1
|
Khalid K, Rox K. All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches. Antibiotics (Basel) 2023; 12:antibiotics12040690. [PMID: 37107052 PMCID: PMC10135278 DOI: 10.3390/antibiotics12040690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In light of rising antimicrobial resistance and a decreasing number of antibiotics with novel modes of action, it is of utmost importance to accelerate development of novel treatment options. One aspect of acceleration is to understand pharmacokinetics (PK) and pharmacodynamics (PD) of drugs and to assess the probability of target attainment (PTA). Several in vitro and in vivo methods are deployed to determine these parameters, such as time-kill-curves, hollow-fiber infection models or animal models. However, to date the use of in silico methods to predict PK/PD and PTA is increasing. Since there is not just one way to perform the in silico analysis, we embarked on reviewing for which indications and how PK and PK/PD models as well as PTA analysis has been used to contribute to the understanding of the PK and PD of a drug. Therefore, we examined four recent examples in more detail, namely ceftazidime-avibactam, omadacycline, gepotidacin and zoliflodacin as well as cefiderocol. Whereas the first two compound classes mainly relied on the ‘classical’ development path and PK/PD was only deployed after approval, cefiderocol highly profited from in silico techniques that led to its approval. Finally, this review shall highlight current developments and possibilities to accelerate drug development, especially for anti-infectives.
Collapse
Affiliation(s)
- Kashaf Khalid
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
2
|
Tang Y, Li X, Cao Y. Which factors matter the most? Revisiting and dissecting antibody therapeutic doses. Drug Discov Today 2021; 26:1980-1990. [PMID: 33895315 DOI: 10.1016/j.drudis.2021.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 01/22/2023]
Abstract
Factors such as antibody clearance and target affinity can influence antibodies' effective doses for specific indications. However, these factors vary considerably across antibody classes, precluding direct and quantitative comparisons. Here, we apply a dimensionless metric, the therapeutic exposure affinity ratio (TEAR), which normalizes the therapeutic doses by antibody bioavailability, systemic clearance and target-binding property to enable direct and quantitative comparisons of therapeutic doses. Using TEAR, we revisited and dissected the doses of up to 60 approved antibodies. We failed to detect a significant influence of target baselines, turnovers or anatomical locations on antibody therapeutic doses, challenging the traditional perceptions. We highlight the importance of antibodies' modes of action for therapeutic doses and dose selections; antibodies that work through neutralizing soluble targets show higher TEARs than those working through other mechanisms. Overall, our analysis provides insights into the factors that influence antibody doses, and the factors that are crucial for antibodies' pharmacological effects.
Collapse
Affiliation(s)
- Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaobing Li
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13030422. [PMID: 33800976 PMCID: PMC8003994 DOI: 10.3390/pharmaceutics13030422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
With more than 90 approved drugs by 2020, therapeutic antibodies have played a central role in shifting the treatment landscape of many diseases, including autoimmune disorders and cancers. While showing many therapeutic advantages such as long half-life and highly selective actions, therapeutic antibodies still face many outstanding issues associated with their pharmacokinetics (PK) and pharmacodynamics (PD), including high variabilities, low tissue distributions, poorly-defined PK/PD characteristics for novel antibody formats, and high rates of treatment resistance. We have witnessed many successful cases applying PK/PD modeling to answer critical questions in therapeutic antibodies’ development and regulations. These models have yielded substantial insights into antibody PK/PD properties. This review summarized the progress, challenges, and future directions in modeling antibody PK/PD and highlighted the potential of applying mechanistic models addressing the development questions.
Collapse
|
4
|
Correlation study between the pharmacokinetics of seven main active ingredients of Mahuang decoction and its pharmacodynamics in asthmatic rats. J Pharm Biomed Anal 2020; 183:113144. [PMID: 32070931 DOI: 10.1016/j.jpba.2020.113144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the pharmacokinetics and pharmacodynamics of seven main active components of Mahuang decoction (MHD) and its time-concentration-effect relationship. The asthmatic rat model was established by the method of ovalbumin (OVA) sensttization. The plasma concentrations of ephedrine, pseudoephedrine, methylephedrine, amygdalin, liquiritin, cinnamic acid, glycyrrhizic acid in asthmatic model rat were investigated by a selective and rapid HPLC/MS-MS method. Simultaneously, the asthma-involved cytokines including leukotrienes B4 (LTB4), thromboxane B2 (TXB2), 6-Keto-Prostaglandin F1α (6-K-PGF1α) and histamine (HIS) levels in rat plasma were determined by using ELISA. A mathematics method was applied to assess the trend of percentage rate of change among different time intervals of the seven components. The sigmoid E max function was used to establish the PK-PD modeling of MHD. The results indicated that MHD could control or ameliorate asthma. There was a hysteresis between the peaked drug concentration and maximum therapeutic effect of MHD. The PK-PD curves of MHD showed clockwise or counter-clockwise hysteresis loop. In addition, amygdalin might exert a more significant influence on regulating cytokines levels in asthmatic rats among the seven components of MHD.
Collapse
|
5
|
Nemaura T. Modelling the influx and efflux waves in drug movement: a basis for Pharmacokinetic-Pharmacodynamic link of efavirenz. Biomed Phys Eng Express 2019; 6:015002. [PMID: 33438590 DOI: 10.1088/2057-1976/ab559b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel compartmental modelling approach to investigate influx and efflux distribution of the drug efavirenz is suggested. The models are developed for a patient who had been on 600 mg daily dose of efavirenz. The work makes use of suggested wave motion to model drug distribution. It offers new insights into PK-PD(Pharmacokinetic-Pharmacodynamic) modelling. The distributional systems (immission and emission) of efavirenz are investigated and models are suggested. Each of the two distributional systems consists of four descriptors a source (desorbate), an underlay(a substrate/stimulus), a facilitator (propeller) and a product (adsorbate). The immission distribution is responsible for adsorbate formation. The immission distributional kinetics model is applied in projecting bioavailability (F = 0.194 5), extrinsic pass effects availability [Formula: see text], immission distributional volumes [Formula: see text] [Formula: see text], elimination rate constants [Formula: see text] [Formula: see text] and clearance parameters [Formula: see text]. Furthermore, the emission system model introduces a two-phased uptake for distribution of the efavirenz solution particle. The emission distribution is responsible for adsorbate degradation. It establishes a concentration-dependent peripheral uptake and a central one which is independent of concentration. The two distributional systems (waves) proposes a basis and subsequent space for a linear response. An elasticity measure is suggested for resistance to distributional flow. The developed models show how concentration can be used to characterise and predict distributional kinetics. Several relationships can be inferred from models suggested herein such as links to assertations from the Navier-Stokes and Noyes-Whitney equations.
Collapse
Affiliation(s)
- T Nemaura
- Department of Clinical Pharmacology, University of Zimbabwe, Zimbabwe
| |
Collapse
|
6
|
Cheng Y, Chu Y, Su X, Zhang K, Zhang Y, Wang Z, Xiao W, Zhao L, Chen X. Pharmacokinetic-pharmacodynamic modeling to study the anti-dysmenorrhea effect of Guizhi Fuling capsule on primary dysmenorrhea rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:141-151. [PMID: 30195872 DOI: 10.1016/j.phymed.2018.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Primary dysmenorrhea (PDM) is one of the most common gynaecological disorders among women, which seriously affects women's life quality due to its high incidence rate. Guizhi Fuling capsule (GZFLC), a well-known traditional Chinese medical prescription, has been widely used to treat gynecological blood stasis syndromes such as PDM. However, its mechanisms of action and combination were still unknown. PURPOSE The aim of this study was to develop a pharmacokinetic-pharmacodynamic (PK-PD) model to assess time-concentration-effect relationships for anti-dysmenorrhea effect of GZFLC and provide better understanding for mechanisms of action and combination of GZFLC. STUDY DESIGN AND METHODS The PDM rats model was induced by oxytocin exposure following estradiol benzoate pretreatment. Gallic acid (GA), amygdalin (AMY), albiflorin (ALB), prunasin (PA) and cinnamic acid (CA) were evaluated as bioactive ingredients for investigating PK processes. GA, AMY, ALB and PA exhibited appropriate PK parameters and were selected as the PK markers to map the anti-dysmenorrhea effect of GZFLC. A PK-PD model was established on the basis of GA, AMY, ALB and PA plasma concentrations vs. the values of two ratios (PGE2/PGF2α and 6-Keto-PGF1α/TXB2), by a two-compartment PK model with a simple Emax model to explain the time delay between the drug plasma concentrations of PK markers and the anti-dysmenorrhea effect. RESULTS The PDM rat model has been successfully established. Compared with the normal treated group, the bioactive ingredients in PDM treated group exhibited significant changing trends of PK behaviors, such as better absorption and distribution, slower elimination and delays in reaching the maximum concentration (Tmax). The analysis of PK-PD parameters indicated that the active metabolites and prototypes of bioactive ingredients in GZFLC were inclined to regulate the activity of prostacyclin synthetase and thromboxane synthetase to control the production of TXA2 and PGI2 so as to treat PDM. As the main effective medicinal materials for the treatment of PDM in GZFLC prescription Persicae Semen, Moutan Cortex and Paeonia lactiflora Pall, Persicae Semen played the most important role, while the role of Paeonia lactiflora Pall was the weakest. CONCLUSION The PK-PD model results provided scientific basis for clarifying compatibility mechanisms of GZFLC prescription and a better understanding for biosynthetic mechanisms of four prostaglandins (PGE2, PGF2α, 6-Keto-PGF1α and TXB2) in the treatment of PDM by GZFLC. Investigations on the relationship between the effects and the bioactive ingredients are of benefit to explore the mechanisms of action and combination for traditional Chinese medical prescriptions (TCP) and facilitate the development of future clinical applications of TCP.
Collapse
Affiliation(s)
- Yezhe Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanjie Chu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xitong Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kexia Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang Road, Lianyungang, Jiangsu 222001, PR China
| | - Wei Xiao
- State Key Laboratory of New-tech For Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang Road, Lianyungang, Jiangsu 222001, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
van Iersel MT, Greenberg HE, Westrick ML. Structured Risk Assessment for First-in-Human Studies. Ther Innov Regul Sci 2017; 51:288-297. [PMID: 30231711 DOI: 10.1177/2168479017705156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe a structured risk assessment and risk mitigation process that is currently used to evaluate proposed first-in human (FiH) studies. This process balances the inherent risks of an FiH study with maximal protection of subjects. Risk assessment should consider all available data, carefully identifying aspects that may lead to risk for healthy subjects. A structured risk assessment avoids omissions and promotes consistency. Such a risk assessment should be performed for Investigational Products as well as for challenge agents and study procedures. Careful risk assessment recognizes gaps of knowledge and emphasizes that FiH studies are tolerability, not toxicity, studies.
Collapse
|
8
|
Tiwari A, Abraham AK, Harrold JM, Zutshi A, Singh P. Optimal Affinity of a Monoclonal Antibody: Guiding Principles Using Mechanistic Modeling. AAPS JOURNAL 2016; 19:510-519. [PMID: 28004347 DOI: 10.1208/s12248-016-0004-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Affinity optimization of monoclonal antibodies (mAbs) is essential for developing drug candidates with the highest likelihood of clinical success; however, a quantitative approach for setting affinity requirements is often lacking. In this study, we computationally analyzed the in vivo mAb-target binding kinetics to delineate general principles for defining optimal equilibrium dissociation constant ([Formula: see text]) of mAbs against soluble and membrane-bound targets. Our analysis shows that in general [Formula: see text] to achieve 90% coverage for a soluble target is one tenth of its baseline concentration ([Formula: see text]), and is independent of the dosing interval, target turnover rate or the presence of competing ligands. For membrane-bound internalizing targets, it is equal to the ratio of internalization rate of mAb-target complex and association rate constant ([Formula: see text]). In cases where soluble and membrane-bound forms of the target co-exist, [Formula: see text] lies within a range determined by the internalization rate ([Formula: see text]) of the mAb-membrane target complex and the ratio of baseline concentrations of soluble and membrane-bound forms ([Formula: see text]). Finally, to demonstrate practical application of these general rules, we collected target expression and turnover data to project [Formula: see text] for a number of marketed mAbs against soluble (TNFα, RANKL, and VEGF) and membrane-bound targets (CD20, EGFR, and HER2).
Collapse
Affiliation(s)
- Abhinav Tiwari
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Cambridge, Massachusetts, USA
| | - Anson K Abraham
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, West Point, Pennsylvania, USA
| | - John M Harrold
- Department of Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, California, USA
| | | | - Pratap Singh
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Cambridge, Massachusetts, USA.
| |
Collapse
|
9
|
Ren W, Zuo R, Wang YN, Wang HJ, Yang J, Xin SK, Han LY, Zhao HY, Han SY, Gao B, Hu H, Hu YJ, Bian BL, Si N. Pharmacokinetic-Pharmacodynamic Analysis on Inflammation Rat Model after Oral Administration of Huang Lian Jie Du Decoction. PLoS One 2016; 11:e0156256. [PMID: 27280291 PMCID: PMC4900566 DOI: 10.1371/journal.pone.0156256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Huang-Lian-Jie-Du Decoction (HLJDD) is a classical Traditional Chinese Medicine (TCM) formula with heat-dissipating and detoxifying effects. It is used to treat inflammation-associated diseases. However, no systematic pharmacokinetic (PK) and pharmacodynamic (PD) data concerning the activity of HLJDD under inflammatory conditions is available to date. In the present study, the concentration-time profiles and the hepatic clearance rates (HCR) of 41 major components in rat plasma in response to the oral administration of a clinical dose of HLJDD were investigated by LC-QqQ-MS using a dynamic multiple reaction monitoring (DMRM) method. Additionally, the levels of 7 cytokines (CKs) in the plasma and the body temperature of rats were analyzed. Furthermore, a PK-PD model was established to describe the time course of the hemodynamic and anti-inflammatory effects of HLJDD. As one of the three major active constituents in HLJDD, iridoids were absorbed and eliminated more easily and quickly than alkaloids and flavonoids. Compared with the normal controls, the flavonoids, alkaloids and iridoids in inflamed rats exhibited consistently changing trends of PK behaviors, such as higher bioavailability, slower elimination, delays in reaching the maximum concentration (Tmax) and longer substantivity. The HCR of iridoids was different from that of alkaloids and flavonoids in inflamed rats. Furthermore, excellent pharmacodynamic effects of HLJDD were observed in inflamed rats. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, IL-10, and macrophage inflammatory protein-2 (MIP-2) and body temperature significantly decreased after the administration of HLJDD. Based on PK-PD modeling with the three-phase synchronous characterization of time-concentration-effect, flavonoids exhibited one mechanism of action in the anti-inflammatory process, while iridoids and alkaloids showed another mechanism of action. Taken together, the results demonstrated that HLJDD may restrain inflammation synergistically via its major constituents (alkaloids, flavonoids and iridoids). A correlation between the exposure concentration of different types of compounds and their anti-inflammatory effects in the body was shown. This study provides a comprehensive understanding of the anti-inflammatory activity of HLJDD.
Collapse
Affiliation(s)
- Wei Ren
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Capital Medical University, Beijing 100069, China
| | - Ran Zuo
- Li Kang Hospital, Beijing 102609, People’s Republic of China
| | - Yao-Nan Wang
- Capital Medical University, Beijing 100069, China
| | - Hong-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shao-Kun Xin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Capital Medical University, Beijing 100069, China
| | - Ling-Yu Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- * E-mail: (HYZ); (NS)
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and WesternMedicine, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, PR China
| | - Bo Gao
- Anhui Jinchan Biochemistry Company Ltd., Huaibei 235000, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bao-Lin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- * E-mail: (HYZ); (NS)
| |
Collapse
|