
- Sharon Nyari
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Shahneaz Ali Khan
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Galit Rawlinson
- Lone Pine Koala Sanctuary, Fig Tree Pocket, Queensland, Australia
| | - Courtney A. Waugh
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrew Potter
- Vaccine and Infectious Disease Organisation–International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organisation–International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
9
|
Dahlhausen KE, Doroud L, Firl AJ, Polkinghorne A, Eisen JA. Characterization of shifts of koala ( Phascolarctos cinereus) intestinal microbial communities associated with antibiotic treatment. PeerJ 2018; 6:e4452. [PMID: 29576947 PMCID: PMC5853612 DOI: 10.7717/peerj.4452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/14/2018] [Indexed: 01/01/2023] Open
Abstract
Koalas (Phascolarctos cinereus) are arboreal marsupials native to Australia that eat a specialized diet of almost exclusively eucalyptus leaves. Microbes in koala intestines are known to break down otherwise toxic compounds, such as tannins, in eucalyptus leaves. Infections by Chlamydia, obligate intracellular bacterial pathogens, are highly prevalent in koala populations. If animals with Chlamydia infections are received by wildlife hospitals, a range of antibiotics can be used to treat them. However, previous studies suggested that koalas can suffer adverse side effects during antibiotic treatment. This study aimed to use 16S rRNA gene sequences derived from koala feces to characterize the intestinal microbiome of koalas throughout antibiotic treatment and identify specific taxa associated with koala health after treatment. Although differences in the alpha diversity were observed in the intestinal flora between treated and untreated koalas and between koalas treated with different antibiotics, these differences were not statistically significant. The alpha diversity of microbial communities from koalas that lived through antibiotic treatment versus those who did not was significantly greater, however. Beta diversity analysis largely confirmed the latter observation, revealing that the overall communities were different between koalas on antibiotics that died versus those that survived or never received antibiotics. Using both machine learning and OTU (operational taxonomic unit) co-occurrence network analyses, we found that OTUs that are very closely related to Lonepinella koalarum, a known tannin degrader found by culture-based methods to be present in koala intestines, was correlated with a koala’s health status. This is the first study to characterize the time course of effects of antibiotics on koala intestinal microbiomes. Our results suggest it may be useful to pursue alternative treatments for Chlamydia infections without the use of antibiotics or the development of Chlamydia-specific antimicrobial compounds that do not broadly affect microbial communities.
Collapse
Affiliation(s)
| | - Ladan Doroud
- Department of Computer Science, University of California, Davis, CA, United States of America
| | - Alana J Firl
- Genome Center, University of California, Davis, CA, United States of America
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Jonathan A Eisen
- Genome Center, University of California, Davis, CA, United States of America
| |
Collapse
|
10
|
Budd C, Flanagan C, Gillett A, Hanger J, Loader JJ, Govendir M. Assessment of florfenicol as a possible treatment for chlamydiosis in koalas (Phascolarctos cinereus). Aust Vet J 2017; 95:343-349. [PMID: 28845567 DOI: 10.1111/avj.12617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Because of limited availability of chloramphenicol to veterinary suppliers, a preliminary study was performed to predict whether an analogue, florfenicol, is an efficacious treatment for chlamydiosis in koalas. METHODS Florfenicol was administered to koalas with naturally occurring chlamydiosis at 20 mg/kg SC (n = 3) and at 5 mg/kg (n = 3) and 10 mg/kg (n = 3) IV. The estimated areas under the plasma concentration versus time curves (AUC) were compared with the minimum inhibitory concentration to inhibit Chlamydia pecorum. Clinical data were also examined from field trials conducted on koalas (n = 19) with naturally occurring chlamydiosis and treated with florfenicol at a range of dosages (5-20 mg/kg SC and 6-15 mg/kg IV). Florfenicol binding to proteins in plasma was also determined. RESULTS Florfenicol was not detectable in plasma 24 h post-administration at 20 mg/kg SC. The estimated AUC0-24 h following administration at 10 mg/kg IV suggests florfenicol might be effective against Chlamydia spp. via this route. Florfenicol binding to plasma proteins was 13.0% (± 0.30 SEM). After treatment with florfenicol in field trials, 5 of 19 koalas (26%) were released without further treatment, 4 with no long-term follow-up; 6 (32%) required additional treatment with chloramphenicol to resolve chlamydiosis; 7 (36%) failed to clinically improve, of which 3 had clinical signs and/or necropsy findings suggestive of antibiotic-related gastrointestinal dysbiosis; another koala died within minutes of florfenicol administered IV at 7 mg/kg. CONCLUSION When administered at dosages tolerable in the field, florfenicol is a problematic treatment for chlamydiosis based on equivocal outcomes and plasma concentrations below those that inhibit the pathogen.
Collapse
Affiliation(s)
- C Budd
- Sydney School of Veterinary Science The University of Sydney, Sydney, New South Wales, Australia
| | - C Flanagan
- Port Macquarie Koala Hospital, Port Macquarie, New South Wales, Australia
| | - A Gillett
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
| | - J Hanger
- Endeavour Veterinary Ecology, Toorbul, Queensland, Australia
| | - J J Loader
- Endeavour Veterinary Ecology, Toorbul, Queensland, Australia
| | - M Govendir
- Sydney School of Veterinary Science The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Govendir M. Review of some pharmacokinetic and pharmacodynamic properties of anti-infective medicines administered to the koala (Phascolarctos cinereus). J Vet Pharmacol Ther 2017; 41:1-10. [PMID: 28703410 DOI: 10.1111/jvp.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/04/2017] [Indexed: 01/12/2023]
Abstract
Although koalas are iconic Australian animals, no pharmacokinetic studies of any first-line medicines used to treat diseased or injured koalas had been published prior to 2010. Traditionally, medicine dosages suggested for this species underwent linear extrapolation from those recommended for domesticated species. The koala, a specialist folivore whose natural diet consists of almost exclusively Eucalyptus spp. foliage has anatomical and physiological adaptations for detoxifying their diet which also affect medicine pharmacokinetic profiles. This review addresses aspects of medicine absorption, clearance, and other indices (such as medicine binding to plasma proteins) of enrofloxacin/marbofloxacin and chloramphenicol used for the systemic treatment of chlamydiosis, and fluconazole ± amphotericin, and posaconazole for the treatment of cryptococcosis. Based on observations from published studies, this review includes suggestions to improve therapeutic outcomes when administering medicines to diseased koalas.
Collapse
Affiliation(s)
- M Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Brown MA, Potroz MG, Teh SW, Cho NJ. Natural Products for the Treatment of Chlamydiaceae Infections. Microorganisms 2016; 4:E39. [PMID: 27754466 PMCID: PMC5192522 DOI: 10.3390/microorganisms4040039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022] Open
Abstract
Due to the global prevalence of Chlamydiae, exploring studies of diverse antichlamydial compounds is important in the development of effective treatment strategies and global infectious disease management. Chlamydiaceae is the most widely known bacterial family of the Chlamydiae order. Among the species in the family Chlamydiaceae, Chlamydia trachomatis and Chlamydia pneumoniae cause common human diseases, while Chlamydia abortus, Chlamydia psittaci, and Chlamydia suis represent zoonotic threats or are endemic in human food sources. Although chlamydial infections are currently manageable in human populations, chlamydial infections in livestock are endemic and there is significant difficulty achieving effective treatment. To combat the spread of Chlamydiaceae in humans and other hosts, improved methods for treatment and prevention of infection are needed. There exist various studies exploring the potential of natural products for developing new antichlamydial treatment modalities. Polyphenolic compounds can inhibit chlamydial growth by membrane disruption, reestablishment of host cell apoptosis, or improving host immune system detection. Fatty acids, monoglycerides, and lipids can disrupt the cell membranes of infective chlamydial elementary bodies (EBs). Peptides can disrupt the cell membranes of chlamydial EBs, and transferrins can inhibit chlamydial EBs from attachment to and permeation through the membranes of host cells. Cellular metabolites and probiotic bacteria can inhibit chlamydial infection by modulating host immune responses and directly inhibiting chlamydial growth. Finally, early stage clinical trials indicate that polyherbal formulations can be effective in treating chlamydial infections. Herein, we review an important body of literature in the field of antichlamydial research.
Collapse
Affiliation(s)
- Mika A Brown
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Michael G Potroz
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Seoh-Wei Teh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
13
|
Lawrence A, Fraser T, Gillett A, Tyndall JDA, Timms P, Polkinghorne A, Huston WM. Chlamydia Serine Protease Inhibitor, targeting HtrA, as a New Treatment for Koala Chlamydia infection. Sci Rep 2016; 6:31466. [PMID: 27530689 PMCID: PMC4987629 DOI: 10.1038/srep31466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023] Open
Abstract
The koala, an iconic marsupial native to Australia, is a threatened species in many parts of the country. One major factor in the decline is disease caused by infection with Chlamydia. Current therapeutic strategies to treat chlamydiosis in the koala are limited. This study examines the effectiveness of an inhibitor, JO146, which targets the HtrA serine protease for treatment of C. pecorum and C. pneumoniae in vitro and ex vivo with the aim of developing a novel therapeutic for koala Chlamydia infections. Clinical isolates from koalas were examined for their susceptibility to JO146. In vitro studies demonstrated that treatment with JO146 during the mid-replicative phase of C. pecorum or C. pneumoniae infections resulted in a significant loss of infectious progeny. Ex vivo primary koala tissue cultures were used to demonstrate the efficacy of JO146 and the non-toxic nature of this compound on peripheral blood mononuclear cells and primary cell lines established from koala tissues collected at necropsy. Our results suggest that inhibition of the serine protease HtrA could be a novel treatment strategy for chlamydiosis in koalas.
Collapse
Affiliation(s)
- Amba Lawrence
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Tamieka Fraser
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydoore, QLD, 4558, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, 4519, Australia
| | - Joel D A Tyndall
- New Zealand's National School of Pharmacy, University of Otago, Dunedin 9054 New Zealand
| | - Peter Timms
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydoore, QLD, 4558, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydoore, QLD, 4558, Australia
| | - Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia.,School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
14
|
Penicillin G-Induced Chlamydial Stress Response in a Porcine Strain of Chlamydia pecorum. Int J Microbiol 2016; 2016:3832917. [PMID: 26997956 PMCID: PMC4779511 DOI: 10.1155/2016/3832917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 01/14/2023] Open
Abstract
Chlamydia pecorum causes asymptomatic infection and pathology in ruminants, pigs, and koalas. We characterized the antichlamydial effect of the beta lactam penicillin G on Chlamydia pecorum strain 1710S (porcine abortion isolate). Penicillin-exposed and mock-exposed infected host cells showed equivalent inclusions numbers. Penicillin-exposed inclusions contained aberrant bacterial forms and exhibited reduced infectivity, while mock-exposed inclusions contained normal bacterial forms and exhibited robust infectivity. Infectious bacteria production increased upon discontinuation of penicillin exposure, compared to continued exposure. Chlamydia-induced cell death occurred in mock-exposed controls; cell survival was improved in penicillin-exposed infected groups. Similar results were obtained both in the presence and in the absence of the eukaryotic protein translation inhibitor cycloheximide and at different times of initiation of penicillin exposure. These data demonstrate that penicillin G induces the chlamydial stress response (persistence) and is not bactericidal, for this chlamydial species/strain in vitro, regardless of host cell de novo protein synthesis.
Collapse
|
15
|
Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:10-18. [PMID: 27218014 PMCID: PMC4845085 DOI: 10.1007/s40588-016-0028-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Chlamydiaceae are widespread pathogens of both humans and animals. Chlamydia trachomatis infection causes blinding trachoma and reproductive complications in humans. Chlamydia pneumoniae causes human respiratory tract infections and atypical pneumonia. Chlamydia suis infection is associated with conjunctivitis, diarrhea, and failure to gain weight in domestic swine. Chlamydial infections in humans and domesticated animals are generally controlled by antibiotic treatment—particularly macrolides (usually azithromycin) and tetracyclines (tetracycline and doxycycline). Tetracycline-containing feed has also been used to limit infections and promote growth in livestock populations, although its use has decreased because of growing concerns about antimicrobial resistance development. Because Sandoz and Rockey published an elegant review of chlamydial anti-microbial resistance in 2010, we will review the following: (i) antibiotic resistance in C. suis, (ii) recent evidence for acquired resistance in human chlamydial infections, and (iii) recent non-genetic mechanisms of antibiotic resistance that may contribute to treatment failure.
Collapse
|
16
|
Cabral L. In this issue-November 2015. Aust Vet J 2015. [DOI: 10.1111/avj.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|