1
|
Coutant DE, Boulton DW, Dahal UP, Deslandes A, Grimaldi C, Pereira JNS, Säll C, Sarvaiya H, Schiller H, Tai G, Umehara K, Yuan Y, Dallas S. Therapeutic Protein Drug Interactions: A White Paper From the International Consortium for Innovation and Quality in Pharmaceutical Development. Clin Pharmacol Ther 2022; 113:1185-1198. [PMID: 36477720 DOI: 10.1002/cpt.2814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Typically, therapeutic proteins (TPs) have a low risk for eliciting meaningful drug interactions (DIs). However, there are select instances where TP drug interactions (TP-DIs) of clinical concern can occur. This white paper discusses the various types of TP-DIs involving mechanisms such as changes in disease state, target-mediated drug disposition, neonatal Fc receptor (FcRn), or antidrug antibodies formation. The nature of TP drug interaction being investigated should determine whether the examination is conducted as a standalone TP-DI study in healthy participants, in patients, or assessed via population pharmacokinetic analysis. DIs involving antibody-drug conjugates are discussed briefly, but the primary focus here will be DIs involving cytokine modulation. Cytokine modulation can occur directly by certain TPs, or indirectly due to moderate to severe inflammation, infection, or injury. Disease states that have been shown to result in indirect disease-DIs that are clinically meaningful have been listed (i.e., typically a twofold change in the systemic exposure of a coadministered sensitive cytochrome P450 substrate drug). Type of disease and severity of inflammation should be the primary drivers for risk assessment for disease-DIs. While more clinical inflammatory marker data needs to be collected, the use of two or more clinical inflammatory markers (such as C-reactive protein, albumin, or interleukin 6) may help broadly categorize whether the predicted magnitude of inflammatory disease-DI risk is negligible, weak, or moderate to strong. Based on current knowledge, clinical DI studies are not necessary for all TPs, and should no longer be conducted in certain disease patient populations such as psoriasis, which do not have sufficient systemic inflammation to cause a meaningful indirect disease-DI.
Collapse
Affiliation(s)
- David E Coutant
- Drug Disposition Department, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - David W Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, Research & Development, AstraZeneca, Gaithersburg, Maryland, USA
| | - Upendra P Dahal
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., South San Francisco, California, USA
| | - Antoine Deslandes
- Translational Medicine and Early Development, Sanofi Research & Development, Chilly-Mazarin, France
| | - Christine Grimaldi
- Formerly of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Joao N S Pereira
- Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany
| | - Carolina Säll
- Development Absorption, Distribution, Metabolism, and Elimination, Novo Nordisk A/S, Måløv, Denmark
| | - Hetal Sarvaiya
- Drug Metabolism, Pharmacokinetics, and Bioanalytical, AbbVie Inc., California, South San Francisco, USA
| | - Hilmar Schiller
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Guoying Tai
- Department of Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Yang Yuan
- Formerly of Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Pharmaceutical Research and Development, Princeton, New Jersey, USA
| | - Shannon Dallas
- Preclinical Sciences & Translational Safety, Janssen Research & Development, Springhouse, Pennsylvania, USA
| |
Collapse
|
2
|
Chai YY, Xu YX, Xia ZY, Li AQ, Huang X, Zhang LY, Jiang ZZ. Influence of Zhuanggu Guanjie Pill on Seven Cytochrome P450 Enzymes Based on Probe Cocktail and Pharmacokinetics Approaches. Curr Drug Metab 2022; 23:1054-1066. [PMID: 36503399 DOI: 10.2174/1389200224666221209154002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The use of herbal medicines has tremendously increased over the past few decades. Case reports and controlled clinical investigations of herbal-drug interactions have been reported. Since Cytochrome P450 (CYP) enzymes play an important role in drug interactions. The evaluation of the influence of herbal medicines on the activities of CYPs is beneficial to promote scientific and rational clinical use of herbal medicines. OBJECTIVE Herein, we aimed to develop and validate a method to simultaneously quantify seven CYP cocktail probe drugs consisting of phenacetin (PNC), bupropion (BPP), losartan potassium (LK), omeprazole (OMP), dextromethorphan (DM), chlorzoxazone (CZZ) and midazolam (MDZ) and their respective metabolites in a single acquisition run and use this method to evaluate the influence of Zhuanggu Guanjie Pill (ZGGJP) on seven CYPs. METHODS A cost-effective and simple UHPLC-(±)ESI-MS/MS method for simultaneous determination of seven probe drugs and metabolites in rat plasma was developed and validated. Male and female rats were randomly divided into three groups and treated with 1.2 g/kg/d ZGGJP, 5 g/kg/d ZGGJP and 0.5% CMC-Na for 14 consecutive days. After 24 h of the last administration, all rats were administrated orally with probe drugs. The influence of ZGGJP on the CYPs was carried out by comparing the metabolic ratio (Cmax, AUC0-t) of metabolites/probe drugs in rats. RESULTS The calibration curves were linear, with correlation coefficient > 0.99 for seven probe drugs and their corresponding metabolites. Intra- and inter-day precisions were not greater than 15% RSD and the accuracies were within ± 15% of nominal concentrations. The ZGGJP showed significant inductive effect on CYP1A2, CYP2B6, CYP2C9 and CYP3A in male and female rats. CONCLUSION ZGGJP had inductive effects on CYP1A2, CYP2B6, CYP2C9 and CYP3A in male and female rats.
Collapse
Affiliation(s)
- Yuan-Yuan Chai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun-Xia Xu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Yin Xia
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - An-Qin Li
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Lu-Yong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhen-Zhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
3
|
Influence of serum inflammatory cytokines on cytochrome P450 drug metabolising activity during breast cancer chemotherapy: a patient feasibility study. Sci Rep 2021; 11:5648. [PMID: 33707475 PMCID: PMC7952716 DOI: 10.1038/s41598-021-85048-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Individual response to chemotherapy in patients with breast cancer is variable. Obesity and exercise are associated with better and worse outcomes, respectively, and it is known that both impact the systemic cytokine milieu. Cytochrome P450 (CYP) enzymes are responsible for the metabolism of many chemotherapy agents, and CYP enzyme activity has been shown to be modified by inflammatory cytokines in vitro and in vivo. Cytokine-associated changes in CYP metabolism may alter chemotherapy exposure, potentially affecting treatment response and patient survival. Therefore, better understanding of these biological relationships is required. This exploratory single arm open label trial investigated changes in in vivo CYP activity in twelve women treated for stage II or III breast cancer, and demonstrated for the first time the feasibility and safety of utilising the Inje phenotyping cocktail to measure CYP activity in cancer patients receiving chemotherapy. Relative CYP activity varied between participants, particularly for CYP2C9 and CYP2D6, and changes in serum concentrations of the inflammatory cytokine monocyte chemoattractant protein 1 inversely correlated to CYP3A4 activity during chemotherapy. Future use of phenotyping cocktails in a clinical oncology setting may help guide drug dosing and improve chemotherapy outcomes. Clinical Trial Registration: Trial was retrospectively registered to the Australia New Zealand Clinical Trial Registry (ANZCTR). ACTRN12620000832976, 21 Aug 2020, https://www.anzctr.org.au/ACTRN12620000832976.aspx.
Collapse
|
4
|
Giri P, Patel H, Srinivas NR. Use of Cocktail Probe Drugs for Indexing Cytochrome P450 Enzymes in Clinical Pharmacology Studies - Review of Case Studies. Drug Metab Lett 2020; 13:3-18. [PMID: 30451124 DOI: 10.2174/1872312812666181119154734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The cocktail approach of probing drug metabolizing enzymes, in particular cytochrome P450 (CYP) enzymes, is a cornerstone in clinical pharmacology studies. The first report of the famous "Pittsburg cocktail" has led the way for the availability of numerous cocktail substrate mixtures that provide options for indexing of CYP enzymes and/or evaluating the perpetrator capacity of the drug. OBJECTIVE The key objectives were: 1) To collate, tabulate, and discuss the various cocktail substrates to determine specific CYP enzyme activity in clinical pharmacology studies with specific case studies; 2) To introspect on how the cocktail approach has withstood the test of time and evolved for enabling key decision(s); 3) To provide some futuristic views on the use of cocktail in drug discovery and development. METHOD The review was compiled after consultation with databases such as PubMed (NCBI database) and Google scholar to source various published literature on cocktail approaches in drug development. RESULTS In the reviewed case studies, CYP indexing was achieved using a single time point (differing for specific CYP enzyme) plasma determination of the metabolite to parent ratio for all CYP enzymes with the exception of CYP3A4/5, where multiple time points were required for exposure measurement of midazolam and its metabolite. Likewise, a single void of urine, for a specific time duration, has been utilized for the recovery measurements of parent and metabolite for CYP indexing purposes. CONCLUSION The review provides a comprehensive list of various types of cocktail approaches and discusses some key considerations including the evolution of the cocktail approaches over time, perspectives and futuristic views for the use of probe drugs to aid the execution of clinical pharmacology studies and data interpretation.
Collapse
Affiliation(s)
- Poonam Giri
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad-382 210, India
| | - Harilal Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad-382 210, India
| | - Nuggehally R Srinivas
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad-382 210, India.,Suramus Bio, Drug Development, J.P. Nagar First Phase, Bangalore 560078, India
| |
Collapse
|
5
|
Panax ginseng Inhibits Metabolism of Diester Alkaloids by Downregulating CYP3A4 Enzyme Activity via the Pregnane X Receptor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3508658. [PMID: 31057647 PMCID: PMC6463675 DOI: 10.1155/2019/3508658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
To investigate the effects of P. ginseng C.A. Mey (P. ginseng) on the metabolism of diester alkaloids and explore the potential mechanism. P. ginseng was administered orally to rats for 7 days, after which liver microsome samples were prepared and then incubated with diester alkaloids. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to determinate the concentration of diester alkaloids to calculate the clearance rate. The cocktail method was used to evaluate the effects of oral administration of P. ginseng extracts on the activities of cytochrome P450 (CYP) isoforms in rats through the changes in the pharmacokinetic parameters of the probe drugs. The protein and gene expression of CYP3A2 and pregnane X receptor (PXR) in rats were evaluated by western blotting and quantitative PCR. The specific enzyme inhibitor method and human recombinant enzyme method were used to identify the involvement of sub-CYPs in the metabolism of diester alkaloids in human liver microsomes (HLMs). The clearances of aconitine, mesaconitine, and hypaconitine in the P. ginseng groups were lower than those of the control group. The areas under the curve of midazolam were 2.37 ± 1.05, 4.96 ± 0.51, and 6.23 ± 1.30 mg·L-1·h for the low-, medium-, and high-dose P. ginseng groups, respectively, which were higher than that of the control (2.23 ± 0.64 mg·L-1·h). The clearances of midazolam for the medium- (1.87 ± 0.16 L·h-1·kg-1) and high-dose (1.60 ± 0.34 L·h-1·kg-1) P. ginseng groups were lower than that of the control group (4.66 ± 1.43 L·h-1·kg-1). After exposure to P. ginseng extracts, the gene and protein expression levels of CYP3A4 and PXR were decreased. The hepatic metabolism rates of aconitine, mesaconitine, and hypaconitine in HLMs were decreased to 60.37%, 21.67%, and 10.11%, respectively, when incubated with ketoconazole, a specific inhibitor for CYP3A. The kinetic plots indicated that the KM and V max values of CYP3A4 were 10.08 ± 3.26 μM and 0.12 ± 0.01nmol·mg protein-1·min-1 for aconitine, 131.3 ± 99.75 μM and 0.73 ± 0.44 nmol·mg protein-1·min-1 for mesaconitine, and 17.05 ± 9.70 μM and 0.16 ± 0.04 nmol·mg protein-1·min-1 for hypaconitine, respectively. The in vitro mean intrinsic clearance rates by CYP3A4 were 0.0119, 0.0056, and 0.0091 mL·nmol CYP-1·min-1 for aconitine, mesaconitine, and hypaconitine, respectively. Therefore we implied that P. ginseng inhibited the metabolism of diester alkaloids in vitro and decreased the CYP3A4 enzyme activity as well as the gene and protein expression of CYP3A4 and PXR in vivo. CYP3A4 had a larger effect on diester alkaloid metabolism than the other human CYP isoforms, CYP1A2, CYP2C9, and CYP2E1.
Collapse
|
6
|
Cusinato DAC, Filgueira GCDO, Rocha A, Cintra MAC, Lanchote VL, Coelho EB. LC-MS/MS analysis of the plasma concentrations of a cocktail of 5 cytochrome P450 and P-glycoprotein probe substrates and their metabolites using subtherapeutic doses. J Pharm Biomed Anal 2019; 164:430-441. [DOI: 10.1016/j.jpba.2018.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/14/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022]
|
7
|
Giri P, Gupta L, Singh S, Patel N, Srinivas NR, Srivastva BK, Desai RC, Patel PR. Assessment of the in vitro cytochrome P450 (CYP) inhibition potential of ZYTP1, a novel poly (ADP-ribose) polymerase inhibitor. Xenobiotica 2018; 49:1164-1172. [PMID: 30488748 DOI: 10.1080/00498254.2018.1546916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ZYTP1 is a novel Poly (ADP-ribose) polymerase protein inhibitor being developed for cancer indications. The focus of the work was to determine if ZYTP1 had a perpetrator role in the in vitro inhibition of cytochrome P450 (CYP) enzymes to aid dosing decisions during the clinical development of ZYTP1. ZYTP1 IC50 for CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4/5 was determined using human liver microsomes and LC-MS/MS detection. CYP3A4/5 IC50 of depropylated metabolite of ZYTP1 was also determined. Time dependent inhibition of CYP3A4/5 by ZYTP1 was also assessed using substrates, testosterone and midazolam. The mean IC50 values of ZYTP1 were >100 µM for CYP1A2, 2B6 and 2D6, while 56.1, 24.5, 39.5 and 23.3-58.7 µM for CYP2C8, 2C9, 2C19 and 3A4/5, respectively. The CYP3A4/5 IC50 of depropylated metabolite was 11.95-24.51 µM. Time dependent CYP3A4/5 inhibition was noted for testosterone and midazolam with IC50 shift of 10.9- and 39.9-fold, respectively. With midazolam, the kinact and KI values of ZYTP1 were 0.075 min-1 and 4.47 µM for the CYP3A4/5 time dependent inhibition, respectively. Because of potent inhibition of CYP3A4/5, drugs that undergo metabolism via CYP3A4/5 pathway should be avoided during ZYTP1 therapy.
Collapse
Affiliation(s)
- Poonam Giri
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre , Ahmadabad , India
| | - Lakshmikant Gupta
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre , Ahmadabad , India
| | - Sanjay Singh
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre , Ahmadabad , India
| | - Nirmal Patel
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre , Ahmadabad , India
| | - Nuggehally R Srinivas
- a Department of Drug Metabolism and Pharmacokinetics , Zydus Research Centre , Ahmadabad , India
| | | | - Ranjit C Desai
- b Department of Medicinal Chemistry , Zydus Research Centre , Ahmadabad , India
| | - Pankaj R Patel
- c Zydus Research Centre , Cadila Healthcare Ltd , Ahmadabad , India
| |
Collapse
|
8
|
Narushima K, Maeda H, Shiramoto M, Endo Y, Ohtsuka S, Nakamura H, Nagata Y, Uchimura T, Kannami A, Shimazaki R, Fukagawa M, Akizawa T. Assessment of CYP-Mediated Drug Interactions for Evocalcet, a New Calcimimetic Agent, Based on In Vitro Investigations and a Cocktail Study in Humans. Clin Transl Sci 2018; 12:20-27. [PMID: 30238620 PMCID: PMC6342237 DOI: 10.1111/cts.12588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023] Open
Abstract
Evocalcet is a novel calcimimetic agent for the treatment of secondary hyperparathyroidism (SHPT). This study evaluated the effects of evocalcet on inhibition and induction of cytochrome P450 (CYP) isozymes. Although drug interactions arising from reversible inhibition of CYP isozymes by evocalcet were considered unlikely based on the results of in vitro studies and static model analyses, the potential for evocalcet to cause time‐dependent inhibition of CYP3A or induction of several CYP isozymes could not be ruled out. Therefore, a clinical drug‐drug interaction (DDI) study to evaluate the effects of evocalcet on the pharmacokinetics (PKs) of probe substrates for CYP isozymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, and CYP3A) was conducted in healthy male volunteers using a novel cocktail combination. Evocalcet did not significantly affect the PKs of the probe substrates, confirming that CYP‐mediated interactions were unlikely.
Collapse
Affiliation(s)
| | - Hiroshi Maeda
- R&D Division, Kyowa Hakko Kirin Co. Ltd., Tokyo, Japan
| | | | - Yuichi Endo
- R&D Division, Kyowa Hakko Kirin Co. Ltd., Tokyo, Japan
| | | | | | | | | | - Ayako Kannami
- DMPK Research Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Tadao Akizawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Design and optimization of the cocktail assay for rapid assessment of the activity of UGT enzymes in human and rat liver microsomes. Toxicol Lett 2018; 295:379-389. [PMID: 30036684 DOI: 10.1016/j.toxlet.2018.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
Abstract
Along with the prevalence of drug combination therapies, an increasing number of cases about drug-drug interactions (DDI) have been reported, which has drawn a lot of attention due to the potential toxicity and/or therapeutic failure. Pharmacokinetic interactions based on drug metabolic enzymes should be responsible for a great many of DDI. UDP-glucuronosyltransferases (UGT) as the main phase II metabolic enzymes are involved in the metabolism of many endogenous and exogenous substrates. Herein, we designed and optimized a validated cocktail method for the simultaneous evaluation of drug-mediated inhibition of the main five UGT isoforms using respective specific probe substrates (estradiol for UGT1A1, chenodeoxycholic acid for UGT1A3, serotonin for UGT1A6, propofol for UGT1A9/PROG and zidovudine for UGT2B7/AZTG) in human and rat liver microsomes by liquid chromatography-tandem mass spectrometry (LCMS/MS). Moreover, we investigated the risk of interactions among UGT probe substrates, and validated the cocktail method by known positive inhibitors of UGT isoforms. To minimize the substrates interaction, we developed two cocktail subgroups which were further optimized via exploring the experimental conditions. In particular, the cocktail inhibition assay for rapid assessment of in vitro rat UGTs was firstly reported and the values of Km in the liver microsomes from humans and rats were close to each other in the specific UGT subtype. In conclusion, this study has successfully established the cocktail approach to explore UGT activity, especially for UGT inhibition in a fast and efficient way.
Collapse
|
10
|
Heo JK, Kim HJ, Lee GH, Ohk B, Lee S, Song KS, Song IS, Liu KH, Yoon YR. Simultaneous Determination of Five Cytochrome P450 Probe Substrates and Their Metabolites and Organic Anion Transporting Polypeptide Probe Substrate in Human Plasma Using Liquid Chromatography-Tandem Mass Spectrometry. Pharmaceutics 2018; 10:pharmaceutics10030079. [PMID: 30004443 PMCID: PMC6160928 DOI: 10.3390/pharmaceutics10030079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022] Open
Abstract
A rapid and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of organic anion transporting polypeptide 1B1 (OATP1B1) and cytochrome P450 (P450) probe substrates and their phase I metabolites in human plasma was developed. The OATP1B1 (pitavastatin) and five P450 probe substrates, caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A) and their metabolites were extracted from human plasma (50 µL) using methanol. Analytes were separated on a C18 column followed by selected reaction monitoring detection using MS/MS. All analytes were separated simultaneously within a 9 min run time. The developed method was fully validated over the expected clinical concentration range for all analytes tested. The intra- and inter-day precisions for all analytes were lower than 11.3% and 8.82%, respectively, and accuracy was 88.5–117.3% and 96.1–109.2%, respectively. The lower limit of quantitation was 0.05 ng/mL for dextromethorphan, dextrorphan, midazolam, and 1′-hydroxymidazolam; 0.5 ng/mL for losartan, EXP-3174, omeprazole, 5′-hydroxyomeprazole, and pitavastatin; and 5 ng/mL for caffeine and paraxanthine. The method was successfully used in a pharmacokinetic study in healthy subjects after oral doses of five P450 and OATP1B1 probes. This analytical method provides a simple, sensitive, and accurate tool for the determination of OATP1B1 and five major P450 activities in vivo drug interaction studies.
Collapse
Affiliation(s)
- Jae-Kyung Heo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Ji Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Ga-Hyun Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Boram Ohk
- Clinical Trial Center, Kyungpook National University Hospital, Daegu 41566, Korea.
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, College of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Kyung-Sik Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Im Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Young-Ran Yoon
- Clinical Trial Center, Kyungpook National University Hospital, Daegu 41566, Korea.
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, College of Medicine, Kyungpook National University, Daegu 41944, Korea.
| |
Collapse
|
11
|
Williams D, Tao X, Zhu L, Stonier M, Lutz JD, Masson E, Zhang S, Ganguly B, Tzogas Z, Lubin S, Murthy B. Use of a cocktail probe to assess potential drug interactions with cytochrome P450 after administration of belatacept, a costimulatory immunomodulator. Br J Clin Pharmacol 2016; 83:370-380. [PMID: 27552251 PMCID: PMC5237687 DOI: 10.1111/bcp.13097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023] Open
Abstract
Aim This open‐label study investigated the effect of belatacept on cytokine levels and on the pharmacokinetics of caffeine, losartan, omeprazole, dextromethorphan and midazolam, as CYP probe substrates after oral administration of the Inje cocktail in healthy volunteers. Methods Twenty‐two evaluable subjects received the Inje cocktail on Days 1, 4, 7 and 11 and belatacept infusion on Day 4. Results Since belatacept caused no major alterations to cytokine levels, there were no major effects on CYP‐substrate pharmacokinetics, except for a slight (16–30%) increase in omeprazole exposure, which was probably due to omeprazole‐mediated, time‐dependent CYP inhibition. Belatacept did not cause major alterations in the pharmacokinetics, as measured by the geometric mean ratios and associated 90% confidence interval for area under the plasma concentration ‐time curve from time zero to infinity on Day 7 comparing administration with and without belatacept for caffeine (1.002 [0.914, 1.098]), dextromethorphan (1.031 [0.885, 1.200]), losartan (1.016 [0.938, 1.101)], midazolam (0.968 [0.892, 1.049]) or their respective metabolites. Conclusions Therefore, no dose adjustments of CYP substrates are indicated with belatacept coadministration.
Collapse
Affiliation(s)
- Daphne Williams
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA
| | - Xiaolu Tao
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA.,Sandoz, Princeton, New Jersey, USA
| | - Lili Zhu
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA
| | - Michele Stonier
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA
| | - Justin D Lutz
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA.,Gilead Sciences Inc., Foster City, California, USA
| | - Eric Masson
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA.,AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Sean Zhang
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA.,GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Bishu Ganguly
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA.,Rinat, South San Francisco, California, USA
| | - Zoe Tzogas
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA
| | - Susan Lubin
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA
| | - Bindu Murthy
- Bristol-Myers Squibb Research and Development, Pennington, New Jersey, USA
| |
Collapse
|