1
|
He C, Mao Y, Wan H. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discov Today 2023; 28:103621. [PMID: 37201781 DOI: 10.1016/j.drudis.2023.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The formation of reactive metabolites (RMs) is thought to be one of the pathogeneses for some idiosyncratic adverse drug reactions (IADRs) which are considered one of the leading causes of some drug attritions and/or recalls. Minimizing or eliminating the formation of RMs via chemical modification is a useful tactic to reduce the risk of IADRs and time-dependent inhibition (TDI) of cytochrome P450 enzymes (CYPs). The RMs should be carefully handled before making a go-no-go decision. Herein, we highlight the role of RMs in the occurrence of IADRs and CYP TDI, the risk of structural alerts, the approaches of RM assessment at the discovery stage and strategies to minimize or eliminate RM liability. Finally, some considerations for developing a RM-positive drug candidate are suggested.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China.
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Department of DMPK/Bioanalysis, Shanghai Medicilon, No. 585 Chuanda Road, Shanghai 201299, China.
| |
Collapse
|
2
|
Gorbunov A, Bardin A, Ilyushonok S, Kovach J, Petrenko A, Sukhodolov N, Krasnov K, Krasnov N, Zorin I, Obornev A, Babakov V, Radilov A, Podolskaya E. Multiwell photocatalytic microreactor device integrating drug biotransformation modeling and sample preparation on a MALDI target. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Bhatt S, Manhas D, Kumar V, Gour A, Sharma K, Dogra A, Ojha PK, Nandi U. Effect of Myricetin on CYP2C8 Inhibition to Assess the Likelihood of Drug Interaction Using In Silico, In Vitro, and In Vivo Approaches. ACS OMEGA 2022; 7:13260-13269. [PMID: 35474783 PMCID: PMC9026026 DOI: 10.1021/acsomega.2c00726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/05/2023]
Abstract
Myricetin, a bioflavonoid, is widely used as functional food/complementary medicine and has promising multifaceted pharmacological actions against therapeutically validated anticancer targets. On the other hand, CYP2C8 is not only crucial for alteration in the pharmacokinetics of drugs to cause drug interaction but also unequivocally important for the metabolism of endogenous substances like the formation of epoxyeicosatrienoic acids (EETs), which are considered as signaling molecules against hallmarks of cancer. However, there is hardly any information known to date about the effect of myricetin on CYP2C8 inhibition and, subsequently, the CYP2C8-mediated drug interaction potential of myricetin at the preclinical/clinical level. We aimed here to explore the CYP2C8 inhibitory potential of myricetin using in silico, in vitro, and in vivo investigations. In the in vitro study, myricetin showed a substantial effect on CYP2C8 inhibition in human liver microsomes using CYP2C8-catalyzed amodiaquine-N-deethylation as an index reaction. Considering the Lineweaver-Burk plot, the Dixon plot, and the higher α-value, myricetin is found to be a mixed type of CYP2C8 inhibitor. Moreover, in vitro-in vivo extrapolation data suggest that myricetin is likely to cause drug interaction at the hepatic level. The molecular docking study depicted a strong interaction between myricetin and the active site of the human CYP2C8 enzyme. Moreover, myricetin caused considerable elevation in the oral exposure of amodiaquine as a CYP2C8 substrate via a slowdown of amodiaquine clearance in the rat model. Overall, the potent action of myricetin on CYP2C8 inhibition indicates that there is a need for further exploration to avoid drug interaction-mediated precipitation of obvious adverse effects as well as to optimize anticancer therapy.
Collapse
Affiliation(s)
- Shipra Bhatt
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Manhas
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinay Kumar
- Drug
Theoretics and Chemoinformatics Laboratory, Department of Pharmaceutical
Technology, Jadavpur University, Kolkata 700032, India
| | - Abhishek Gour
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Ashish Dogra
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Probir Kumar Ojha
- Drug
Theoretics and Chemoinformatics Laboratory, Department of Pharmaceutical
Technology, Jadavpur University, Kolkata 700032, India
| | - Utpal Nandi
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- ,
| |
Collapse
|
4
|
Pernaute-Lau L, Camara M, Nóbrega de Sousa T, Morris U, Ferreira MU, Gil JP. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin Drug Metab Toxicol 2022; 18:39-59. [PMID: 35285373 DOI: 10.1080/17425255.2022.2049235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.
Collapse
Affiliation(s)
- Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal
| | - Mahamadou Camara
- Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brasil
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Marcelo Urbano Ferreira
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
5
|
Chalon S, Chughlay MF, Abla N, Marie Tchouatieu A, Haouala A, Hutter B, Lorch U, Macintyre F. Unanticipated CNS Safety Signal in a Placebo-Controlled, Randomized Trial of Co-Administered Atovaquone-Proguanil and Amodiaquine. Clin Pharmacol Ther 2021; 111:867-877. [PMID: 34453327 PMCID: PMC9291514 DOI: 10.1002/cpt.2404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 01/28/2023]
Abstract
Atovaquone‐proguanil (ATV‐PG) plus amodiaquine (AQ) has been considered as a potential replacement for sulfadoxine‐pyrimethamine plus AQ for seasonal malaria chemoprevention in African children. This randomized, double‐blind, placebo‐controlled, parallel group study assessed the safety, tolerability, and pharmacokinetics (PKs) of ATV‐PG plus AQ in healthy adult males and females of Black sub‐Saharan African origin. Participants were randomized to four treatment groups: ATV‐PG/AQ (n = 8), ATV‐PG/placebo (n = 12), AQ/placebo (n = 12), and placebo/placebo (n = 12). Treatments were administered orally once daily for 3 days (days 1–3) at daily doses of ATV‐PQ 1000/400 mg and AQ 612 mg. Co‐administration of ATV‐PG/AQ had no clinically relevant effect on PK parameters for ATV, PG, the PG metabolite cycloguanil, AQ, or the AQ metabolite N‐desethyl‐amodiaquine. Adverse events occurred in 8 of 8 (100%) of participants receiving ATV‐PG/AQ, 11 of 12 (91.7%) receiving ATV‐PG, 11 of 12 (91.7%) receiving AQ, and 3 of 12 (25%) receiving placebo. The safety and tolerability profiles of ATV‐PG and AQ were consistent with previous reports. In the ATV‐PG/AQ group, 2 of 8 participants experienced extrapyramidal adverse effects (EPAEs) on day 3, both psychiatric and physical, which appeared unrelated to drug plasma PKs or cytochrome P450 2C8 phenotype. Although rare cases are reported with AQ administration, the high incidence of EPAE was unexpected in this small study. Owing to the unanticipated increased frequency of EPAE observed, the combination of ATV‐PQ plus AQ is not recommended for further evaluation in prophylaxis of malaria in African children.
Collapse
Affiliation(s)
| | | | - Nada Abla
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Martchenko Shilman M, Bartolo G, Alameh S, Peterson JW, Lawrence WS, Peel JE, Sivasubramani SK, Beasley DWC, Cote CK, Demons ST, Halasahoris SA, Miller LL, Klimko CP, Shoe JL, Fetterer DP, McComb R, Ho CLC, Bradley KA, Hartmann S, Cheng LW, Chugunova M, Kao CY, Tran JK, Derbedrossian A, Zilbermintz L, Amali-Adekwu E, Levitin A, West J. In Vivo Activity of Repurposed Amodiaquine as a Host-Targeting Therapy for the Treatment of Anthrax. ACS Infect Dis 2021; 7:2176-2191. [PMID: 34218660 PMCID: PMC8369491 DOI: 10.1021/acsinfecdis.1c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anthrax is caused by Bacillus anthracis and can result in nearly 100% mortality due in part to anthrax toxin. Antimalarial amodiaquine (AQ) acts as a host-oriented inhibitor of anthrax toxin endocytosis. Here, we determined the pharmacokinetics and safety of AQ in mice, rabbits, and humans as well as the efficacy in the fly, mouse, and rabbit models of anthrax infection. In the therapeutic-intervention studies, AQ nearly doubled the survival of mice infected subcutaneously with a B. anthracis dose lethal to 60% of the animals (LD60). In rabbits challenged with 200 LD50 of aerosolized B. anthracis, AQ as a monotherapy delayed death, doubled the survival rate of infected animals that received a suboptimal amount of antibacterial levofloxacin, and reduced bacteremia and toxemia in tissues. Surprisingly, the anthrax efficacy of AQ relies on an additional host macrophage-directed antibacterial mechanism, which was validated in the toxin-independent Drosophila model of Bacillus infection. Lastly, a systematic literature review of the safety and pharmacokinetics of AQ in humans from over 2 000 published articles revealed that AQ is likely safe when taken as prescribed, and its pharmacokinetics predicts anthrax efficacy in humans. Our results support the future examination of AQ as adjunctive therapy for the prophylactic anthrax treatment.
Collapse
Affiliation(s)
- Mikhail Martchenko Shilman
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
- Shield Pharma LLC, 1420 North Claremont Boulevard, Suite 102A, Claremont, California 91711, United States
| | - Gloria Bartolo
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Saleem Alameh
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Johnny W. Peterson
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Boulevard, Galveston, Texas 77555, United States
| | - William S. Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Boulevard, Galveston, Texas 77555, United States
| | - Jennifer E. Peel
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Boulevard, Galveston, Texas 77555, United States
| | - Satheesh K. Sivasubramani
- Directorate of Environmental Health Effects Laboratory, Naval Medical Research Unit, Wright-Patterson Air Force Base, 2728 Q Street, Building 837, Wright-Patterson AFB, Ohio 45433, United States
| | - David W. C. Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Boulevard, Galveston, Texas 77555, United States
| | - Christopher K. Cote
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland 21702, United States
| | - Samandra T. Demons
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland 21702, United States
| | - Stephanie A. Halasahoris
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland 21702, United States
| | - Lynda L. Miller
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland 21702, United States
| | - Christopher P. Klimko
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland 21702, United States
| | - Jennifer L. Shoe
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland 21702, United States
| | - David P. Fetterer
- Biostatistics Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland 21702, United States
| | - Ryan McComb
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Chi-Lee C. Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), 609 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Stella Hartmann
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Luisa W. Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, United States Department of Agriculture (USDA), 800 Buchanan Street, Albany, California 94710, United States
| | - Marina Chugunova
- Institute of Mathematical Sciences, Claremont Graduate University (CGU), 150 East 10th Street, Claremont, California 91711, United States
| | - Chiu-Yen Kao
- Department of Mathematical Sciences, Claremont McKenna College (CMC), 888 North Columbia Avenue, Claremont, California 91711, United States
| | - Jennifer K. Tran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Aram Derbedrossian
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Leeor Zilbermintz
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Emiene Amali-Adekwu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Anastasia Levitin
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
| | - Joel West
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute (KGI), 535 Watson Drive, Claremont, California 91711, United States
- Shield Pharma LLC, 1420 North Claremont Boulevard, Suite 102A, Claremont, California 91711, United States
| |
Collapse
|
7
|
Tietcheu Galani BR, Ayissi Owona VB, Guemmogne Temdie RJ, Metzger K, Atsama Amougou M, Djamen Chuisseu PD, Fondjo Kouam A, Ngounoue Djuidje M, Aliouat-Denis CM, Cocquerel L, Fewou Moundipa P. In silico and in vitro screening of licensed antimalarial drugs for repurposing as inhibitors of hepatitis E virus. In Silico Pharmacol 2021; 9:35. [PMID: 33959472 PMCID: PMC8093904 DOI: 10.1007/s40203-021-00093-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
ABSTRACT Hepatitis E virus (HEV) infection is emerging in Cameroon and represents one of the most common causes of acute hepatitis and jaundice. Moreover, earlier reports showed evidence of falciparum malaria/HEVcoexistence. Although the Sofosbuvir/Ribavirin combination was recently proposed in the treatment of HEV-infected patients, no specific antiviral drug has been approved so far, thereby urging the search for new therapies. Fortunately, drug repurposing offers a good alternative to this end. In this study, we report the in silico and in vitro activities of 8 licensed antimalarial drugs and two anti-hepatitis C virus agents used as references (Sofosbuvir, and Ribavirin), for repurposing as antiviral inhibitors against HEV. Compounds were docked against five HEV-specific targets including the Zinc-binding non-structural protein (6NU9), RNA-dependent RNA polymerase (RdRp), cryoEM structure of HEV VLP, genotype 1 (6LAT), capsid protein ORF-2, genotype 3 (2ZTN), and the E2s domain of genotype 1 (3GGQ) using the iGEMDOCK software and their pharmacokinetic profiles and toxicities were predicted using ADMETlab2.0. Their in vitro effects were also assessed on a gt 3 p6Gluc replicon system using the luciferase reporter assay. The docking results showed that Sofosbuvir had the best binding affinities with 6NU9 (- 98.22 kcal/mol), RdRp (- 113.86 kcal/mol), 2ZTN (- 106.96 kcal/mol), while Ribavirin better collided with 6LAT (- 99.33 kcal/mol). Interestingly, Lumefantrine showed the best affinity with 3GGQ (-106.05 kcal/mol). N-desethylamodiaquine and Amodiaquine presented higher binding scores with 6NU9 (- 93.5 and - 89.9 kcal/mol respectively vs - 80.83 kcal/mol), while Lumefantrine had the greatest energies with RdRp (- 102 vs - 84.58), and Pyrimethamine and N-desethylamodiaquine had stronger affinities with 2ZTN compared to Ribavirin (- 105.17 and - 102.65 kcal/mol vs - 96.04 kcal/mol). The biological screening demonstrated a significant (P < 0.001) antiviral effect on replication with 1 µM N-desethylamodiaquine, the major metabolite of Amodiaquine. However, Lumefantrine showed no effect at the tested concentrations (1, 5, and 10 µM). The biocomputational analysis of the pharmacokinetic profile of both drugs revealed a low permeability of Lumefantrine and a specific inactivation by CYP3A2 which might partly contribute to the short half-time of this drug. In conclusion, Amodiaquine and Lumefantrine may be good antimalarial drug candidates for repurposing against HEV. Further in vitro and in vivo experiments are necessary to validate these predictions. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40203-021-00093-y.
Collapse
Affiliation(s)
- Borris Rosnay Tietcheu Galani
- Laboratory of Applied Biochemistry, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Vincent Brice Ayissi Owona
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Romeo Joel Guemmogne Temdie
- Laboratory of Medicinal Plants, Health, and Galenic Formulation, Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Karoline Metzger
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Marie Atsama Amougou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Research Center for Emerging and Reemerging Infectious Diseases (CREMER-IMPM), Virology Unit, P.O. Box 906, Yaounde, Cameroon
| | - Pascal Dieudonné Djamen Chuisseu
- Department of Medicine, Medical and Biomedical Sciences, Higher Institute of Health Sciences, Université Des Montagnes, P.O. Box 208, Bangangte, Cameroon
| | - Arnaud Fondjo Kouam
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O Box 63, Buea, South West Region Cameroon
| | - Marceline Ngounoue Djuidje
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Cécile-Marie Aliouat-Denis
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laurence Cocquerel
- University of Lille, CNRS, INSERM, CHU Lille, Pasteur Institute of Lille, U1019-UMR9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty ofScience, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
8
|
Cho T, Kok LY, Uetrecht J. Testing Possible Risk Factors for Idiosyncratic Drug-Induced Liver Injury Using an Amodiaquine Mouse Model and Co-treatment with 1-Methyl-d-Tryptophan or Acetaminophen. ACS OMEGA 2021; 6:4656-4662. [PMID: 33644572 PMCID: PMC7905801 DOI: 10.1021/acsomega.0c05352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Idiosyncratic drug reactions are unpredictable adverse reactions. Although most such adverse reactions appear to be immune mediated, their exact mechanism(s) remain elusive. The idiosyncratic drug reaction most associated with serious consequences is idiosyncratic drug-induced liver injury (IDILI). We have developed a mouse model of amodiaquine (AQ)-induced liver injury that reflects the clinical characteristics of IDILI in humans. This was accomplished by impairing immune tolerance by using PD-1-/- mice and an antibody against CTLA-4. PD-1 and CTLA-4 are known negative regulators of lymphocyte activation, which promote immune tolerance. Immune checkpoint inhibitors have become important tools for the treatment of cancer. However, as in our model, immune checkpoint inhibitors increase the risk of IDILI with drugs that have an incidence of causing liver injury. Agents such as 1-methyl-d-tryptophan (D-1-MT), an inhibitor of the immunosuppressive indoleamine 2,3-dioxygenase (IDO) enzyme, have also been proposed as anti-cancer treatments. Another possible risk factor for the induction of an immune response is the release of danger-associated molecular patterns (DAMPs). Acetaminophen (APAP) is known to cause acute liver injury, and it is likely to cause the release of DAMPs. Therefore, either of these agents could increase the risk of IDILI, although through different mechanisms. If true, then this would have clinical implications. We found that co-treatment with D-1-MT paradoxically decreased liver injury in our model, and although APAP appeared to slightly increase AQ-induced liver injury, the difference was not significant. Such results highlight the complexity of the immune response, which makes potential interactions difficult to predict.
Collapse
|
9
|
Bocci G, Bradfute SB, Ye C, Garcia MJ, Parvathareddy J, Reichard W, Surendranathan S, Bansal S, Bologa CG, Perkins DJ, Jonsson CB, Sklar LA, Oprea TI. Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19. ACS Pharmacol Transl Sci 2020; 3:1278-1292. [PMID: 33330842 PMCID: PMC7571299 DOI: 10.1021/acsptsci.0c00131] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 02/08/2023]
Abstract
The urgent need for a cure for early phase COVID-19 infected patients critically underlines drug repositioning strategies able to efficiently identify new and reliable treatments by merging computational, experimental, and pharmacokinetic expertise. Here we report new potential therapeutics for COVID-19 identified with a combined virtual and experimental screening strategy and selected among already approved drugs. We used hydroxychloroquine (HCQ), one of the most studied drugs in current clinical trials, as a reference template to screen for structural similarity against a library of almost 4000 approved drugs. The top-ranked drugs, based on structural similarity to HCQ, were selected for in vitro antiviral assessment. Among the selected drugs, both zuclopenthixol and nebivolol efficiently block SARS-CoV-2 infection with EC50 values in the low micromolar range, as confirmed by independent experiments. The anti-SARS-CoV-2 potential of ambroxol, amodiaquine, and its active metabolite (N-monodesethyl amodiaquine) is also discussed. In trying to understand the "hydroxychloroquine" mechanism of action, both pK a and the HCQ aromatic core may play a role. Further, we show that the amodiaquine metabolite and, to a lesser extent, zuclopenthixol and nebivolol are active in a SARS-CoV-2 titer reduction assay. Given the need for improved efficacy and safety, we propose zuclopenthixol, nebivolol, and amodiaquine as potential candidates for clinical trials against the early phase of the SARS-CoV-2 infection and discuss their potential use as adjuvant to the current (i.e., remdesivir and favipiravir) COVID-19 therapeutics.
Collapse
Affiliation(s)
- Giovanni Bocci
- Translational
Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Steven B. Bradfute
- Center
for Global Health, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Chunyan Ye
- Center
for Global Health, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Matthew J. Garcia
- UNM
Center for Molecular Discovery, University
of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Jyothi Parvathareddy
- Department
of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 3816, United States
| | - Walter Reichard
- Department
of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 3816, United States
| | - Surekha Surendranathan
- Department
of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 3816, United States
| | - Shruti Bansal
- Department
of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 3816, United States
| | - Cristian G. Bologa
- Translational
Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Douglas J. Perkins
- Center
for Global Health, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Colleen B. Jonsson
- Department
of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 3816, United States
| | - Larry A. Sklar
- UNM
Center for Molecular Discovery, University
of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Tudor I. Oprea
- Translational
Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
- Department
of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, 413 90, Sweden
- Novo Nordisk
Foundation Center for Protein Research, Faculty of Health and Medical
Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| |
Collapse
|
10
|
Ogiso T, Fukami T, Zhongzhe C, Konishi K, Nakano M, Nakajima M. Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid. Toxicology 2020; 448:152648. [PMID: 33259822 DOI: 10.1016/j.tox.2020.152648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Mefenamic acid (MFA), one of the nonsteroidal anti-inflammatory drugs (NSAIDs), sometimes causes liver injury. Quinoneimines formed by cytochrome P450 (CYP)-mediated oxidation of MFA are considered to be causal metabolites of the toxicity and are detoxified by glutathione conjugation. A previous study reported that NAD(P)H:quinone oxidoreductase 1 (NQO1) can reduce the quinoneimines, but NQO1 is scarcely expressed in the human liver. The purpose is to identify enzyme(s) responsible for the decrease in MFA-quinoneimine formation in the human liver. The formation of MFA-quinoneimine by recombinant CYP1A2 and CYP2C9 was significantly decreased by the addition of human liver cytosol, and the extent of the decrease in the metabolite formed by CYP1A2 was larger than that by CYP2C9. By column chromatography, superoxide dismutase 1 (SOD1) was identified from the human liver cytosol as an enzyme decreasing MFA-quinoneimine formation. Addition of recombinant SOD1 into the reaction mixture decreased the formation of MFA-quinoneimine from MFA by recombinant CYP1A2. By a structure-activity relationship study, we found that SOD1 decreased the formation of quinoneimines from flufenamic acid and tolfenamic acid, but did not affect those produced from acetaminophen, amodiaquine, diclofenac, and lapatinib. Thus, SOD1 may selectively decrease the quinoneimine formation from fenamate-class NSAIDs. To examine whether SOD1 can attenuate cytotoxicity caused by MFA, siRNA for SOD1 was transfected into CYP1A2-overexpressed HepG2 cells. The leakage of lactate dehydrogenase caused by MFA treatment was significantly increased by knockdown of SOD1. In conclusion, we found that SOD1 can serve as a detoxification enzyme for quinoneimines to protect from drug-induced toxicity.
Collapse
Affiliation(s)
- Takuo Ogiso
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Cheng Zhongzhe
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Keigo Konishi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
11
|
Apoptosis contributes to the cytotoxicity induced by amodiaquine and its major metabolite N-desethylamodiaquine in hepatic cells. Toxicol In Vitro 2019; 62:104669. [PMID: 31629065 DOI: 10.1016/j.tiv.2019.104669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
Abstract
Amodiaquine (ADQ), an antimalarial drug used in endemic areas, has been reported to be associated with liver toxicity; however, the mechanism underlying its hepatoxicity remains unclear. In this study, we examined the cytotoxicity of ADQ and its major metabolite N-desethylamodiaquine (NADQ) and the effect of cytochrome P450 (CYP)-mediated metabolism on ADQ-induced cytotoxicity. After a 48-h treatment, ADQ and NADQ caused cytotoxicity and induced apoptosis in HepG2 cells; NADQ was slightly more toxic than ADQ. ADQ treatment decreased the levels of anti-apoptotic Bcl-2 family proteins, which was accompanied by an increase in the levels of pro-apoptotic Bcl-2 family proteins, indicating that ADQ-induced apoptosis was mediated by the Bcl-2 family. NADQ treatment markedly increased the phosphorylation of JNK, extracellular signal-regulated kinase (ERK1/2), and p38, indicating that NADQ-induced apoptosis was mediated by MAPK signaling pathways. Metabolic studies using microsomes obtained from HepG2 cell lines overexpressing human CYPs demonstrated that CYP1A1, 2C8, and 3A4 were the major enzymes that metabolized ADQ to NADQ and that CYP1A2, 1B1, 2C19, and 3A5 also metabolized ADQ, but to a lesser extent. The cytotoxicity of ADQ was increased in CYP2C8 and 3A4 overexpressing HepG2 cells compared to HepG2/CYP vector cells, confirming that NADQ was more toxic than ADQ. Moreover, treatment of CYP2C8 and 3A4 overexpressing HepG2 cells with ADQ increased the phosphorylation of JNK, ERK1/2, and p38, but not the expression of Bcl-2 family proteins. Our findings indicate that ADQ and its major metabolite NADQ induce apoptosis, which is mediated by members of the Bcl-2 family and the activation of MAPK signaling pathways, respectively.
Collapse
|
12
|
The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of its autophagy-inhibitory activity. Cell Death Differ 2019; 27:773-789. [PMID: 31285544 PMCID: PMC7205879 DOI: 10.1038/s41418-019-0387-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/09/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Pharmacological inhibition of ribosome biogenesis is a promising avenue for cancer therapy. Herein, we report a novel activity of the FDA-approved antimalarial drug amodiaquine which inhibits rRNA transcription, a rate-limiting step for ribosome biogenesis, in a dose-dependent manner. Amodiaquine triggers degradation of the catalytic subunit of RNA polymerase I (Pol I), with ensuing RPL5/RPL11-dependent stabilization of p53. Pol I shutdown occurs in the absence of DNA damage and without the subsequent ATM-dependent inhibition of rRNA transcription. RNAseq analysis revealed mechanistic similarities of amodiaquine with BMH-21, the first-in-class Pol I inhibitor, and with chloroquine, the antimalarial analog of amodiaquine, with well-established autophagy-inhibitory activity. Interestingly, autophagy inhibition caused by amodiaquine is not involved in the inhibition of rRNA transcription, suggesting two independent anticancer mechanisms. In vitro, amodiaquine is more efficient than chloroquine in restraining the proliferation of human cell lines derived from colorectal carcinomas, a cancer type with predicted susceptibility to ribosome biogenesis stress. Taken together, our data reveal an unsuspected activity of a drug approved and used in the clinics for over 30 years, and provide rationale for repurposing amodiaquine in cancer therapy.
Collapse
|
13
|
Zhang Y, den Braver-Sewradj SP, den Braver MW, Hiemstra S, Vermeulen NPE, van de Water B, Commandeur JNM, Vos JC. Glutathione S-Transferase P1 Protects Against Amodiaquine Quinoneimines-Induced Cytotoxicity but Does Not Prevent Activation of Endoplasmic Reticulum Stress in HepG2 Cells. Front Pharmacol 2018; 9:388. [PMID: 29720942 PMCID: PMC5915463 DOI: 10.3389/fphar.2018.00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Formation of the reactive amodiaquine quinoneimine (AQ-QI) and N-desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human GSTP1 construct were utilized to investigate the protective effect of GSTP1 in a cellular context. HepG2 cells were exposed to synthesized QIs, which bypasses the need for intracellular bioactivation of AQ or DEAQ. Exposure was accompanied by decreased cell viability, increased caspase 3 activity, and decreased intracellular GSH levels. Using high-content imaging-based BAC-GFP reporters, it was shown that AQ-QI and DEAQ-QI specifically activated the endoplasmic reticulum (ER) stress response. In contrast, oxidative stress, DNA damage, or inflammatory stress responses were not activated. Overexpression of GSTP1 resulted in a two-fold increase in GSH-conjugation of the QIs, attenuated QI-induced cytotoxicity especially under GSH-depletion condition, abolished QIs-induced apoptosis but did not significantly inhibit the activation of the ER stress response. In conclusion, these results indicate a protective role of GSTP1 by increasing enzymatic detoxification of AQ-QI and DEAQ-QI and suggest a second protective mechanism by interfering with ER stress induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Clinical Pharmacokinetics Research Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michiel W den Braver
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven Hiemstra
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J C Vos
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Xu J, Oda S, Yokoi T. Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol In Vitro 2018; 48:286-301. [PMID: 29407385 DOI: 10.1016/j.tiv.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 12/14/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Immortalized liver cells have been used for evaluating the toxicity of compounds; however, excessive glutathione is considered to lessen cytotoxicity. In this study, we compared the effects of glutathione depletion on cytotoxicities of drugs using HepaRG and HepG2 cells, which express and lack drug-metabolizing enzymes, respectively, for predicting drug-induced liver injury (DILI) risks. These cells were pre-incubated with L-buthionine-S,R-sulfoximine (BSO) and then exposed to 34 test compounds with various DILI risks for 24 h. ATP level exhibited the highest predictability of DILI among tested parameters. BSO treatment rendered cells susceptible to drug-induced cytotoxicity when evaluated by cell viability and caspase 3/7 activity with the sensitivity of cell viability from 50% in non-treated HepaRG cells to 71% in BSO-treated HepaRG cells. These results indicate that cytotoxicity assays using GSH-depleted HepaRG cells improve the predictability of DILI risks. However, HepaRG cells were not always superior to HepG2 cells when assessed by ATP level. The combination of HepG2 and HepaRG cells index produced the best prediction in the cases of caspase 3/7 acitivity and ATP level. In conclusions, the developed highly sensitive cell-based assay using GSH-reduced cells would be useful for predicting potential DILI risks at an early stage of drug development.
Collapse
Affiliation(s)
- Jieyu Xu
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
15
|
den Braver-Sewradj SP, den Braver MW, Toorneman RM, van Leeuwen S, Zhang Y, Dekker SJ, Vermeulen NPE, Commandeur JNM, Vos JC. Reduction and Scavenging of Chemically Reactive Drug Metabolites by NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 and Variability in Hepatic Concentrations. Chem Res Toxicol 2018; 31:116-126. [PMID: 29281794 PMCID: PMC5997408 DOI: 10.1021/acs.chemrestox.7b00289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Detoxicating
enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1) and
NRH:quinone oxidoreductase 2 (NQO2) catalyze the two-electron reduction
of quinone-like compounds. The protective role of the polymorphic
NQO1 and NQO2 enzymes is especially of interest in the liver as the
major site of drug bioactivation to chemically reactive drug metabolites.
In the current study, we quantified the concentrations of NQO1 and
NQO2 in 20 human liver donors and NQO1 and NQO2 activities with quinone-like
drug metabolites. Hepatic NQO1 concentrations ranged from 8 to 213
nM. Using recombinant NQO1, we showed that low nM concentrations of
NQO1 are sufficient to reduce synthetic amodiaquine and carbamazepine
quinone-like metabolites in vitro. Hepatic NQO2 concentrations
ranged from 2 to 31 μM. NQO2 catalyzed the reduction of quinone-like
metabolites derived from acetaminophen, clozapine, 4′-hydroxydiclofenac,
mefenamic acid, amodiaquine, and carbamazepine. The reduction of the
clozapine nitrenium ion supports association studies showing that
NQO2 is a genetic risk factor for clozapine-induced agranulocytosis.
The 5-hydroxydiclofenac quinone imine, which was previously shown
to be reduced by NQO1, was not reduced by NQO2. Tacrine was identified
as a potent NQO2 inhibitor and was applied to further confirm the
catalytic activity of NQO2 in these assays. While the in vivo relevance of NQO2-catalyzed reduction of quinone-like metabolites
remains to be established by identification of the physiologically
relevant co-substrates, our results suggest an additional protective
role of the NQO2 protein by non-enzymatic scavenging of quinone-like
metabolites. Hepatic NQO1 activity in detoxication of quinone-like
metabolites becomes especially important when other detoxication pathways
are exhausted and NQO1 levels are induced.
Collapse
Affiliation(s)
- Shalenie P den Braver-Sewradj
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Michiel W den Braver
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Robin M Toorneman
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stephanie van Leeuwen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Yongjie Zhang
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett 2017; 284:70-78. [PMID: 29203276 DOI: 10.1016/j.toxlet.2017.11.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
The use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury. Since no associations have been found with HLA-alleles, polymorphisms of genes encoding for proteins involved in the disposition of diclofenac may be important. Previous association studies showed that possession of the UGT2B7*2 and CYP2C8*4 alleles is more common in cases of diclofenac-induced DILI. In the present study, the metabolism of diclofenac by UGT2B7*2 and CYP2C8*4 was compared with their corresponding wild-type enzymes. Enzyme kinetic analysis revealed that recombinant UGT2B7*2 showed an almost 6-fold lower intrinsic clearance of diclofenac glucuronidation compared to UGT2B7*1. The mutant CYP2C8*4 showed approximately 35% reduced activity in the 4'-hydroxylation of diclofenac acyl glucuronide. Therefore, a decreased hepatic exposure to diclofenac acyl glucuronide is expected in patients with the UGT2B7*2 genotype. The increased risk for hepatotoxicity, therefore, might be the result from a shift to oxidative bioactivation to cytotoxic quinoneimines.
Collapse
Affiliation(s)
- Katarzyna E Lazarska
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan J Dekker
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Ruokolainen M, Miikkulainen V, Ritala M, Sikanen T, Kotiaho T, Kostiainen R. TiO 2 Photocatalysis-DESI-MS Rotating Array Platform for High-Throughput Investigation of Oxidation Reactions. Anal Chem 2017; 89:11214-11218. [PMID: 28972369 DOI: 10.1021/acs.analchem.7b01638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a new high-throughput platform for studying titanium dioxide (TiO2) photocatalytic oxidation reactions by performing reactions on a TiO2-coated surface, followed by direct analysis of oxidation products from the surface by desorption electrospray ionization mass spectrometry (DESI-MS). For this purpose, we coated a round glass wafer with photocatalytically active anatase-phase TiO2 using atomic layer deposition. Approximately 70 aqueous 1 μL samples can be injected onto the rim of the TiO2-coated glass wafer, before the entire wafer is exposed to UV irradiation. After evaporation of water, the oxidation products can be directly analyzed from the sample spots by DESI-MS, using a commercial rotating sample platform. The method was shown to provide fast photocatalytic oxidation reactions and analysis with throughput of about four samples per minute. The feasibility of the method was examined for mimicking phase I metabolism reactions of amodiaquine, buspirone and verapamil. Their main photocatalytic reaction products were mostly similar to the products observed earlier in TiO2 photocatalysis and in in vitro phase I metabolism assays performed using human liver microsomes.
Collapse
Affiliation(s)
- Miina Ruokolainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Ville Miikkulainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Mikko Ritala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Tiina Sikanen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Tapio Kotiaho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Risto Kostiainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| |
Collapse
|
18
|
Zhang Y, den Braver-Sewradj SP, Vos JC, Vermeulen NPE, Commandeur JNM. Human glutathione S-transferases- and NAD(P)H:quinone oxidoreductase 1-catalyzed inactivation of reactive quinoneimines of amodiaquine and N-desethylamodiaquine: Possible implications for susceptibility to amodiaquine-induced liver toxicity. Toxicol Lett 2017; 275:83-91. [PMID: 28478157 DOI: 10.1016/j.toxlet.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 01/16/2023]
Abstract
Amodiaquine (AQ), an antimalarial drug, widely prescribed in endemic areas of Africa and Asia, is used in combination with artesunate as recommended by the WHO. However, due to its idiosyncratic hepatotoxicity and agranulocytosis, the therapeutic use has been discontinued in most countries. Oxidative bioactivation to protein-reactive quinonimines (QIs) by hepatic cytochrome P450s and myeloperoxidase (MPO) have been suggested to be important mechanisms underlying AQ idiosyncratic toxicity. However, the inactivation of the reactive QIs by detoxifying enzymes such as human glutathione S-transferases (GSTs) and NAD(P)H:quinone oxidoreducatase 1 (NQO1) has not been characterized yet. In the present study, the activities of 15 recombinant human GSTs and NQO1 in the inactivation of reactive QIs of AQ and its pharmacological active metabolite, N-desethylamodiaquine (DEAQ) were investigated. The results showed that GSTP1-1, GSTA4-4, GSTM4-4, GSTM2-2 and GSTA2-2 (activity in decreasing order) were active isoforms in catalyzing GSH conjugation of reactive QIs of AQ and DEAQ. Additionally, NQO1 was shown to inactivate these QIs by reduction. Simulation of the variability of cytosolic GST-activity based on the hepatic GST contents from 22 liver donors, showed a large variation in cytosolic inactivation of QIs by GSH, especially at a reduced GSH-concentration. In conclusion, the present study demonstrates that a low hepatic expression of the active GSTs and NQO1 may increase the susceptibility of patients to AQ idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Zhang Y, Vermeulen NPE, Commandeur JNM. Characterization of human cytochrome P450 mediated bioactivation of amodiaquine and its major metabolite N-desethylamodiaquine. Br J Clin Pharmacol 2016; 83:572-583. [PMID: 27718269 DOI: 10.1111/bcp.13148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 01/12/2023] Open
Abstract
AIMS Oxidative bioactivation of amodiaquine (AQ) by cytochrome P450s to a reactive quinoneimine is considered as an important mechanism underlying its idiosyncratic hepatotoxicity. However, because internal exposure to its major metabolite N-desethylamodiaquine (DEAQ) is up to 240-fold higher than AQ, bioactivation of DEAQ might significantly contribute to covalent binding. The aim of the present study was to compare the kinetics of bioactivation of AQ and DEAQ by human liver microsomes (HLM) and to characterize the CYPs involved in bioactivation of AQ and DEAQ. METHODS Glutathione was used to trap reactive metabolites formed in incubations of AQ and DEAQ with HLM and recombinant human cytochrome P450s (hCYPs). Kinetics of bioactivation of AQ and DEAQ in HLM and involvement of hCYPs were characterized by measuring corresponding glutathione conjugates (AQ-SG and DEAQ-SG) using a high-performance liquid chromatography method. RESULTS Bioactivation of AQ and DEAQ in HLM both exhibited Michaelis-Menten kinetics. For AQ bioactivation, enzyme kinetical parameters were Km , 11.5 ± 2.0 μmol l-1 , Vmax , 59.2 ± 3.2 pmol min-1 mg-1 and CLint , 5.15 μl min-1 mg-1 . For DEAQ, parameters for bioactivation were Km , 6.1 ± 1.3 μmol l-1 , Vmax , 5.5 ± 0.4 pmol min-1 mg-1 and CLint 0.90 μl min-1 mg-1 . Recombinant hCYPs and inhibition studies with HLM showed involvement of CYP3A4, CYP2C8, CYP2C9 and CYP2D6 in bioactivation. CONCLUSIONS The major metabolite DEAQ is likely to be quantitatively more important than AQ with respect to hepatic exposure to reactive metabolites in vivo. High expression of CYP3A4, CYP2C8, CYP2C9, and CYP2D6 may be risk factors for hepatotoxicity caused by AQ-therapy.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| |
Collapse
|