1
|
Nair AG, Anjukandi P. Insights into the Role of Side-Chain Team Work in nDsbD Ox/Red Proteins: Mechanism of Substrate Binding. J Phys Chem B 2024; 128:10541-10552. [PMID: 39230983 DOI: 10.1021/acs.jpcb.4c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap conformations), resulting in an active site that is highly flexible. So the system's active site is conformationally selective (the active site adapts before substrate binding) toward its substrate. In nDsbDRed, the cap is generally closed, resulting in induced fit-type binding (adapts after substrate approach). Recent studies predict Tyr40 and Tyr42 residues to act as internal nucleophiles (Tyr40/42O-) for disulfide association/dissociation in nDsbDOx/Red, supplementing the electron transfer channel. From this perspective, we investigate the cap dynamics and the subsequent substrate binding modes in these proteins. Our molecular dynamics simulations show that the cap opening eliminates Tyr42O- electrostatic interactions irrespective of the disulfide redox state. The active site becomes highly flexible, and the conformational selection mechanism governs. However, Tyr40O- formation does not alter the chemical environment; the cap remains mostly closed and plausibly follows the induced fit mechanism. Thus, it is apparent that mostly Tyr42O- facilitates the internal nucleophile-mediated self-preparation of nDsbDOx/Red proteins for binding.
Collapse
Affiliation(s)
- Aparna G Nair
- Department of Chemistry, Indian Institute of Technology, Palakkad, 678557 Kerala, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad, 678557 Kerala, India
| |
Collapse
|
2
|
Bappy MNI, Ahmed F, Lasker T, Sajib EH, Islam MS. Screening of Novel Drug Targets and Drug Design for Bordetella pertussis: A Subtractive Proteomics Approach. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100291. [PMID: 39497932 PMCID: PMC11533591 DOI: 10.1016/j.crmicr.2024.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Bordetella pertussis causes whooping cough in humans that spreads directly from individual to individual mainly by aerosolized respiratory droplets. Nowadays, it gained the attention of scientific community because it has already been reemerged as one of the major public health threats despite widespread vaccination efforts. Moreover, the growing antibiotic resistance has made it difficult to combat this pathogen with currently available antibiotics. Consequently, screening drug targets and discovering drugs against unique proteins of the pathogen could be a promising alternative. With this view, 3,359 proteins of B. pertussis were screened in silico to identify non-duplicate proteins crucial for survival of the bacteria, non-homologous to humans, involved in unique metabolic pathways of the pathogen, and conserved among various bacterial strains. Among these, Chemotaxis protein Mota, Chromosomal replication initiator protein DnaA, Short-chain fatty acids transporter, [protein-PII] uridylyltransferase, Type III secretion protein V, Potassium-transporting ATPase potassium-binding subunit, N-acetylmuramoyl-L-alanine amidase, and RNA polymerase sigma-54 factor fulfilled these criteria. These proteins were further analyzed for qualitative characteristics such as virulence properties and associations with antibiotic resistance, etc. In addition, plant metabolites were screened against these unique proteins utilizing molecular docking to discover putative drugs against them. Four metabolites exhibited superior binding affinity and favorable ADME (Adsorption, distribution, metabolism, and excretion) properties which can further be tested in vivo.
Collapse
Affiliation(s)
- Md. Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Foeaz Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tahera Lasker
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Shariful Islam
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
3
|
Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front Microbiol 2024; 15:1469414. [PMID: 39391608 PMCID: PMC11464445 DOI: 10.3389/fmicb.2024.1469414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammatory periodontal diseases associated with the accumulation of dental biofilm, such as gingivitis and periodontitis, are very common and pose clinical problems for clinicians and patients. Gingivitis is a mild form of gum disease and when treated quickly and properly is completely reversible. Periodontitis is an advanced and irreversible disease of the periodontium with periods of exacerbations, progressions and remission. Periodontitis is a chronic inflammatory condition that damages the tissues supporting the tooth in its socket, i.e., the gums, periodontal ligaments, root cementum and bone. Periodontal inflammation is most commonly triggered by bacteria present in excessive accumulations of dental plaque (biofilm) on tooth surfaces. This disease is driven by disproportionate host inflammatory immune responses induced by imbalance in the composition of oral bacteria and changes in their metabolic activities. This microbial dysbiosis favors the establishment of inflammatory conditions and ultimately results in the destruction of tooth-supporting tissues. Apart microbial shift and host inflammatory response, environmental factors and genetics are also important in etiology In addition to oral tissues destruction, periodontal diseases can also result in significant systemic complications. Conventional methods of periodontal disease treatment (improving oral hygiene, dental biofilm control, mechanical plaque removal, using local or systemic antimicrobial agents) are not fully effective. All this prompts the search for new methods of therapy. Advanced periodontitis with multiple abscesses is often treated with antibiotics, such as amoxicillin, tetracycline, doxycycline, minocycline, clindamycin, or combined therapy of amoxicillin with metronidazole. However, due to the growing problem of antibiotic resistance, treatment does not always achieve the desired therapeutic effect. This review summarizes pathogenesis, current approaches in treatment, limitations of therapy and the current state of research on the possibility of application of bacteriophages and predatory bacteria to combat bacteria responsible for periodontitis. We present the current landscape of potential applications for alternative therapies for periodontitis based on phages and bacteria, and highlight the gaps in existing knowledge that need to be addressed before clinical trials utilizing these therapeutic strategies can be seriously considered.
Collapse
Affiliation(s)
- Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Gędaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Doak BC, Whitehouse RL, Rimmer K, Williams M, Heras B, Caria S, Ilyichova O, Vazirani M, Mohanty B, Harper JB, Scanlon MJ, Simpson JS. Fluoromethylketone-Fragment Conjugates Designed as Covalent Modifiers of EcDsbA are Atypical Substrates. ChemMedChem 2024; 19:e202300684. [PMID: 38742480 DOI: 10.1002/cmdc.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Disulfide bond protein A (DsbA) is an oxidoreductase enzyme that catalyzes the formation of disulfide bonds in Gram-negative bacteria. In Escherichia coli, DsbA (EcDsbA) is essential for bacterial virulence, thus inhibitors have the potential to act as antivirulence agents. A fragment-based screen was conducted against EcDsbA and herein we describe the development of a series of compounds based on a phenylthiophene hit identified from the screen. A novel thiol reactive and "clickable" ethynylfluoromethylketone was designed for reaction with azide-functionalized fragments to enable rapid and versatile attachment to a range of fragments. The resulting fluoromethylketone conjugates showed selectivity for reaction with the active site thiol of EcDsbA, however unexpectedly, turnover of the covalent adduct was observed. A mechanism for this turnover was investigated and proposed which may have wider ramifications for covalent reactions with dithiol-disulfide oxidoreducatases.
Collapse
Affiliation(s)
- Bradley C Doak
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Rebecca L Whitehouse
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kieran Rimmer
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Martin Williams
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe, La Trobe University, Kingsbury Drive, Bundoora, Vic, 3083, Australia
| | - Sofia Caria
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Olga Ilyichova
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Mansha Vazirani
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jamie S Simpson
- Medicinal Chemistry, ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
5
|
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel) 2024; 16:271. [PMID: 38922165 PMCID: PMC11209546 DOI: 10.3390/toxins16060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
6
|
Ramírez-Trinidad Á, Martínez-Solano E, Tovar-Roman CE, García-Guerrero M, Rivera-Chávez JA, Hernández-Vázquez E. Synthesis, antibiofilm activity and molecular docking of N-acylhomoserine lactones containing cinammic moieties. Bioorg Med Chem Lett 2024; 98:129592. [PMID: 38101651 DOI: 10.1016/j.bmcl.2023.129592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
We prepared a series of cinnamoyl-containing furanones by an affordable and short synthesis. The nineteen compounds hold a variety of substituents including electron-donating, electron-withdrawing, bulky and meta-substituted phenyls, as well as heterocyclic rings. Compounds showed antibiofilm activity in S. aureus, K. pneumoniae and, more pronounced, against P. aeruginosa. The disruption of quorum sensing (QS) was tested using the violacein test and molecular docking predicted the antagonism of LasR as a plausible mechanism of action. The trimethoxylated and diene derivatives showed the best antibiofilm and anti-QS properties, thus becoming candidates for further modifications.
Collapse
Affiliation(s)
- Ángel Ramírez-Trinidad
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - Ernesto Martínez-Solano
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - César E Tovar-Roman
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - Mariana García-Guerrero
- Department of Natural Products, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - José A Rivera-Chávez
- Department of Natural Products, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico
| | - Eduardo Hernández-Vázquez
- Department of Organic Chemistry, Chemistry Institute, UNAM. Circuito exterior S.N., Ciudad Universitaria, Coyoacán, México, DF 04510, Mexico.
| |
Collapse
|
7
|
Muñoz-Cázares N, Peña-González MC, Castillo-Juárez I, Díaz-Núñez JL, Peña-Rodríguez LM. Exploring the anti-virulence potential of plants used in traditional Mayan medicine to treat bacterial infections. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116783. [PMID: 37321428 DOI: 10.1016/j.jep.2023.116783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE While the antimicrobial activity of a number of plants used in traditional Mayan medicine against infectious diseases has been documented, their potential to inhibit quorum sensing (QS) as means of discovering novel anti-virulence agents remains unexplored. AIM OF THE STUDY To evaluate the anti-virulence potential of plants used in traditional Mayan medicine by determining their inhibition of QS- regulated virulence factors in Pseudomonas aeruginosa. METHODS A group of plants used in traditional Mayan medicine against infectious diseases was selected, and their methanolic extracts were evaluated at 10 mg/mL for their antibacterial and anti-virulence activity using the reference strain P. aeruginosa PA14WT. The broth microdilution method was used to determine antibacterial activity (MIC), while anti-virulence activity was evaluated by measuring the anti-biofilm effect and the inhibition of pyocyanin and protease activities. The most bioactive extract was fractionated using a liquid-liquid partition procedure and the semipurified fractions were evaluated at 5 mg/mL for antibacterial and anti-virulence activity. RESULTS Seventeen Mayan medicinal plants traditionally used to treat infection-associated diseases were selected. None of the extracts exhibited antibacterial activity, whereas anti-virulence activity was detected in extracts of Bonellia flammea, Bursera simaruba, Capraria biflora, Ceiba aesculifolia, Cissampelos pareira and Colubrina yucatanensis. The most active extracts (74% and 69% inhibition) against biofilm formation were from C. aesculifolia (bark) and C. yucatanensis (root), respectively. Alternatively, the extracts of B. flammea (root), B. simaruba (bark), C. pareira (root), and C. biflora (root), reduced pyocyanin and protease production (50-84% and 30-58%, respectively). Fractionation of the bioactive root extract of C. yucatanensis allowed the identification of two semipurified fractions with anti-virulence activity. CONCLUSIONS The anti-virulence activity detected in the crude extracts of B. flammea, B. simaruba, C. biflora, C. aesculifolia, C. pareira, and C. yucatanensis, confirms the efficacy and traditional use of these medicinal plants against infectious diseases. The activity of the extract and semipurified fractions of C. yucatanensis indicates the presence of hydrophilic metabolites capable of interfering with QS in P. aeruginosa. This study represents the first report of Mayan medicinal plants with anti-QS properties and suggests they represent an important source of novel anti-virulence agents.
Collapse
Affiliation(s)
- Naybi Muñoz-Cázares
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Maria Claudia Peña-González
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Jose Luis Díaz-Núñez
- Catedrático COMECYT-Colegio de Postgraduados, Campus Montecillo, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
8
|
Yap CH, Ramle AQ, Lim SK, Rames A, Tay ST, Chin SP, Kiew LV, Tiekink ERT, Chee CF. Synthesis and Staphylococcus aureus biofilm inhibitory activity of indolenine-substituted pyrazole and pyrimido[1,2-b]indazole derivatives. Bioorg Med Chem 2023; 95:117485. [PMID: 37812886 DOI: 10.1016/j.bmc.2023.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Staphylococcus aureus is a highly adaptable opportunistic pathogen that can form biofilms and generate persister cells, leading to life-threatening infections that are difficult to treat with antibiotics alone. Therefore, there is a need for an effective S. aureus biofilm inhibitor to combat this public health threat. In this study, a small library of indolenine-substituted pyrazoles and pyrimido[1,2-b]indazole derivatives were synthesised, of which the hit compound exhibited promising antibiofilm activities against methicillin-susceptible S. aureus (MSSA ATCC 29213) and methicillin-resistant S. aureus (MRSA ATCC 33591) at concentrations significantly lower than the planktonic growth inhibition. The hit compound could prevent biofilm formation and eradicate mature biofilms of MSSA and MRSA, with a minimum biofilm inhibitory concentration (MBIC50) value as low as 1.56 µg/mL and a minimum biofilm eradication concentration (MBEC50) value as low as 6.25 µg/mL. The minimum inhibitory concentration (MIC) values of the hit compound against MSSA and MRSA were 50 µg/mL and 25 µg/mL, respectively, while the minimum bactericidal concentration (MBC) values against MSSA and MRSA were > 100 µg/mL. Preliminary structure-activity relationship analysis reveals that the fused benzene ring and COOH group of the hit compound are crucial for the antibiofilm activity. Additionally, the compound was not cytotoxic to human alveolar A549 cells, thus highlighting its potential as a suitable candidate for further development as a S. aureus biofilm inhibitor.
Collapse
Affiliation(s)
- Cheng Hong Yap
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Qaiyum Ramle
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - See Khai Lim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Avinash Rames
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sek Peng Chin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan, Republic of China
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500, Selangor Darul Ehsan, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
M Shafik S, Abbas HA, Yousef N, Saleh MM. Crippling of Klebsiella pneumoniae virulence by metformin, N-acetylcysteine and secnidazole. BMC Microbiol 2023; 23:229. [PMID: 37608306 PMCID: PMC10464179 DOI: 10.1186/s12866-023-02969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
INTRODUCTION The emergence of multidrug-resistant Klebsiella pneumoniae in hospitals represents a serious threat to public health. Infections caused by Klebsiella pneumoniae are widespread in healthcare institutions, mainly pneumonia, bloodstream infections, and infections affecting neonates in intensive care units; so, it is necessary to combat this pathogen with new strategies. Targeting virulence factors necessary to induce host damage and disease is a new paradigm for antimicrobial therapy with several potential benefits that could lead to decreased resistance. BACKGROUND The influence of metformin, N-acetylcysteine, and secnidazole on Klebsiella pneumoniae virulence factors production was tested. The production of Klebsiella pneumoniae virulence factors such as biofilm formation, urease, proteases, hemolysins, and tolerance to oxidative stress was evaluated phenotypically using sub-inhibitory concentration (1/8 MIC) of metformin, N-acetylcysteine, and secnidazole. For more confirmation, qRT-PCR was used to assess the relative expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes regulating virulence factors production. RESULTS Metformin, N-acetylcysteine, and secnidazole were all found to have a powerful inhibitory effect on the production of virulence factors phenotypically. Our results showed a significant reduction in the expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes. Furthermore, the tested drugs were investigated in vivo to inform their ability to protect mice against Klebsiella pneumoniae pathogenesis. CONCLUSIONS Metformin, N-acetylcysteine, and secnidazole inhibited the virulence of Klebsiella pneumoniae. Besides combating resistant Klebsiella pneumoniae, the tested drugs could also serve as an adjuvant to traditional antibiotics.
Collapse
Affiliation(s)
- Shokri M Shafik
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Hisham A Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Nehal Yousef
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig City, Egypt
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said City, Egypt.
| |
Collapse
|
10
|
Wang G, Qin J, Verderosa AD, Hor L, Santos-Martin C, Paxman JJ, Martin JL, Totsika M, Heras B. A Buried Water Network Modulates the Activity of the Escherichia coli Disulphide Catalyst DsbA. Antioxidants (Basel) 2023; 12:antiox12020380. [PMID: 36829940 PMCID: PMC9952396 DOI: 10.3390/antiox12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly Escherichia coli DsbA (EcDsbA), has demonstrated the key role that the Cys30-XX-Cys33 catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme. Using mutational and functional analyses, here we identify that a set of charged residues, which form an acidic groove on the non-catalytic face of the enzyme, further modulate the activity of EcDsbA. Our high-resolution structures indicate that these residues form a water-mediated proton wire that can transfer protons from the bulk solvent to the active site. Our results support the view that proton shuffling may facilitate the stabilisation of the buried Cys33 thiolate formed during the redox reaction and promote the correct direction of the EcDsbA-substrate thiol-disulphide exchange. Comparison with other proteins of the same class and proteins of the thioredoxin-superfamily in general suggest that a proton relay system appears to be a conserved catalytic feature among this widespread superfamily of proteins. Furthermore, this study also indicates that the acidic groove of DsbA could be a promising allosteric site to develop novel DsbA inhibitors as antibacterial therapeutics.
Collapse
Affiliation(s)
- Geqing Wang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Carlos Santos-Martin
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| |
Collapse
|
11
|
Whitehouse RL, Alwan WS, Ilyichova OV, Taylor AJ, Chandrashekaran IR, Mohanty B, Doak BC, Scanlon MJ. Fragment screening libraries for the identification of protein hot spots and their minimal binding pharmacophores. RSC Med Chem 2023; 14:135-143. [PMID: 36760747 PMCID: PMC9890547 DOI: 10.1039/d2md00253a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Fragment-based drug design relies heavily on structural information for the elaboration and optimisation of hits. The ability to identify neighbouring binding hot spots, energetically favourable interactions and conserved binding motifs in protein structures through X-ray crystallography can inform the evolution of fragments into lead-like compounds through structure-based design. The composition of fragment libraries can be designed and curated to fit this purpose and herein, we describe and compare screening libraries containing compounds comprising between 2 and 18 heavy atoms. We evaluate the properties of the compounds in these libraries and assess their ability to probe protein surfaces for binding hot spots.
Collapse
Affiliation(s)
- Rebecca L Whitehouse
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Wesam S Alwan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Olga V Ilyichova
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Australian Synchrotron, ANSTO Clayton VIC 3168 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Ashley J Taylor
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Indu R Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Bradley C Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
12
|
Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM, Halwani M. An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation. Infect Drug Resist 2023; 16:19-49. [PMID: 36636380 PMCID: PMC9830422 DOI: 10.2147/idr.s380883] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.
Collapse
Affiliation(s)
- F Mohamad
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raghad R Alzahrani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Manal M Alkhulaifi, P.O. Box 55670, Riyadh, 11544, Tel +966 (11) 805-1685, Email
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Correspondence: Majed Halwani, P.O. Box 3660, Mail Code 1515 (KAIMRC), Riyadh, 11481, Tel +966 (11) 429-4433, Fax +966 (11) 429-4440, Email ;
| |
Collapse
|
13
|
Zhang W, Gong Q, Tang Z, Ma X, Wang Z, Guan J, Wang L, Zhao Y, Yan M. The natural product, echinatin, protects mice from methicillin-resistant Staphylococcus aureus pneumonia by inhibition of alpha-hemolysin expression. Front Microbiol 2023; 14:1128144. [PMID: 37125192 PMCID: PMC10140358 DOI: 10.3389/fmicb.2023.1128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 05/02/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global, multifaceted crisis that poses significant challenges to the successful eradication of devastating pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA), a persistent superbug that causes devastating infections. The scarcity of new antibacterial drugs is obvious, and antivirulence strategies that reduce the pathogenicity of bacteria by weakening their virulence have become the subject of intense investigation. Alpha-hemolysin (Hla), a cytolytic pore-forming toxin, has a pivotal role in S. aureus pathogenesis. Here, we demonstrated that echinatin, a natural compound isolated from licorice, effectively inhibited the hemolytic activity of MRSA at 32 μg/mL. In addition, echinatin did not interfere with bacterial growth and had no significant cytotoxicity at the inhibitory concentration of S. aureus hemolysis. Heptamer formation tightly correlated with Hla-mediated cell invasion, whereas echinatin did not affect deoxycholic acid-induced oligomerization of Hla. Echinatin affected hemolytic activity through indirect binding to Hla as confirmed by the neutralization assay and cellular thermal shift assay (CETSA). Furthermore, qRT-PCR and western blot analyses revealed that echinatin suppressed Hla expression at both the mRNA and protein levels as well as the transcript levels of Agr quorum-sensing system-related genes. Additionally, when echinatin was added to a coculture system of A549 cells and S. aureus, it significantly reduced cell damage. Importantly, echinatin exhibited a significant therapeutic effect in an MRSA-induced mouse pneumonia model. In conclusion, the present findings demonstrated that echinatin significantly inhibits the hemolysin effect and may be a potential candidate compound for combating drug-resistant MRSA infections.
Collapse
Affiliation(s)
- Wei Zhang
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qing Gong
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhitong Tang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xin Ma
- Jilin Provincial Cancer Hospital, Changchun, China
| | - Zhuoer Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yan
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ming Yan,
| |
Collapse
|
14
|
Kasthuri T, Barath S, Nandhakumar M, Karutha Pandian S. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2022; 12:998540. [PMID: 36530435 PMCID: PMC9748083 DOI: 10.3389/fcimb.2022.998540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa easily adapts to newer environments and acquires several genome flexibilities to overcome the effect of antibiotics during therapeutics, especially in cystic fibrosis patients. During adaptation to the host system, the bacteria employ various tactics including virulence factor production and biofilm formation to escape from the host immune system and resist antibiotics. Hence, identifying alternative strategies to combat recalcitrant pathogens is imperative for the successful elimination of drug-resistant microbes. In this context, this study portrays the anti-virulence efficacy of umbelliferone (UMB) against P. aeruginosa. UMB (7-hydroxy coumarin) is pervasively found among the plant family of Umbelliferae and Asteraceae. The UMB impeded biofilm formation in the P. aeruginosa reference strain and clinical isolates on polystyrene and glass surfaces at the concentration of 125 µg/ml. Global proteomic analysis of UMB-treated cells revealed the downregulation of major virulence-associated proteins such as RhlR, LasA, AlgL, FliD, Tpx, HtpG, KatA, FusA1, Tsf, PhzM, PhzB2, CarB, DctP, MtnA, and MscL. A functional interaction study, gene ontology, and KEGG pathway analysis revealed that UMB could modulate the global regulators, enzymes, co-factors, and transcription factors related to quorum sensing (QS), stress tolerance, siderophore production, motility, and microcolony formation. In vitro biochemical assays further affirmed the anti-virulence efficacy of UMB by reducing pyocyanin, protease, elastase, and catalase production in various strains of P. aeruginosa. Besides the antibiofilm activity, UMB-treated cells exhibited enhanced antibiotic susceptibility to various antibiotics including amikacin, kanamycin, tobramycin, ciprofloxacin, and cefotaxime. Furthermore, in vitro cytotoxicity analysis revealed the biocompatibility of UMB, and the IC50 value was determined to be 249.85 µg/ml on the HepG2 cell line. Altogether, the study substantiates the anti-virulence efficacy of UMB against P. aeruginosa, and the proteomic analysis reveals the differential expression of the regulators related to QS, stress response, and motility factors.
Collapse
|
15
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
16
|
Solonamides, a Group of Cyclodepsipeptides, Influence Motility in the Native Producer Photobacterium galatheae S2753. Appl Environ Microbiol 2022; 88:e0110522. [PMID: 36000852 PMCID: PMC9469707 DOI: 10.1128/aem.01105-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium Photobacterium galatheae S2753 produces a group of cyclodepsipeptides, called solonamides, which impede the virulence but not the survival of Staphylococcus aureus. In addition to their invaluable antivirulence activity, little is known about the biosynthesis and physiological function of solonamides in the native producer. This study generated a solonamide-deficient (Δsol) mutant by in-frame deletion of the sol gene, thereby identifying the core gene for solonamide biosynthesis. By annotation from antiSMASH, the biosynthetic pathway of solonamides in S2753 was also proposed. Mass spectrometry analysis of cell extracts found that deficiency of solonamide production influenced the production of a group of unknown compounds but otherwise did not alter the overall secondary metabolite profile. Physiological comparison between Δsol and wild-type S2753 demonstrated that growth dynamics and biofilm formation of both strains were similar; however, the Δsol mutant displayed reduced motility rings compared to the wild type. Reintroduction of sol restored solonamide production and motility to the mutant, indicating that solonamides influence the motility behavior of P. galatheae S2753. Proteomic analysis of the Δsol and wild-type strains found that eliminating solonamides influenced many cellular processes, including swimming-related proteins and proteins adjusting the cellular cyclic di-GMP concentration. In conclusion, our results revealed the biosynthetic pathway of solonamides and their ecological benefits to P. galatheae S2753 by enhancing motility, likely by altering the motile physiology. IMPORTANCE The broad range of bioactive potentials of cyclodepsipeptides makes these compounds invaluable in the pharmaceutical industry. Recently, a few novel cyclodepsipeptides have been discovered in marine Proteobacteria; however, their biosynthetic pathways remain to be revealed. Here, we demonstrated the biosynthetic genetic basis and pathway of the antivirulence compounds known as solonamides in P. galatheae S2753. This can pave the way for the biological overproduction of solonamides on an industrial scale. Moreover, the comparison of a solonamide-deficient mutant and wild-type S2753 demonstrated that solonamides stimulate the swimming behavior of S2753 and also influence a few key physiological processes of the native producers. These results evidenced that, in addition to their importance as novel drug candidates, these compounds play a pivotal role in the physiology of the producing microorganisms and potentially provide the native producer competitive benefits for their survival in nature.
Collapse
|
17
|
Thabit AK, Eljaaly K, Zawawi A, Ibrahim TS, Eissa AG, Elbaramawi SS, Hegazy WAH, Elfaky MA. Muting Bacterial Communication: Evaluation of Prazosin Anti-Quorum Sensing Activities against Gram-Negative Bacteria Pseudomonas aeruginosa, Proteus mirabilis, and Serratia marcescens. BIOLOGY 2022; 11:biology11091349. [PMID: 36138828 PMCID: PMC9495718 DOI: 10.3390/biology11091349] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Bacterial infections are considered one of the main challenges to global health. Bacterial virulence is controlled by interplayed systems to regulate bacterial invasion and infection in host tissues. Quorum sensing (QS) plays a crucial role in regulating virulence factor production, thus could be considered as the bacterial communication system in the bacterial population. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria. It was demonstrated that prazosin significantly downregulates the expression of QS-encoding genes and shows considered ability to compete on QS proteins in tested strains. Prazosin can significantly diminish biofilm formation and production of virulent enzymes and mitigate the virulence factors of tested strains. However, more testing is required alongside pharmacological and toxicological studies to assure the potential clinical use of prazosin as an adjuvant anti-QS and anti-virulence agent. Abstract Quorum sensing (QS) controls the production of several bacterial virulence factors. There is accumulative evidence to support that targeting QS can ensure a significant diminishing of bacterial virulence. Lessening bacterial virulence has been approved as an efficient strategy to overcome the development of antimicrobial resistance. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria Pseudomonades aeruginosa, Proteus mirabilis, and Serratia marcescens. The evaluation of anti-QS was carried out on a series of in vitro experiments, while the anti-virulence activities of prazosin were tested in an in vivo animal model. The prazosin anti-QS activity was assessed on the production of QS-controlled Chromobacterium violaceum pigment violacein and the expression of QS-encoding genes in P. aeruginosa. In vitro tests were performed to evaluate the prazosin effects on biofilm formation and production of extracellular enzymes by P. aeruginosa, P. mirabilis, and S. marcescens. A protective assay was conducted to evaluate the in vivo anti-virulence activity of prazosin against P. aeruginosa, P. mirabilis, and S. marcescens. Moreover, precise in silico molecular docking was performed to test the prazosin affinity to different QS receptors. The results revealed that prazosin significantly decreased the production of violacein and the virulent enzymes, protease and hemolysins, in the tested strains. Prazosin significantly diminished biofilm formation in vitro and bacterial virulence in vivo. The prazosin anti-QS activity was proven by its downregulation of QS-encoding genes and its obvious binding affinity to QS receptors. In conclusion, prazosin could be considered an efficient anti-virulence agent to be used as an adjuvant to antibiotics, however, it requires further pharmacological evaluations prior to clinical application.
Collapse
Affiliation(s)
- Abrar K. Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.K.T.); (M.A.H.H.)
| | - Khalid Eljaaly
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed G. Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.K.T.); (M.A.H.H.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Enciso-Martínez Y, González-Aguilar GA, Martínez-Téllez MA, González-Pérez CJ, Valencia-Rivera DE, Barrios-Villa E, Ayala-Zavala JF. Relevance of tracking the diversity of Escherichia coli pathotypes to reinforce food safety. Int J Food Microbiol 2022; 374:109736. [DOI: 10.1016/j.ijfoodmicro.2022.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
19
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
20
|
Schwarz M, Hübner I, Sieber SA. Tailored phenyl esters inhibit ClpXP and attenuate Staphylococcus aureus α-hemolysin secretion. Chembiochem 2022; 23:e202200253. [PMID: 35713329 PMCID: PMC9544270 DOI: 10.1002/cbic.202200253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Indexed: 11/14/2022]
Abstract
Novel strategies against multidrug‐resistant bacteria are urgently needed in order to overcome the current silent pandemic. Manipulation of toxin production in pathogenic species serves as a promising approach to attenuate virulence and prevent infections. In many bacteria such as Staphylococcus aureus or Listeria monocyotgenes, serine protease ClpXP is a key contributor to virulence and thus represents a prime target for antimicrobial drug discovery. The limited stability of previous electrophilic warheads has prevented a sustained effect of virulence attenuation in bacterial culture. Here, we systematically tailor the stability and inhibitory potency of phenyl ester ClpXP inhibitors by steric shielding of the ester bond and fine‐tuning the phenol leaving group. Out of 17 derivatives, two (MAS‐19 and MAS‐30) inhibited S. aureus ClpP peptidase and ClpXP protease activities by >60 % at 1 μM. Furthermore, the novel inhibitors did not exhibit pronounced cytotoxicity against human and bacterial cells. Unlike the first generation phenylester AV170, these molecules attenuated S. aureus virulence markedly and displayed increased stability in aqueous buffer compared to the previous benchmark AV170.
Collapse
Affiliation(s)
- Markus Schwarz
- Technical University Munich: Technische Universitat Munchen, Chemistry, Ernst-Otto-Fischer-Straße 8, 85748, Garching bei München, GERMANY
| | - Ines Hübner
- Technical University of Munich: Technische Universitat Munchen, Chemistry, GERMANY
| | - Stephan Axel Sieber
- Technische Universitat Munchen, Department of Chemistry, Lichtenbergstr. 4, 85747, Garching, GERMANY
| |
Collapse
|
21
|
Vaillancourt K, Ben Lagha A, Grenier D. Effects of a Berry Polyphenolic Fraction on the Pathogenic Properties of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2022; 3:923663. [PMID: 35784661 PMCID: PMC9245044 DOI: 10.3389/froh.2022.923663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis expresses a broad array of virulence factors that enable it to play a central role in the etiopathogenesis of periodontitis. The objective of the present study was to assess the effects of a berry polyphenolic fraction (Orophenol®) composed of extracts from cranberry, wild blueberry, and strawberry on the main pathogenic determinants of P. gingivalis. Orophenol® attenuated the growth of P. gingivalis and decreased its hemolytic activity, its adherence to a basement membrane matrix model, and its proteinase activities. The berry polyphenolic fraction also impaired the production of reactive oxygen species (ROS) by oral keratinocytes stimulated with P. gingivalis. Lastly, using an in vitro model of oral keratinocyte barrier, the fraction exerted a protective effect against the damages mediated by P. gingivalis. In conclusion, the berry polyphenolic fraction investigated in the present study attenuated several pathogenic properties of P. gingivalis. Although future clinical investigations are required, our study provided evidence that the polyphenols contained in this fraction may represent bioactive molecules of high interest for the prevention and/or treatment of periodontal disease.
Collapse
|
22
|
Nair AG, Perumalla DS, Anjukandi P. Disulfide Isomerization in nDsbD‐DsbC Complex ‐ Exploring an Internal Nucleophile Mediated Reaction Pathway. Chemphyschem 2022; 23:e202200320. [DOI: 10.1002/cphc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Aparna G Nair
- IIT Palakkad: Indian Institute of Technology Palakkad Chemistry INDIA
| | | | - Padmesh Anjukandi
- Indian Institute of Technology Palakkad Chemistry Ahalia Integrated CampusKozhippara P. O 678557 Palakkad INDIA
| |
Collapse
|
23
|
Caputo L, Capozzolo F, Amato G, De Feo V, Fratianni F, Vivenzio G, Nazzaro F. Chemical composition, antibiofilm, cytotoxic, and anti-acetylcholinesterase activities of Myrtus communis L. leaves essential oil. BMC Complement Med Ther 2022; 22:142. [PMID: 35596201 PMCID: PMC9123742 DOI: 10.1186/s12906-022-03583-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The potential of essential oils (EOs) and of their principal constituents for eradication of biofilm and at the same time the research of new potential acetylcholinesterase inhibitors is gaining increasing interest in last years. The aims of this study were to determine the chemical composition and to evaluate the antibacterial, cytotoxic, and anti-acetylcholinesterase properties of Myrtus communis leaves essential oil and its main constituents. METHODS Essential oil was obtained by hydrodistillation of M. communis L. leaves and was analyzed by GC and GC-MS. The antimicrobial activity was carried out against both gram-negative and gram-positive bacteria. The microdilution method was used to estimate the minimum inhibitory concentrations (MICs). Then, the capacity of essential oil and its main constituent to inhibit biofilm growth, with the method of O'Toole and Kolterand, and the metabolic activity of biofilm cells through the MTT colorimetric method were evaluated at different times. Moreover, was studied the potential cytotoxic activity against SH-SY5Y cell line with MTT assay and the anti-acetylcholinesterase activity using Ellman's assay. RESULTS Myrtenyl-acetate, 1,8 cineole, α-pinene, and linalool were the main components in the EO. The myrtle EO, at the minimum tested dose (0.4 mg/ml), inhibited S. aureus biofilm by 42.1% and was capable of inhibiting the biofilm cell metabolism in all tested strains, except Staphylococcus aureus. Moreover, the EO showed good cytotoxic and anti-acetylcholinesterase activities IC50 of 209.1 and 32.8 μg/ml, respectively. CONCLUSIONS The results suggest that myrtle EO and its main constituents could be used as possible products that could act against the resistant pathogenic species E. coli, P. aeruginosa, L. monocytogenes and S. aureus, on the other hand, as possible coadjutants in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Capozzolo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy. .,Institute of Food Science, CNR-ISA, via Roma 64, 83100, Avellino, Italy.
| | | | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, via Roma 64, 83100, Avellino, Italy
| |
Collapse
|
24
|
Kaya C, Walter I, Alhayek A, Shafiei R, Jézéquel G, Andreas A, Konstantinović J, Schönauer E, Sikandar A, Haupenthal J, Müller R, Brandstetter H, Hartmann RW, Hirsch AK. Structure-Based Design of α-Substituted Mercaptoacetamides as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1010-1021. [PMID: 35451824 PMCID: PMC9112332 DOI: 10.1021/acsinfecdis.1c00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Antivirulence therapy
has become a widely applicable method for
fighting infections caused by multidrug-resistant bacteria. Among
the many virulence factors produced by the Gram-negative bacterium Pseudomonas aeruginosa, elastase (LasB) stands out
as an important target as it plays a pivotal role in the invasion
of the host tissue and evasion of the immune response. In this work,
we explored the recently reported LasB inhibitor class of α-benzyl-N-aryl mercaptoacetamides by exploiting the crystal structure
of one of the compounds. Our exploration yielded inhibitors that maintained
inhibitory activity, selectivity, and increased hydrophilicity. These
inhibitors were found to reduce the pathogenicity of the bacteria
and to maintain the integrity of lung and skin cells in the diseased
state. Furthermore, two most promising compounds increased the survival
rate of Galleria mellonella larvae
treated with P. aeruginosa culture
supernatant.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Straße, 34, 5020 Salzburg, Austria
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)─Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E 8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Dual Antimicrobial Effect of Medium-Chain Fatty Acids against an Italian Multidrug Resistant Brachyspira hyodysenteriae Strain. Microorganisms 2022; 10:microorganisms10020301. [PMID: 35208756 PMCID: PMC8875639 DOI: 10.3390/microorganisms10020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
The fastidious nature of Brachyspira hyodysenteriae limits an accurate in vitro pre-screening of conventionally used antibiotics and other candidate alternative antimicrobials. This results in a non-judicious use of antibiotics, leading to an exponential increase of the antibiotic resistance issue and a slowdown in the research for new molecules that might stop this serious phenomenon. In this study we tested four antibiotics (tylosin, lincomycin, doxycycline, and tiamulin) and medium-chain fatty acids (MCFA; hexanoic, octanoic, decanoic, and dodecanoic acid) against an Italian field strain of B. hyodysenteriae and the ATCC 27164 strain as reference. We determined the minimal inhibitory concentrations of these substances, underlining the multidrug resistance pattern of the field strain and, on the contrary, a consistent and stable inhibitory effect of the tested MCFA against both strains. Then, sub-inhibitory concentrations of antibiotics and MCFA were examined in modulating a panel of B. hyodysenteriae virulence genes (tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f). Results of gene expression analysis were variable, with up- and downregulations not properly correlated with particular substances or target genes. Decanoic and dodecanoic acid with their direct and indirect antimicrobial property were the most effective among MCFA, suggesting them as good candidates for subsequent in vivo trials.
Collapse
|
26
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substrate-Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202112295. [PMID: 34762767 PMCID: PMC9299988 DOI: 10.1002/anie.202112295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/11/2022]
Abstract
Extracellular virulence factors have emerged as attractive targets in the current antimicrobial resistance crisis. The Gram-negative pathogen Pseudomonas aeruginosa secretes the virulence factor elastase B (LasB), which plays an important role in the infection process. Here, we report a sub-micromolar, non-peptidic, fragment-like inhibitor of LasB discovered by careful visual inspection of structural data. Inspired by the natural LasB substrate, the original fragment was successfully merged and grown. The optimized inhibitor is accessible via simple chemistry and retained selectivity with a substantial improvement in activity, which can be rationalized by the crystal structure of LasB in complex with the inhibitor. We also demonstrate an improved in vivo efficacy of the optimized hit in Galleria mellonella larvae, highlighting the significance of this class of compounds as promising drug candidates.
Collapse
Affiliation(s)
- Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Isabell Walter
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Samir Yahiaoui
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Asfandyar Sikandar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Jelena Konstantinović
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Andreas M. Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
| | - Jesko Köhnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8.166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8.166123SaarbrückenGermany
| |
Collapse
|
27
|
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany AM, Haupenthal J, Köhnke J, Hartmann RW, Hirsch AKH. Substratinspirierte Fragment‐Fusion und ‐Erweiterung führt zu wirksamen LasB‐Inhibitoren. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cansu Kaya
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Isabell Walter
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Samir Yahiaoui
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Asfandyar Sikandar
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Alaa Alhayek
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Jelena Konstantinović
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Andreas M. Kany
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jörg Haupenthal
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken Deutschland
| | - Jesko Köhnke
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Rolf W. Hartmann
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| | - Anna K. H. Hirsch
- Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS) Helmholtz Zentrum für Infektionsforschung (HZI) Campus E8.1 66123 Saarbrücken (Deutschland)
- Abteilung für Pharmazie Universität des Saarlandes Campus E8.1 66123 Saarbrücken Deutschland
| |
Collapse
|
28
|
Furniss RCD, Kaderabkova N, Barker D, Bernal P, Maslova E, Antwi AA, McNeil HE, Pugh HL, Dortet L, Blair JM, Larrouy-Maumus GJ, McCarthy RR, Gonzalez D, Mavridou DA. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. eLife 2022; 11:57974. [PMID: 35025730 PMCID: PMC8863373 DOI: 10.7554/elife.57974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers. Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 'Gram-negative bacteria', which have an outer layer – called the cell envelope – that acts as a drug barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to stop these proteins from working. Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if it did, it might open up new ways to treat antibiotic resistant infections. To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which led to the antibiotic resistance proteins becoming unstable and breaking down because they could not fold correctly. Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic species of Gram-negative bacteria made these bacteria more sensitive to antibiotics that they would normally resist. To demonstrate that using this approach could work to stop infections by these bacteria, Furniss, Kaderabkova et al. used Gram-negative bacteria that produced antibiotic resistance proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibiotics, which increased their survival rate, indicating that blocking DsbA may be a good approach to tackling antibiotic resistant bacteria. According to the World Health Organization, developing new treatments against Gram-negative bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way around this is to develop ways to make existing drugs work better. Making drugs that block DsbA could offer a way to treat resistant infections using existing antibiotics in the future.
Collapse
Affiliation(s)
| | - Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Declan Barker
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Patricia Bernal
- Department of Microbiology, Universidad de Sevilla, Seville, Spain
| | - Evgenia Maslova
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Amanda Aa Antwi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Helen E McNeil
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Hannah L Pugh
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Paris-Sud University, Paris, France
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Ronan R McCarthy
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Diego Gonzalez
- Department of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Despoina Ai Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
29
|
Wang G, Mohanty B, Williams ML, Doak BC, Dhouib R, Totsika M, McMahon R, Sharma G, Zheng D, Bentley MR, Chin YKY, Horne J, Chalmers DK, Heras B, Scanlon MJ. Selective binding of small molecules to Vibrio cholerae DsbA offers a starting point for the design of novel antibacterials. ChemMedChem 2022; 17:e202100673. [PMID: 34978144 PMCID: PMC9305425 DOI: 10.1002/cmdc.202100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/25/2022]
Abstract
DsbA enzymes catalyze oxidative folding of proteins that are secreted into the periplasm of Gram‐negative bacteria, and they are indispensable for the virulence of human pathogens such as Vibrio cholerae and Escherichia coli. Therefore, targeting DsbA represents an attractive approach to control bacterial virulence. X‐ray crystal structures reveal that DsbA enzymes share a similar fold, however, the hydrophobic groove adjacent to the active site, which is implicated in substrate binding, is shorter and flatter in the structure of V. cholerae DsbA (VcDsbA) compared to E. coli DsbA (EcDsbA). The flat and largely featureless nature of this hydrophobic groove is challenging for the development of small molecule inhibitors. Using fragment‐based screening approaches, we have identified a novel small molecule, based on the benzimidazole scaffold, that binds to the hydrophobic groove of oxidized VcDsbA with a KD of 446±10 μM. The same benzimidazole compound has ∼8‐fold selectivity for VcDsbA over EcDsbA and binds to oxidized EcDsbA, with KD>3.5 mM. We generated a model of the benzimidazole complex with VcDsbA using NMR data but were unable to determine the structure of the benzimidazole bound EcDsbA using either NMR or X‐ray crystallography. Therefore, a structural basis for the observed selectivity is unclear. To better understand ligand binding to these two enzymes we crystallized each of them in complex with a known ligand, the bile salt sodium taurocholate. The crystal structures show that taurocholate adopts different binding poses in complex with VcDsbA and EcDsbA, and reveal the protein‐ligand interactions that stabilize the different modes of binding. This work highlights the capacity of fragment‐based drug discovery to identify inhibitors of challenging protein targets. In addition, it provides a starting point for development of more potent and specific VcDsbA inhibitors that act through a novel anti‐virulence mechanism.
Collapse
Affiliation(s)
- Geqing Wang
- La Trobe University - Bundoora Campus: La Trobe University, Department of Biochemistry and Genetics, AUSTRALIA
| | | | - Martin L Williams
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Bradley C Doak
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Rabeb Dhouib
- Queensland University of Technology, School of Biomedical Sciences, AUSTRALIA
| | - Makrina Totsika
- Queensland University of Technology, School of Biomedical Sciences, AUSTRALIA
| | - Roisin McMahon
- Griffith University, Griffith Institute for Drug Discovery, AUSTRALIA
| | - Gaurav Sharma
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Dan Zheng
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Matthew R Bentley
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Yanni Ka-Yan Chin
- The University of Queensland, Cantre for Advanced Imaging, AUSTRALIA
| | - James Horne
- University of Tasmania, Central Science Laboratory, AUSTRALIA
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Medicinal Chemistry, AUSTRALIA
| | - Begoña Heras
- La Trobe University, Department of Biochemistry and Genetics, AUSTRALIA
| | - Martin Joseph Scanlon
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, Medicinal Chemistry, 381 Royal Parade, Monash University, 3052, Parkville, AUSTRALIA
| |
Collapse
|
30
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
31
|
Petit GA, Mohanty B, McMahon RM, Nebl S, Hilko DH, Wilde KL, Scanlon MJ, Martin JL, Halili MA. Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of Burkholderia pseudomallei DsbA. Acta Crystallogr D Struct Biol 2022; 78:75-90. [PMID: 34981764 PMCID: PMC8725163 DOI: 10.1107/s2059798321011475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023] Open
Abstract
Disulfide-bond-forming proteins (Dsbs) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide-bond-forming protein A (DsbA) catalyzes the formation of the disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, two fragments, bromophenoxy propanamide (1) and 4-methoxy-N-phenylbenzenesulfonamide (2), were identified that bind to DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. The crystal structures of oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 show that both fragments bind to a hydrophobic pocket that is formed by a change in the side-chain orientation of Tyr110. This conformational change opens a `cryptic' pocket that is not evident in the apoprotein structure. This binding location was supported by 2D-NMR studies, which identified a chemical shift perturbation of the Tyr110 backbone amide resonance of more than 0.05 p.p.m. upon the addition of 2 mM fragment 1 and of more than 0.04 p.p.m. upon the addition of 1 mM fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (Kd) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the crystal structure models, which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have a high energetic binding affinity due to their relatively small surface area and the few functional groups that are available for intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. The identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.
Collapse
Affiliation(s)
- Guillaume A. Petit
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW 2006, Australia
| | - Róisín M. McMahon
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Stefan Nebl
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David H. Hilko
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Karyn L. Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
- Vice-Chancellor’s Unit, University of Wollongong, Building 36, Wollongong, NSW 2522, Australia
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
32
|
Periodically Disturbing the Spatial Structure of Biofilms Can Affect the Production of an Essential Virulence Factor in Pseudomonas aeruginosa. mSystems 2021; 6:e0096121. [PMID: 34581603 PMCID: PMC8547473 DOI: 10.1128/msystems.00961-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Understanding the environmental factors that affect the production of virulence factors has major implications in evolution and medicine. While spatial structure is important in virulence factor production, observations of this relationship have occurred in undisturbed or continuously disturbed environments. However, natural environments are subject to periodic fluctuations, including changes in physical forces, which could alter the spatial structure of bacterial populations and impact virulence factor production. Using Pseudomonas aeruginosa PA14, we periodically applied a physical force to biofilms and examined production of pyoverdine. Intermediate frequencies of disturbance reduced the amount of pyoverdine produced compared to undisturbed or frequently disturbed conditions. To explore the generality of this finding, we examined how an intermediate disturbance frequency affected pyoverdine production in 21 different strains of P. aeruginosa. Periodic disturbance increased, decreased, or did not change the amount of pyoverdine produced relative to undisturbed populations. Mathematical modeling predicts that interactions between pyoverdine synthesis rate and biofilm density determine the amount of pyoverdine synthesized. When the pyoverdine synthesis rates are high, depletion of the biofilm due to disturbance reduces the accumulation of pyoverdine. At intermediate synthesis rates, production of pyoverdine increases during disturbance as bacteria dispersed into the planktonic state enjoy increased growth and pyoverdine production rates. At low synthesis rates, disturbance does not alter the amount of pyoverdine produced since disturbance-driven access to nutrients does not augment pyoverdine synthesis. Our results suggest that environmental conditions shape robustness in the production of virulence factors and may lead to novel approaches to treat infections. IMPORTANCE Virulence factors are required to cause infections. Previous work has shown that the spatial organization of a population, such as a biofilm, can increase the production of some virulence factors, including pyoverdine, which is produced by Pseudomonas aeruginosa. Pyoverdine is essential for the infection process, and reducing its production can limit infections. We have discovered that periodically changing the spatial structure of a biofilm of P. aeruginosa strain PA14 using a physical force can reduce the production of pyoverdine. A mathematical model suggests that this is due to the disruption of spatial organization. Using additional strains of P. aeruginosa isolated from patients and the environment, we use experiments and modeling to show that this reduction in pyoverdine is due to interactions between biofilm density and the synthesis rate of pyoverdine. Our results identify conditions where pyoverdine production is reduced and may lead to novel ways to treat infections.
Collapse
|
33
|
Wang L, Jing S, Qu H, Wang K, Jin Y, Ding Y, Yang L, Yu H, Shi Y, Li Q, Wang D. Orientin mediates protection against MRSA-induced pneumonia by inhibiting Sortase A. Virulence 2021; 12:2149-2161. [PMID: 34369293 PMCID: PMC8354611 DOI: 10.1080/21505594.2021.1962138] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Drug-resistant pathogenic Staphylococcus aureus (S. aureus) has severely threatened human health and arouses widespread concern. Sortase A (SrtA) is an essential virulence factor of S. aureus, which is responsible for the covalent anchoring of a variety of virulence-related proteins to the cell wall. SrtA has always been regarded as an ideal pharmacological target against S. aureus infections. In this research, we have determined that orientin, a natural compound isolated from various medicinal plants, can effectively inhibit the activity of SrtA with an IC50 of 50.44 ± 0.51 µM. We further demonstrated that orientin inhibited the binding of S. aureus to fibrinogen and diminished biofilm formation and the attaching of Staphylococcal protein A (SpA) to the cell wall in vitro. Using the fluorescence quenching assay, we demonstrated a direct interaction between orientin and SrtA. Further mechanistic studies revealed that the residues Glu-105, Thr-93, and Cys-184 were the key sites for the binding of SrtA to orientin. Importantly, we demonstrated that treatment with orientin attenuated S. aureus virulence of in vivo and protected mice against S. aureus-induced lethal pneumonia. These findings indicate that orientin is a potential drug to counter S. aureus infections and limit the development of drug resistance.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun China
| | - Han Qu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kai Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun China
| | - Ying Ding
- College of Animal Science, Jilin University, Changchun China
| | - Lin Yang
- College of Animal Science, Jilin University, Changchun China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun China
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun China
| | - Qianxue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun China
| |
Collapse
|
34
|
Elaboration of a benzofuran scaffold and evaluation of binding affinity and inhibition of Escherichia coli DsbA: A fragment-based drug design approach to novel antivirulence compounds. Bioorg Med Chem 2021; 45:116315. [PMID: 34364222 DOI: 10.1016/j.bmc.2021.116315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Bacterial thiol-disulfide oxidoreductase DsbA is essential for bacterial virulence factor assembly and has been identified as a viable antivirulence target. Herein, we report a structure-based elaboration of a benzofuran hit that bound to the active site groove of Escherichia coli DsbA. Substituted phenyl groups were installed at the 5- and 6-position of the benzofuran using Suzuki-Miyaura coupling. HSQC NMR titration experiments showed dissociation constants of this series in the high µM to low mM range and X-ray crystallography produced three co-structures, showing binding in the hydrophobic groove, comparable with that of the previously reported benzofurans. The 6-(m-methoxy)phenyl analogue (2b), which showed a promising binding pose, was chosen for elaboration from the C-2 position. The 2,6-disubstituted analogues bound to the hydrophobic region of the binding groove and the C-2 groups extended into the more polar, previously un-probed, region of the binding groove. Biochemical analysis of the 2,6-disubsituted analogues showed they inhibited DsbA oxidation activity in vitro. The results indicate the potential to develop the elaborated benzofuran series into a novel class of antivirulence compounds.
Collapse
|
35
|
Aldawsari MF, Khafagy ES, Saqr AA, Alalaiwe A, Abbas HA, Shaldam MA, Hegazy WAH, Goda RM. Tackling Virulence of Pseudomonas aeruginosa by the Natural Furanone Sotolon. Antibiotics (Basel) 2021; 10:antibiotics10070871. [PMID: 34356792 PMCID: PMC8300740 DOI: 10.3390/antibiotics10070871] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial resistance development due to the incessant administration of antibiotics has led to difficulty in their treatment. Natural adjuvant compounds can be co-administered to hinder the pathogenesis of resistant bacteria. Sotolon is the prevailing aromatic compound that gives fenugreek its typical smell. In the current work, the anti-virulence activities of sotolon on Pseudomonas aeruginosa have been evaluated. P. aeruginosa has been treated with sotolon at sub-minimum inhibitory concentration (MIC), and production of biofilm and other virulence factors were assessed. Moreover, the anti-quorum sensing (QS) activity of sotolon was in-silico evaluated by evaluating the affinity of sotolon to bind to QS receptors, and the expression of QS genes was measured in the presence of sotolon sub-MIC. Furthermore, the sotolon in-vivo capability to protect mice against P. aeruginosa was assessed. Significantly, sotolon decreased the production of bacterial biofilm and virulence factors, the expression of QS genes, and protected mice from P. aeruginosa. Conclusively, the plant natural substance sotolon attenuated the pathogenicity of P. aeruginosa, locating it as a plausible potential therapeutic agent for the treatment of its infections. Sotolon can be used in the treatment of bacterial infections as an alternative or adjuvant to antibiotics to combat their high resistance to antibiotics.
Collapse
Affiliation(s)
- Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.F.A.); (A.A.S.); (A.A.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.F.A.); (A.A.S.); (A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +966-533-564-286
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.F.A.); (A.A.S.); (A.A.)
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.F.A.); (A.A.S.); (A.A.)
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.A.); (W.A.H.H.)
| | - Moataz A. Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33511, Egypt;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.A.); (W.A.H.H.)
| | - Reham M. Goda
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Biotechnology, Gamasa 35712, Egypt;
| |
Collapse
|
36
|
Zha GF, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2021; 115:105175. [PMID: 34298242 DOI: 10.1016/j.bioorg.2021.105175] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.
Collapse
Affiliation(s)
- Gao-Feng Zha
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhan 518107, China.
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | | | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B. G. Nagara, Mandya, 571448, India
| | - Kadalipura P Rakesh
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | | |
Collapse
|
37
|
Mahdally NH, George RF, Kashef MT, Al-Ghobashy M, Murad FE, Attia AS. Staquorsin: A Novel Staphylococcus aureus Agr-Mediated Quorum Sensing Inhibitor Impairing Virulence in vivo Without Notable Resistance Development. Front Microbiol 2021; 12:700494. [PMID: 34290689 PMCID: PMC8287904 DOI: 10.3389/fmicb.2021.700494] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of microbial resistance to the available antibiotics is a major public health concern, especially with the limited rate of developing new antibiotics. The utilization of anti-virulence agents is a non-conventional approach that can be used to combat microbial infection. In Staphylococcus aureus, many virulence factors are regulated by the Agr-mediated quorum sensing (QS). We developed a chemical compound that acts a potential Agr-inhibitor without reducing bacterial viability. The compound was designated staquorsin for Staphylococcus aureus QS inhibitor. In silico analyses confirmed the binding of staquorsin to the AgrA active site with an absolute binding score comparable to savirin, a previously described AgrA inhibitor. However, staquorsin turned out to be superior over savarin in not affecting the S. aureus viability in concentrations up to 600 μM. On the other hand, savirin inhibited S. aureus growth in concentrations as low as 25 μM. Moreover, staquorsin proved to be a potent inhibitor of the Agr system by inhibiting hemolysins, lipase production, and affecting biofilms formation and detachment. On the molecular level it significantly inhibited the effector transcript RNA III. In vivo testing, using the murine skin abscess model, confirmed the ability of staquorsin to modulate S. aureus virulence by effectively controlling the infection. Twenty passages of S. aureus in the presence of 40 μM staquorsin have not resulted in loss of activity as evidenced by maintaining its ability to reduce hemolysin production and RNA III transcript levels. In conclusion, we hereby describe a novel anti-virulence compound inhibiting the S. aureus Agr-system and its associated virulence factors. It is active both in vitro and in vivo, and its frequent use does not lead to the development of resistance. These findings model staquorsin as a promising drug candidate to join the fierce battle against the formidable pathogen S. aureus.
Collapse
Affiliation(s)
- Norhan H Mahdally
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham F George
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Medhat Al-Ghobashy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Fathia E Murad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Reigada I, San-Martin-Galindo P, Gilbert-Girard S, Chiaro J, Cerullo V, Savijoki K, Nyman TA, Fallarero A, Miettinen I. Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Front Microbiol 2021; 12:672975. [PMID: 34248881 PMCID: PMC8267900 DOI: 10.3389/fmicb.2021.672975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms. In this study, we investigated the interaction between two clinically relevant bacterial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) by label-free quantitative proteomics focusing on proteins associated with the bacterial cell surfaces (surfaceome) and proteins exported/released to the extracellular space (exoproteome). The changes observed in the surfaceome and exoproteome of P. aeruginosa pointed toward higher motility and lower pigment production when co-cultured with S. aureus. In S. aureus, lower abundances of proteins related to cell wall biosynthesis and cell division, suggesting increased persistence, were observed in the dual-species biofilm. Complementary phenotypic analyses confirmed the higher motility and the lower pigment production in P. aeruginosa when co-cultured with S. aureus. Higher antimicrobial tolerance associated with the co-culture setting was additionally observed in both species. To the best of our knowledge, this study is among the first systematic explorations providing insights into the dynamics of both the surfaceome and exoproteome of S. aureus and P. aeruginosa dual-species biofilms.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
A Novel Infection Protocol in Zebrafish Embryo to Assess Pseudomonas aeruginosa Virulence and Validate Efficacy of a Quorum Sensing Inhibitor In Vivo. Pathogens 2021; 10:pathogens10040401. [PMID: 33805384 PMCID: PMC8065929 DOI: 10.3390/pathogens10040401] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.
Collapse
|
40
|
Dhouib R, Vagenas D, Hong Y, Verderosa AD, Martin JL, Heras B, Totsika M. Antivirulence DsbA inhibitors attenuate Salmonella enterica serovar Typhimurium fitness without detectable resistance. FASEB Bioadv 2021; 3:231-242. [PMID: 33842848 PMCID: PMC8019255 DOI: 10.1096/fba.2020-00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 11/15/2022] Open
Abstract
Inhibition of the DiSulfide Bond (DSB) oxidative protein folding machinery, a major facilitator of virulence in Gram‐negative bacteria, represents a promising antivirulence strategy. We previously developed small molecule inhibitors of DsbA from Escherichia coli K‐12 (EcDsbA) and showed that they attenuate virulence of Gram‐negative pathogens by directly inhibiting multiple diverse DsbA homologues. Here we tested the evolutionary robustness of DsbA inhibitors as antivirulence antimicrobials against Salmonella enterica serovar Typhimurium under pathophysiological conditions in vitro. We show that phenylthiophene DsbA inhibitors slow S. Typhimurium growth in minimal media, phenocopying S. Typhimurium isogenic dsbA null mutants. Through passaging experiments, we found that DsbA inhibitor resistance was not induced under conditions that rapidly induced resistance to ciprofloxacin, an antibiotic commonly used to treat Salmonella infections. Furthermore, no mutations were identified in the dsbA gene of inhibitor‐treated S. Typhimurium, and S. Typhimurium virulence remained susceptible to DsbA inhibitors. Our work demonstrates that under in vitro pathophysiological conditions, DsbA inhibitors can have both antivirulence and antibiotic action. Importantly, our finding that DsbA inhibitors appear to be evolutionarily robust offers promise for their further development as next‐generation antimicrobials against Gram‐negative pathogens.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Yaoqin Hong
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Anthony D Verderosa
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| | - Jennifer L Martin
- Griffith Institute for Drug Discovery Griffith University Nathan QLD Australia.,University of Wollongong Wollongong NSW Australia
| | - Begoña Heras
- La Trobe Institute for Molecular Science La Trobe University Bundoora VIC Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation School of Biomedical Sciences Queensland University of Technology Herston QLD Australia.,Centre for Immunology and Infection Control School of Biomedical Sciences Queensland University of Technology Herston QLD Australia
| |
Collapse
|
41
|
A high-throughput cell-based assay pipeline for the preclinical development of bacterial DsbA inhibitors as antivirulence therapeutics. Sci Rep 2021; 11:1569. [PMID: 33452354 PMCID: PMC7810732 DOI: 10.1038/s41598-021-81007-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Antibiotics are failing fast, and the development pipeline remains alarmingly dry. New drug research and development is being urged by world health officials, with new antibacterials against multidrug-resistant Gram-negative pathogens as the highest priority. Antivirulence drugs, which inhibit bacterial pathogenicity factors, are a class of promising antibacterials, however, their development is stifled by lack of standardised preclinical testing akin to what guides antibiotic development. The lack of established target-specific microbiological assays amenable to high-throughput, often means that cell-based testing of virulence inhibitors is absent from the discovery (hit-to-lead) phase, only to be employed at later-stages of lead optimization. Here, we address this by establishing a pipeline of bacterial cell-based assays developed for the identification and early preclinical evaluation of DsbA inhibitors, previously identified by biophysical and biochemical assays. Inhibitors of DsbA block oxidative protein folding required for virulence factor folding in pathogens. Here we use existing Escherichia coli DsbA inhibitors and uropathogenic E. coli (UPEC) as a model pathogen, to demonstrate that the combination of a cell-based sulfotransferase assay and a motility assay (both DsbA reporter assays), modified for a higher throughput format, can provide a robust and target-specific platform for the identification and evaluation of DsbA inhibitors.
Collapse
|
42
|
Shirlaw O, Billah Z, Attar B, Hughes L, Qasaymeh RM, Seidel V, Efthimiou G. Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Some of Their Constituents on the DsbA1 Enzyme of Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9120911. [PMID: 33334017 PMCID: PMC7765399 DOI: 10.3390/antibiotics9120911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Heather honey was tested for its effect on the formation of biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella Enteriditis and Acinetobacter baumanii in comparison with Manuka honey. At 0.25 mg/mL, Heather honey inhibited biofilm formation in S. aureus, A. baumanii, E. coli, S. Enteriditis and P. aeruginosa, but promoted the growth of E. faecalis and K. pneumoniae biofilms. Manuka honey inhibited biofilm formation in K. pneumoniae, E. faecalis, and S. Enteriditis, A. baumanii, E. coli and P. aeruginosa, but promoted S. aureus biofilm formation. Molecular docking with Autodock Vina was performed to calculate the predictive binding affinities and ligand efficiencies of Manuka and Heather honey constituents for PaDsbA1, the main enzyme controlling the correct folding of virulence proteins in Pseudomonas aeruginosa. A number of constituents, including benzoic acid and methylglyoxal, present in Heather and/or Manuka honey, revealed high ligand efficiencies for the target enzyme. This helps support, to some extent, the decrease in P. aeruginosa biofilm formation observed for such honeys.
Collapse
Affiliation(s)
- Oscar Shirlaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Zara Billah
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Baraa Attar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Lisa Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Rana M. Qasaymeh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
- Correspondence: (V.S.); (G.E.)
| | - Georgios Efthimiou
- Department of Biomedical and Forensic Sciences, Hardy Building, University of Hull, Hull HU6 7RX, UK
- Correspondence: (V.S.); (G.E.)
| |
Collapse
|
43
|
Vezina B, Petit GA, Martin JL, Halili MA. Prediction of Burkholderia pseudomallei DsbA substrates identifies potential virulence factors and vaccine targets. PLoS One 2020; 15:e0241306. [PMID: 33216758 PMCID: PMC7678975 DOI: 10.1371/journal.pone.0241306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Identification of bacterial virulence factors is critical for understanding disease pathogenesis, drug discovery and vaccine development. In this study we used two approaches to predict virulence factors of Burkholderia pseudomallei, the Gram-negative bacterium that causes melioidosis. B. pseudomallei is naturally antibiotic resistant and there are no clinically available melioidosis vaccines. To identify B. pseudomallei protein targets for drug discovery and vaccine development, we chose to search for substrates of the B. pseudomallei periplasmic disulfide bond forming protein A (DsbA). DsbA introduces disulfide bonds into extra-cytoplasmic proteins and is essential for virulence in many Gram-negative organism, including B. pseudomallei. The first approach to identify B. pseudomallei DsbA virulence factor substrates was a large-scale genomic analysis of 511 unique B. pseudomallei disease-associated strains. This yielded 4,496 core gene products, of which we hypothesise 263 are DsbA substrates. Manual curation and database screening of the 263 mature proteins yielded 81 associated with disease pathogenesis or virulence. These were screened for structural homologues to predict potential B-cell epitopes. In the second approach, we searched the B. pseudomallei genome for homologues of the more than 90 known DsbA substrates in other bacteria. Using this approach, we identified 15 putative B. pseudomallei DsbA virulence factor substrates, with two of these previously identified in the genomic approach, bringing the total number of putative DsbA virulence factor substrates to 94. The two putative B. pseudomallei virulence factors identified by both methods are homologues of PenI family β-lactamase and a molecular chaperone. These two proteins could serve as high priority targets for future B. pseudomallei virulence factor characterization.
Collapse
Affiliation(s)
- Ben Vezina
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Guillaume A. Petit
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
- Vice-Chancellor’s Unit, University of Wollongong, Wollongong, New South Wales, Australia
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
44
|
Nebl S, Alwan WS, Williams ML, Sharma G, Taylor A, Doak BC, Wilde KL, McMahon RM, Halili MA, Martin JL, Capuano B, Fenwick RB, Mohanty B, Scanlon MJ. NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide-dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei. JOURNAL OF BIOMOLECULAR NMR 2020; 74:595-611. [PMID: 32761504 DOI: 10.1007/s10858-020-00339-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as 'druggable'. Many disease-related proteins that function solely through protein-protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium Burkholderia pseudomallei (BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in B. pseudomallei, and genetic deletion of dsbA significantly attenuates B. pseudomallei virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA. 1HN CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of KD ~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.
Collapse
Affiliation(s)
- Stefan Nebl
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Wesam S Alwan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Martin L Williams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Gaurav Sharma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ashley Taylor
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Bradley C Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Karyn L Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Róisín M McMahon
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Maria A Halili
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Jennifer L Martin
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
- Vice-Chancellor's Unit, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - R Bryn Fenwick
- Department of Integrative Structural and Computational Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
45
|
Zhao Y, Mei L, Si Y, Wu J, Shao J, Wang T, Yan G, Wang C, Wu D. Sodium New Houttuyfonate Affects Transcriptome and Virulence Factors of Pseudomonas aeruginosa Controlled by Quorum Sensing. Front Pharmacol 2020; 11:572375. [PMID: 33123010 PMCID: PMC7566558 DOI: 10.3389/fphar.2020.572375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
As a major opportunistic pathogen, Pseudomonas aeruginosa can produce various virulence factors and form biofilms. These processes are controlled by the quorum sensing (QS) system. Sodium new houttuyfonate (SNH) is an adduct of houttuyfonate, the main component of the common Chinese medicine plant Houttuynia cordata, which has antibacterial and anti-inflammatory effects. We evaluated the effect of SNH on P. aeruginosa biofilms, virulence factors, and transcription. Transcriptome analysis showed that the key rhlI and pqsA genes of the P. aeruginosa QS system were down-regulated after SNH treatment. SNH reduces proteases and pyocyanin production and inhibits biofilm formation by regulating the P. aeruginosa QS system. SNH also changes the expression of genes related to virulence factors and biofilms (lasA, lasB, lecA, phzM, pqsA, and pilG). These results suggested that the mechanism of SNH against P. aeruginosa by affecting the expression of biofilm and virulence factors controlled by quorum sensing.
Collapse
Affiliation(s)
- Yeye Zhao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuanqing Si
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jiadi Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China
| | - Guiming Yan
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Anhui University of Chinese Medicine, Hefei, China.,Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
46
|
A novel scaffold to fight Pseudomonas aeruginosa pyocyanin production: early steps to novel antivirulence drugs. Future Med Chem 2020; 12:1489-1503. [PMID: 32772556 DOI: 10.4155/fmc-2019-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Although bacterial resistance is a growing concern worldwide, the development of antibacterial drugs has been steadily decreasing. One alternative to fight this issue relies on reducing the bacteria virulence without killing it. PhzS plays a pivotal role in pyocyanin production in Pseudomonas aeruginosa. Results: A total of 31 thiazolidinedione derivatives were evaluated as putative PhzS inhibitors, using thermo shift assays. Compounds that significantly shifted PhzS's Tm had their mode of inhibition (cofactor competitor) and affinity calculated by thermo shift assays as well. The most promising compound (E)-5-(4-((4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)methoxy)benzylidene)thiazolidine-2,4-dione had their affinity confirmed by microscale thermophoresis (Kd = 18 μM). Cellular assays suggest this compound reduces pyocyanin production in vitro, but does not affect P. aeruginosa viability. Conclusion: The first inhibitor of PhzS is described.
Collapse
|
47
|
Bentley MR, Ilyichova OV, Wang G, Williams ML, Sharma G, Alwan WS, Whitehouse RL, Mohanty B, Scammells PJ, Heras B, Martin JL, Totsika M, Capuano B, Doak BC, Scanlon MJ. Rapid Elaboration of Fragments into Leads by X-ray Crystallographic Screening of Parallel Chemical Libraries (REFiLX). J Med Chem 2020; 63:6863-6875. [DOI: 10.1021/acs.jmedchem.0c00111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew R. Bentley
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Olga V. Ilyichova
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Martin L. Williams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gaurav Sharma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Wesam S. Alwan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Rebecca L. Whitehouse
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Building N75, Brisbane Innovation Park, Don Young Road, Nathan, QLD 4111, Australia
- Vice-Chancellor’s Unit, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Makrina Totsika
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Bradley C. Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
48
|
Caputo L, Smeriglio A, Trombetta D, Cornara L, Trevena G, Valussi M, Fratianni F, De Feo V, Nazzaro F. Chemical Composition and Biological Activities of the Essential Oils of Leptospermum petersonii and Eucalyptus gunnii. Front Microbiol 2020; 11:409. [PMID: 32351456 PMCID: PMC7174609 DOI: 10.3389/fmicb.2020.00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/27/2020] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to characterize the chemical composition and to evaluate the antimicrobial and phytotoxic properties of the essential oils (EOs) obtained from leaves of Leptospermum petersonii chemotype "Variety B" and Eucalyptus gunnii, native to Australia. Geranyl acetate, γ-terpinene, geraniol, terpinolene, α-pinene, p-cimene, and linalool were the main components in L. petersonii EO, confirming also the existence of several chemotypes in such taxa; on the other hand, 1,8-cineole, trans-sabinene hydrate acetate, globulol, longicyclene, terpinolene, and camphene were present in major amounts in the E. gunnii EO. Chemical analysis of L. petersonii revealed that it belongs to the variety "B." E. gunnii EO showed good antibacterial activity, with an MIC of 0.5 and 2 μg/mL against Staphylococcus aureus, and Pectobacterium carotovorum, respectively. The activity of E. gunnii EO was stronger than L. petersonii EO, whose maximum MIC reached 5 μg/mL. E. gunnii and L. petersonii EOs were particularly effective in inhibiting the biofilm formation by S. aureus, already at a concentration of 0.01 μg/mL. The other strains were resistant to both EOs up to a dose of 0.05 μg/mL. The maximum inhibition on biofilm formed by P. carotovorum was recorded for E. gunnii EO, reaching a value of 93.12% at 1.0 μg/mL. This is the first manuscript which studies the biofilm inhibition by EOs and evaluates their effects on biofilm metabolism. Both EOs were more effective against P. carotovorum. In addition, even though L. petersonii EO 0.1 μg/mL was unable to inhibit biofilm formation by Escherichia coli, it decreased the metabolic activity of the biofilm to 78.55% compared to control; furthermore, despite it inducing a relatively low inhibition (66.67%) on biofilm formation, it markedly affected metabolic activity, which decreased to 16.09% with respect to the control. On the contrary, L. petersonii EO 0.5 μg/mL induced a 79.88% inhibition of S. aureus biofilm, maintaining a high metabolic activity (90.89%) compared to the control. Moreover, this EO showed inhibitory activity against radical elongation of Solanum lycopersicum and the germination of radish. On the contrary, E. gunnii EO showed no phytotoxic activity.
Collapse
Affiliation(s)
- Lucia Caputo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Laura Cornara
- Department for the Earth, Environment and Life Sciences, School of Mathematical, Physical and Natural Sciences, University of Genoa, Genoa, Italy
| | - Greg Trevena
- Essentially Australia, Byron Bay, NSW, Australia
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association, Norwich, United Kingdom
| | - Florinda Fratianni
- Institute of Food Sciences, CNR-ISA, Italian National Research Council, Avellino, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Italian National Research Council, Avellino, Italy
| |
Collapse
|
49
|
Rosmarinus officinalis L. (Rosemary) Extracts Containing Carnosic Acid and Carnosol are Potent Quorum Sensing Inhibitors of Staphylococcus aureus Virulence. Antibiotics (Basel) 2020; 9:antibiotics9040149. [PMID: 32244277 PMCID: PMC7235817 DOI: 10.3390/antibiotics9040149] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and a common cause of skin infection. S. aureus also plays a role in the pathogenesis of the chronic inflammatory skin disease, atopic dermatitis. S. aureus virulence involves activation of the quorum sensing agr operon. In this paper, we show that the diterpene carnosic acid, present in R. officinalis L. (rosemary) leaves, is a specific inhibitor of S. aureus agr expression as low as 5 μM. Carnosol and rosmarinic acid are two other phytochemicals present in rosemary leaves. Carnosol, but not rosmarinic acid, is also a potent agr expression inhibitor. Natural rosemary extracts containing carnosic acid and carnosol inhibit S. aureus agr expression, both in luciferase reporter strains and in wild type strains isolated from patients with atopic dermatitis. Specific inhibition of S. aureus virulence using topical formulations of rosemary extract may offer a practical approach to preventing and treating flares of atopic dermatitis.
Collapse
|
50
|
Sacher JC, Shajahan A, Butcher J, Patry RT, Flint A, Hendrixson DR, Stintzi A, Azadi P, Szymanski CM. Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans. Front Microbiol 2020; 11:397. [PMID: 32265863 PMCID: PMC7099621 DOI: 10.3389/fmicb.2020.00397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Many bacterial pathogens display glycosylated surface structures that contribute to virulence, and targeting these structures is a viable strategy for pathogen control. The foodborne pathogen Campylobacter jejuni expresses a vast diversity of flagellar glycans, and flagellar glycosylation is essential for its virulence. Little is known about why C. jejuni encodes such a diverse set of flagellar glycans, but it has been hypothesized that evolutionary pressure from bacteriophages (phages) may have contributed to this diversity. However, interactions between Campylobacter phages and host flagellar glycans have not been characterized in detail. Previously, we observed that Gp047 (now renamed FlaGrab), a conserved Campylobacter phage protein, binds to C. jejuni flagella displaying the nine-carbon monosaccharide 7-acetamidino-pseudaminic acid, and that this binding partially inhibits cell growth. However, the mechanism of this growth inhibition, as well as how C. jejuni might resist this activity, are not well-understood. Here we use RNA-Seq to show that FlaGrab exposure leads C. jejuni 11168 cells to downregulate expression of energy metabolism genes, and that FlaGrab-induced growth inhibition is dependent on motile flagella. Our results are consistent with a model whereby FlaGrab binding transmits a signal through flagella that leads to retarded cell growth. To evaluate mechanisms of FlaGrab resistance in C. jejuni, we characterized the flagellar glycans and flagellar glycosylation loci of two C. jejuni strains naturally resistant to FlaGrab binding. Our results point toward flagellar glycan diversity as the mechanism of resistance to FlaGrab. Overall, we have further characterized the interaction between this phage-encoded flagellar glycan-binding protein and C. jejuni, both in terms of mechanism of action and mechanism of resistance. Our results suggest that C. jejuni encodes as-yet unidentified mechanisms for generating flagellar glycan diversity, and point to phage proteins as exciting lenses through which to study bacterial surface glycans.
Collapse
Affiliation(s)
- Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - James Butcher
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Robert T Patry
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Annika Flint
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States.,Department of Microbiology, University of Georgia, Athens, GA, United States
| |
Collapse
|