1
|
Terrett JA, Ly JQ, Katavolos P, Hasselgren C, Laing S, Zhong F, Villemure E, Déry M, Larouche-Gauthier R, Chen H, Shore DG, Lee WP, Suto E, Johnson K, Brooks M, Stablein A, Beaumier F, Constantineau-Forget L, Grand-Maître C, Lépissier L, Ciblat S, Sturino C, Chen Y, Hu B, Elstrott J, Gandham V, Joseph V, Booler H, Cain G, Chou C, Fullerton A, Lepherd M, Stainton S, Torres E, Urban K, Yu L, Zhong Y, Bao L, Chou KJ, Lin J, Zhang W, La H, Liu L, Mulder T, Chen J, Chernov-Rogan T, Johnson AR, Hackos DH, Leahey R, Shields SD, Balestrini A, Riol-Blanco L, Safina BS, Volgraf M, Magnuson S, Kakiuchi-Kiyota S. Discovery of TRPA1 Antagonist GDC-6599: Derisking Preclinical Toxicity and Aldehyde Oxidase Metabolism with a Potential First-in-Class Therapy for Respiratory Disease. J Med Chem 2024; 67:3287-3306. [PMID: 38431835 DOI: 10.1021/acs.jmedchem.3c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Martin Déry
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | | | | | | | | | | | | | - Marjory Brooks
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, United States
| | - Alyssa Stablein
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, United States
| | - Francis Beaumier
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | | | - Chantal Grand-Maître
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Luce Lépissier
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Stéphane Ciblat
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Claudio Sturino
- Paraza Pharma, Incorporated, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Yong Chen
- Pharmaron-Beijing Company Limited, 6 Taihe Road BDA, Beijing 100176, PR China
| | - Baihua Hu
- Pharmaron-Beijing Company Limited, 6 Taihe Road BDA, Beijing 100176, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Marynissen H, Janssen C, Bamps D, de Hoon J. Vascular read-out for TRP channel functionality on distal peripheral nerve endings in healthy men. Microvasc Res 2024; 152:104654. [PMID: 38215901 DOI: 10.1016/j.mvr.2024.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Quantification of the vasodilation after topical application of capsaicin or cinnamaldehyde is often implemented to indirectly assess Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1) or Ankyrin 1 (TRPA1) functionality respectively. This method has been well-established on the human forearm. However, to enable TRP functionality assessments in distal peripheral neuropathy, the vascular response upon TRP activation on dorsal finger skin was characterized. METHODS Two doses of cinnamaldehyde (3 % and 10 % v/v) and capsaicin (300 μg and 1000 μg) were topically applied (20 μL) on the skin of the mid three proximal phalanges in 17 healthy men. The dose-response, and inter-hand and inter-period reproducibility of the dermal blood flow (DBF) increase was assessed using Laser Speckle Contrast Imaging (LSCI) during 60 min post-application. Linear mixed models explored dose-driven differences, whereas the intra-class correlation coefficient (ICC) estimated the reproducibility of the vascular response. RESULTS Both doses of cinnamaldehyde and capsaicin induced a robust, dose-dependent increase in DBF. The vascular response to cinnamaldehyde 10 % on finger skin, expressed as area under the curve, correlated well over time (ICC = 0.66) and excellently between hands (ICC = 0.87). Similarly, the response to capsaicin 1000 μg correlated moderately over time (ICC = 0.50) and well between hands (ICC = 0.73). CONCLUSION The vascular response upon topical cinnamaldehyde and capsaicin application on finger skin is an alternative approach for measurements on forearm skin. Thereby, it is a promising vascular read-out to investigate the pathophysiology, and TRP involvement in particular, of specific peripheral neuropathic pain syndromes.
Collapse
Affiliation(s)
- Heleen Marynissen
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| | - Charlien Janssen
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Rivera-Mancilla E, Al-Hassany L, Marynissen H, Bamps D, Garrelds IM, Cornette J, Danser AHJ, Villalón CM, de Hoon JN, MaassenVanDenBrink A. Functional Analysis of TRPA1, TRPM3, and TRPV1 Channels in Human Dermal Arteries and Their Role in Vascular Modulation. Pharmaceuticals (Basel) 2024; 17:156. [PMID: 38399371 PMCID: PMC10892635 DOI: 10.3390/ph17020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Transient receptor potential (TRP) channels are pivotal in modulating vascular functions. In fact, topical application of cinnamaldehyde or capsaicin (TRPA1 and TRPV1 channel agonists, respectively) induces "local" changes in blood flow by releasing vasodilator neuropeptides. We investigated TRP channels' contributions and the pharmacological mechanisms driving vasodilation in human isolated dermal arteries. Ex vivo studies assessed the vascular function of artery segments and analyzed the effects of different compounds. Concentration-response curves to cinnamaldehyde, pregnenolone sulfate (PregS, TRPM3 agonist), and capsaicin were constructed to evaluate the effect of the antagonists HC030031 (TRPA1); isosakuranetin (TRPM3); and capsazepine (TRPV1). Additionally, the antagonists/inhibitors olcegepant (CGRP receptor); L-NAME (nitric oxide synthase); indomethacin (cyclooxygenase); TRAM-34 plus apamin (K+ channels); and MK-801 (NMDA receptors, only for PregS) were used. Moreover, CGRP release was assessed in the organ bath fluid post-agonist-exposure. In dermal arteries, cinnamaldehyde- and capsaicin-induced relaxation remained unchanged after the aforementioned antagonists, while PregS-induced relaxation was significantly inhibited by isosakuranetin, L-NAME and MK-801. Furthermore, there was a significant increase in CGRP levels post-agonist-exposure. In our experimental model, TRPA1 and TRPV1 channels seem not to be involved in cinnamaldehyde- or capsaicin-induced relaxation, respectively, whereas TRPM3 channels contribute to PregS-induced relaxation, possibly via CGRP-independent mechanisms.
Collapse
Affiliation(s)
- Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Heleen Marynissen
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, 300 Leuven, Belgium; (H.M.); (D.B.); (J.N.d.H.)
| | - Dorien Bamps
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, 300 Leuven, Belgium; (H.M.); (D.B.); (J.N.d.H.)
| | - Ingrid M. Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Jérôme Cornette
- Department of Obstetrics and Fetal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands;
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| | - Carlos M. Villalón
- Department of Pharmacobiology, Cinvestav-Coapa, Mexico City C.P. 14330, Mexico;
| | - Jan N. de Hoon
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, 300 Leuven, Belgium; (H.M.); (D.B.); (J.N.d.H.)
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (E.R.-M.); (L.A.-H.); (I.M.G.); (A.H.J.D.)
| |
Collapse
|
4
|
Bamps D, Blockeel AJ, Dreesen E, Marynissen H, Laenen J, Van Hecken A, Wilke A, Shahabi S, Johnson KW, Collins EC, Broad LM, Phillips KG, de Hoon J. TRPA1 Antagonist LY3526318 Inhibits the Cinnamaldehyde-Evoked Dermal Blood Flow Increase: Translational Proof of Pharmacology. Clin Pharmacol Ther 2023; 114:1093-1103. [PMID: 37562824 DOI: 10.1002/cpt.3024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Transient receptor potential Ankyrin 1 (TRPA1) is an ion channel expressed by sensory neurons, where it mediates pain signaling. Consequently, it has emerged as a promising target for novel analgesics, yet, to date, no TRPA1 antagonists have been approved for clinical use. In the present translational study, we utilized dermal blood flow changes evoked by TRPA1 agonist cinnamaldehyde as a target engagement biomarker to investigate the in vivo pharmacology of LY3526318, a novel TRPA1 antagonist. In rats, LY3526318 (1, 3, and 10 mg/kg, p.o.) dose-dependently reduced the cutaneous vasodilation typically observed following topical application of 10% v/v cinnamaldehyde. The inhibition was significant at the site of cinnamaldehyde application and also when including an adjacent area of skin. Similarly, in a cohort of 16 healthy human volunteers, LY3526318 administration (10, 30, and 100 mg, p.o.) dose-dependently reduced the elevated blood flow surrounding the site of 10% v/v cinnamaldehyde application, with a trend toward inhibition at the site of application. Comparisons between both species reveal that the effects of LY3526318 on the cinnamaldehyde-induced dermal blood flow are greater in rats relative to humans, even when adjusting for cross-species differences in potency of the compound at TRPA1. Exposure-response relationships suggest that a greater magnitude response may be observed in humans if higher antagonist concentrations could be achieved. Taken together, these results demonstrate that cinnamaldehyde-evoked changes in dermal blood flow can be utilized as a target engagement biomarker for TRPA1 activity and that LY3526318 antagonizes the ion channel both in rats and humans.
Collapse
Affiliation(s)
- Dorien Bamps
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | | | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Heleen Marynissen
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | - Jolien Laenen
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | - Anne Van Hecken
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| | - August Wilke
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | | | - Kirk W Johnson
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | | | - Lisa M Broad
- Eli Lilly and Company, Erl Wood Manor, Windlesham, UK
| | - Keith G Phillips
- Eli Lilly and Company, Neuroscience Next Generation Therapeutics, Lilly Innovation Center, Cambridge, Massachusetts, USA
| | - Jan de Hoon
- Department of Pharmaceutical and Pharmacological Sciences, Center for Clinical Pharmacology, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Marynissen H, Mergaerts D, Bamps D, de Hoon J. Does etodolac affect TRPA1 functionality in vivo in human? J Basic Clin Physiol Pharmacol 2023; 34:531-537. [PMID: 36972286 DOI: 10.1515/jbcpp-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/02/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES In preclinical research, etodolac, a non-steroidal anti-inflammatory drug, affected transient receptor potential ankyrin 1 (TRPA1) activation. Yet, whether the in vitro interaction between etodolac and TRPA1 translates to altered TRPA1 functionality in vivo in human remains to be investigated. METHODS A randomized, double-blinded, celecoxib-controlled study was conducted to assess the effect of etodolac on TRPA1-mediated dermal blood flow (DBF) changes on the forearm of 15 healthy, male volunteers aged between 18 and 45 years. Over four study visits, separated by at least five days wash-out, a single or four-fold dose of etodolac 200 mg or celecoxib 200 mg was administered orally. Two hours post-dose, TRPA1 functionality was evaluated by assessing cinnamaldehyde-induced DBF changes. DBF changes were quantified and expressed in Perfusion Units (PUs) using laser Doppler imaging during 60 min post-cinnamaldehyde application. The corresponding area under the curve (AUC0-60min) was calculated as summary measure. Statistical analysis was performed using Linear mixed models with post-hoc Dunnett. RESULTS Neither the single dose of etodolac nor celecoxib inhibited the cinnamaldehyde-induced DBF changes compared to no treatment (AUC0-60min ± SEM of 17,751 ± 1,514 PUs*min and 17,532 ± 1,706 PUs*min vs. 19,274 ± 1,031 PUs*min, respectively, both p=1.00). Similarly, also a four-fold dose of both compounds failed to inhibit the cinnamaldehyde-induced DBF changes (19,235 ± 1,260 PUs*min and 19,367 ± 1,085 PUs*min vs. 19,274 ± 1,031 PUs*min, respectively, both p=1.00). CONCLUSIONS Etodolac did not affect the cinnamaldehyde-induced DBF changes, suggesting that it does not alter TRPA1 functionality in vivo in human.
Collapse
Affiliation(s)
- Heleen Marynissen
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Delphine Mergaerts
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Bamps D, Vriens J, de Hoon J, Voets T. TRP Channel Cooperation for Nociception: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2020; 61:655-677. [PMID: 32976736 DOI: 10.1146/annurev-pharmtox-010919-023238] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic pain treatment remains a sore challenge, and in our aging society, the number of patients reporting inadequate pain relief continues to grow. Current treatment options all have their drawbacks, including limited efficacy and the propensity of abuse and addiction; the latter is exemplified by the ongoing opioid crisis. Extensive research in the last few decades has focused on mechanisms underlying chronic pain states, thereby producing attractive opportunities for novel, effective and safe pharmaceutical interventions. Members of the transient receptor potential (TRP) ion channel family represent innovative targets to tackle pain sensation at the root. Three TRP channels, TRPV1, TRPM3, and TRPA1, are of particular interest, as they were identified as sensors of chemical- and heat-induced pain in nociceptor neurons. This review summarizes the knowledge regarding TRP channel-based pain therapies, including the bumpy road of the clinical development of TRPV1 antagonists, the current status of TRPA1 antagonists, and the future potential of targeting TRPM3.
Collapse
Affiliation(s)
- Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium; .,Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Joseph V, Yang X, Gao SS, Elstrott J, Weimer RM, Theess W, Thrasher C, Singh N, Lin J, Bauer RN. Development of AITC-induced dermal blood flow as a translational in vivo biomarker of TRPA1 activity in human and rodent skin. Br J Clin Pharmacol 2020; 87:129-139. [PMID: 32415670 DOI: 10.1111/bcp.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Develop a translational assay of Transient Receptor Potential Ankyrin 1 (TRPA1) activity for use as a preclinical and clinical biomarker. EXPERIMENTAL APPROACH Allyl isothiocyanate (AITC), capsaicin or citric acid were applied to ears of wildtype and Trpa1-knock out (Trpa1 KO) rats, and changes in dermal blood flow (DBF) were measured by laser speckle contrast imaging. In humans, the DBF, pain and itch responses to 5-20% AITC applied to the forearm were measured and safety was evaluated. Reproducibility of the DBF, pain and itch responses to topically applied 10% and 15% AITC were assessed at two visits separated by 13-15 days. DBF changes were summarized at 5-minute intervals as areas under the curve (AUC) and maxima. Intraclass correlation coefficient (ICC) was calculated to assess arm-arm and period-period reproducibility. KEY RESULTS AITC- and citric acid-induced DBF were significantly reduced in Trpa1 KO rats compared to wildtype (90 ± 2% and 65 ± 11% reduction, respectively), whereas capsaicin response did not differ. In humans, each AITC concentration significantly increased DBF compared to vehicle with the maximal increase occurring 5 minutes post application. Ten percent and 15% AITC were selected as safe and effective stimuli. AUC from 0 to 5 minutes was the most reproducible metric of AITC-induced DBF across arms (ICC = 0.92) and periods (ICC = 0.85). Subject-reported pain was more reproducible than itch across visits (ICC = 0.76 vs 0.17, respectively). CONCLUSION AND IMPLICATIONS AITC-induced DBF is a suitable target engagement biomarker of TRPA1 activity for preclinical and clinical studies of TRPA1 antagonists.
Collapse
Affiliation(s)
- Victory Joseph
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Xiaoying Yang
- Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | - Simon S Gao
- Clinical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Justin Elstrott
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Robby M Weimer
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | - Wiebke Theess
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Cory Thrasher
- Environmental Health and Safety, Genentech, Inc., South San Francisco, CA, USA
| | | | - Joseph Lin
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Rebecca N Bauer
- OMNI Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
8
|
Bamps D, Macours L, Buntinx L, de Hoon J. Laser speckle contrast imaging, the future DBF imaging technique for TRP target engagement biomarker assays. Microvasc Res 2020; 129:103965. [DOI: 10.1016/j.mvr.2019.103965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022]
|
9
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
10
|
Ferro TAF, Souza EB, Suarez MAM, Rodrigues JFS, Pereira DMS, Mendes SJF, Gonzaga LF, Machado MCAM, Bomfim MRQ, Calixto JB, Arbiser JL, Monteiro-Neto V, André E, Fernandes ES. Topical Application of Cinnamaldehyde Promotes Faster Healing of Skin Wounds Infected with Pseudomonas aeruginosa. Molecules 2019; 24:molecules24081627. [PMID: 31027179 PMCID: PMC6515316 DOI: 10.3390/molecules24081627] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Wound healing can be delayed following colonization and infection with the common bacterium Pseudomonas aeruginosa. While multiple therapies are used for their treatment, these are ineffective, expensive, and labour-intensive. Thus, there is an enormous unmet need for the treatment of infected wounds. Cinnamaldehyde, the major component of cinnamon oil, is well known for its antimicrobial properties. Herein, we investigated the effects of sub-inhibitory concentrations of cinnamaldehyde in the virulence of P. aeruginosa. We also assessed its healing potential in P. aeruginosa-infected mouse skin wounds and the mechanisms involved in this response. Sub-inhibitory concentrations of cinnamaldehyde reduced P. aeruginosa metabolic rate and its ability to form biofilm and to cause haemolysis. Daily topical application of cinnamaldehyde on P. aeruginosa-infected skin wounds reduced tissue bacterial load and promoted faster healing. Lower interleukin-17 (IL-17), vascular endothelial growth factor (VEGF) and nitric oxide levels were detected in cinnamaldehyde-treated wound samples. Blockage of transient receptor potential ankyrin 1, the pharmacological target of cinnamaldehyde, abrogated its healing activity and partially reversed the inhibitory actions of this compound on VEGF and IL-17 generation. We suggest that topical application of sub-inhibitory concentrations of cinnamaldehyde may represent an interesting approach to improve the healing of P. aeruginosa-infected skin wounds.
Collapse
Affiliation(s)
- Thiago A F Ferro
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
| | - Eliene B Souza
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
| | - Mariela A M Suarez
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
| | - João F S Rodrigues
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
| | | | - Saulo J F Mendes
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
| | - Laoane F Gonzaga
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
| | | | - Maria R Q Bomfim
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
| | - João B Calixto
- Centro de Inovação e Ensaios Pré-Clínicos-CIEnP, Florianópolis 88056-000, SC, Brazil.
| | - Jack L Arbiser
- Department of Dermatology and Veterans Administration Medical Center, School of Medicine, Emory University, Atlanta, NY 30322, USA.
| | - Valério Monteiro-Neto
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil.
- Centro de Ciências da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, MA, Brazil.
| | - Eunice André
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil.
| | | |
Collapse
|
11
|
Psychophysical and vasomotor evidence for interdependency of TRPA1 and TRPV1-evoked nociceptive responses in human skin: an experimental study. Pain 2019; 159:1989-2001. [PMID: 29847470 DOI: 10.1097/j.pain.0000000000001298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The TRPA1 and TRPV1 receptors are important pharmaceutical targets for antipruritic and analgesic therapy. Obtaining further knowledge on their roles and interrelationship in humans is therefore crucial. Preclinical results are contradictory concerning coexpression and functional interdependency of TRPV1 and TRPA1, but no human evidence exists. This human experimental study investigated whether functional responses from the subpopulation of TRPA1 nociceptors could be evoked after defunctionalization of TRPV1 nociceptors by cutaneous application of high-concentration capsaicin. Two quadratic areas on each forearm were randomized to pretreatment with an 8% topical capsaicin patch or vehicle for 24 hours. Subsequently, areas were provoked by transdermal 1% topical capsaicin (TRPV1 agonist) or 10% topical allyl isothiocyanate ("AITC," a TRPA1 agonist), delivered by 12 mm Finn chambers. Evoked pain intensities were recorded during pretreatments and chemical provocations. Quantitative sensory tests were performed before and after provocations to assess changes of heat pain sensitivity. Imaging of vasomotor responses was used to assess neurogenic inflammation after the chemical provocations. In the capsaicin-pretreated areas, both the subsequent 1% capsaicin- and 10% AITC-provoked pain was inhibited by 92.9 ± 2.5% and 86.9 ± 5.0% (both: P < 0.001), respectively. The capsaicin-ablated skin areas showed significant heat hypoalgesia at baseline (P < 0.001) as well as heat antihyperalgesia, and inhibition of neurogenic inflammation evoked by both 1% capsaicin and 10% AITC provocations (both: P < 0.001). Ablation of cutaneous capsaicin-sensitive afferents caused consistent and equal inhibition of both TRPV1- and TRPA1-provoked responses assessed psychophysically and by imaging of vasomotor responses. This study suggests that TRPA1 nociceptive responses in human skin strongly depend on intact capsaicin-sensitive, TRPV1 fibers.
Collapse
|
12
|
Buntinx L, Chang L, Amin A, Morlion B, de Hoon J. Development of an in vivo target-engagement biomarker for TRPA1 antagonists in humans. Br J Clin Pharmacol 2016; 83:603-611. [PMID: 27685892 DOI: 10.1111/bcp.13143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 01/12/2023] Open
Abstract
AIM To develop a non-invasive, safe and reproducible target-engagement biomarker for future TRPA1 antagonists in healthy volunteers. METHODS Dose finding (n = 11): 3%, 10%, and 30% cinnamaldehyde (CA) and placebo (= vehicle) was topically applied on the right forearm. One-way ANOVA with post-hoc Bonferroni was used to compare between doses. Reproducibility: 10% CA doses were topically applied during one visit on both arms (n = 10) or during two visits (n = 23) separated by a washout period of 7 days. CA-induced dermal blood flow (DBF) was assessed by laser Doppler imaging (LDI) at baseline and at 10, 20, 30, 40 and 50 min post-CA. Paired t-test was used to compare between arms or visits. Concordance correlation coefficient (CCC) was calculated to assess reproducibility. Data are expressed as percent change from baseline (mean ± 95% CI). RESULTS All three doses increased DBF compared to vehicle at all time-points, with the maximum response at 10-20 min post-CA. Dose response was found when comparing AUC0-50min of 30% CA (51 364 ± 8475%*min) with 10% CA (32 239 ± 8034%*min, P = 0.03) and 3% CA (30 226 ± 11 958%*min, P = 0.015). 10% CA was chosen as an effective and safe dose. DBF response to 10% CA was found to be reproducible between arms (AUC0-50min , CCC = 0.91) and visits (AUC0-50min , CCC = 0.83). Based on sample size calculations, this model allows a change in CA-induced DBF of 30-50% to be detected between two independent groups of maximum 10-15 subjects with 80% power. CONCLUSIONS Evaluation of CA-induced changes in DBF offers a safe, non-invasive and reproducible target-engagement biomarker in vivo in humans to evaluate TRPA1 antagonists.
Collapse
Affiliation(s)
- Linde Buntinx
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lin Chang
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Aasim Amin
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bart Morlion
- Department of Cardiovascular Sciences, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jan de Hoon
- Centre for Clinical Pharmacology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|