1
|
Li Z, Wang X, Li D, Cheng S, Li Z, Guo H, Dong Y, Zheng Y, Li X. Effects of CYP3A4*22 and POR*28 variations on the pharmacokinetics of tacrolimus in renal transplant recipients: a meta-analysis of 18 observational studies. BMC Nephrol 2024; 25:48. [PMID: 38321419 PMCID: PMC10848431 DOI: 10.1186/s12882-024-03467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
PURPOSE This study aimed to investigate the association between cytochrome P450 (CYP) 3A4*22 and cytochrome P450 oxidoreductase (POR)*28 variations and the pharmacokinetics of tacrolimus. METHODS Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (SCI), MEDLINE, and Embase were systematically searched from inception to August 2022. The outcomes were weight-adjusted daily dose and dose-adjusted trough concentration (C0/Dose). RESULTS The study included 2931 renal transplant recipients from 18 publications. Weight-adjusted daily dose of CYP3A4*1/*1 carriers was 0.04 (WMD = 0.04, 95% CI: 0.02 to 0.06), 0.03 (WMD = 0.03, 95% CI: 0.02 to 0.05), 0.02 (WMD = 0.02, 95% CI: 0.01 to 0.03), or 0.02 mg/kg/day (WMD = 0.02, 95% CI: 0.00 to 0.04) higher than CYP3A4*22 carriers in Caucasians at 1 month, 3 months, 6 months, or 12 months post-transplantation. Conversely, C0/Dose was lower for CYP3A4*1/*1 carriers at 3 days (SMD = -0.35, 95% CI: -0.65 to -0.06), 1 month (SMD = -0.67, 95% CI: -1.16 to -0.18), 3 months (SMD = -0.60, 95% CI: -0.89 to -0.31), 6 months (SMD = -0.76, 95% CI: -1.49 to -0.04), or 12 months post-transplantation (SMD = -0.69, 95% CI: -1.37 to 0.00). Furthermore, C0/Dose of POR*1/*1 carriers was 22.64 (WMD = 22.64, 95% CI: 2.54 to 42.74) or 19.41 (ng/ml)/(mg/kg/day) (WMD = 19.41, 95% CI: 9.58 to 29.24) higher than POR*28 carriers in CYP3A5 expressers at 3 days or 7 days post-transplantation, and higher in Asians at 6 months post-transplantation (SMD = 0.96, 95% CI: 0.50 to 1.43). CONCLUSIONS CYP3A4*22 variant in Caucasians restrains the metabolism of tacrolimus, while POR*28 variant in CYP3A5 expressers enhances the metabolism of tacrolimus for renal transplant recipients. However, further well-designed prospective studies are necessary to substantiate these conclusions given some limitations.
Collapse
Affiliation(s)
- Ze Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xiaozhen Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Sheng Cheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Zhe Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Heng Guo
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Yiwen Dong
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Yingming Zheng
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xi Cheng District, Beijing, China.
| |
Collapse
|
2
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
3
|
Kim JS, Shim S, Yee J, Choi KH, Gwak HS. Effects of CYP3A4*22 polymorphism on trough concentration of tacrolimus in kidney transplantation: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1201083. [PMID: 37564175 PMCID: PMC10409991 DOI: 10.3389/fphar.2023.1201083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: Tacrolimus (Tac) is a widely used immunosuppressive agent in kidney transplantation. Cytochrome P450 (CYP), especially CYP3A4 enzymes are responsible for the metabolism of drugs. However, the correlation between plasma Tac concentration and CYP3A4*22 gene variants is controversial. This meta-analysis aims to evaluate the association between CYP3A4*22 polymorphism and the dose-adjusted trough concentration (C0/D) of Tac in adult kidney transplant patients. Methods: We conducted a literature review for qualifying studies using the PubMed, Web of Science, and Embase databases until July 2023. For the continuous variables (C0/D and daily dose), mean difference (MD) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the association between the CYP3A4 * 22 and Tac pharmacokinetics. We performed an additional analysis on the relationship of CYP3A5*3 with Tac PKs and analyzed the effects of CYP3A4*22 in CYP3A5 non-expressers. Results: Overall, eight eligible studies with 2,683 renal transplant recipients were included in this meta-analysis. The CYP3A4*22 allele was significantly associated with a higher C0/D (MD 0.57 ng/mL/mg (95% CI: 0.28 to 0.86; p = 0.0001) and lower mean daily dose requirement (MD -2.02 mg/day, 95% CI: -2.55 to -1.50; p < 0.00001). An additional meta-analysis demonstrated that carrying the CYP3A5*3 polymorphism greatly impacted Tac blood concentration. From the result with CYP3A5 non-expressers, CYP3A4*22 showed significant effects on the Tac C0/D and dose requirement even after adjusting the effect of CYP3A5*3. Conclusion: Patients with CYP3A4*22 allele showed significantly higher plasma C0/D of Tac and required lower daily dose to achieve the therapeutic trough level after kidney transplantation. These findings of our meta-analysis may provide further evidence for the effects of genetic polymorphism in CYP3A4 on the PKs of Tac, which will improve individualized treatment in a clinical setting.
Collapse
Affiliation(s)
- Jung Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sunyoung Shim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Hee Choi
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Faelens R, Luyckx N, Kuypers D, Bouillon T, Annaert P. Predicting model‐informed precision dosing: A test‐case in tacrolimus dose adaptation for kidney transplant recipients. CPT Pharmacometrics Syst Pharmacol 2022; 11:348-361. [PMID: 35020971 PMCID: PMC8923732 DOI: 10.1002/psp4.12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022] Open
Abstract
Before investing resources into the development of a precision dosing (model‐informed precision dosing [MIPD]) tool for tacrolimus, the performance of the tool was evaluated in silico. A retrospective dataset of 315 de novo kidney transplant recipients was first used to identify a one‐compartment pharmacokinetic (PK) model with time‐dependent clearance. MIPD performance was subsequently evaluated by calculating errors to predict future concentrations, which is directly related to dosing precision and probability of target attainment (PTA). Based on the identified model residual error, the theoretical upper limit was 45% PTA for a target of 13.5 ng/ml and an acceptable range of 12–15 ng/ml. Using empirical Bayesian estimation, this limit was reached on day 5 post‐transplant and beyond. By incorporating correlated within‐patient variability when predicting future individual concentrations, PTA improved beyond the theoretical upper limit. This yielded a Bayesian feedback dosing algorithm accurately predicting future trough concentrations and adapting each dose to reach a target concentration. Simulated concentration‐time profiles were then used to quantify MIPD‐based improvement on three end points: average PTA increased from 28% to 39%, median time to three concentrations in target decreased from 10 to 7 days, and mean log‐squared distance to target decreased from 0.080 to 0.055. A study of 200 patients was predicted to have sufficient power to demonstrate these nuanced PK end points reliably. These simulations supported our decision to develop a precision dosing tool for tacrolimus and test it in a prospective trial.
Collapse
Affiliation(s)
- Ruben Faelens
- Department of Pharmaceutical and Pharmacological Sciences KU Leuven Leuven Belgium
| | | | - Dirk Kuypers
- Department of Nephrology University Hospitals Leuven Leuven Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences KU Leuven Leuven Belgium
- BioNotus GCV Niel Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences KU Leuven Leuven Belgium
- BioNotus GCV Niel Belgium
| |
Collapse
|
5
|
Prytuła A, Cransberg K, Raes A. Drug-metabolizing enzymes CYP3A as a link between tacrolimus and vitamin D in renal transplant recipients: is it relevant in clinical practice? Pediatr Nephrol 2019; 34:1201-1210. [PMID: 30058048 DOI: 10.1007/s00467-018-4030-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
CYP3A enzymes are involved in the metabolism of calcineurin inhibitor tacrolimus as well as vitamin D. In this review, we summarize the clinical aspects of CYP3A-mediated metabolism of tacrolimus and vitamin D with emphasis on the influence of single-nucleotide polymorphisms on tacrolimus disposition. We describe the utility of 4β hydroxycholesterol as a marker of CYP3A activity. Then, we discuss the possible interaction between calcineurin inhibitors and vitamin D in solid organ transplant recipients. Also, we review other mechanisms which may contribute to side effects of calcineurin inhibitors on bone. Lastly, suggestions for future research and clinical perspectives are discussed.
Collapse
Affiliation(s)
- Agnieszka Prytuła
- Paediatric Nephrology and Rheumatology Department, Ghent University Hospital, C Heymanslaan 10, 9000, Ghent, Belgium.
| | - Karlien Cransberg
- Paediatric Nephrology Department, Erasmus MC- Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Ann Raes
- Paediatric Nephrology and Rheumatology Department, Ghent University Hospital, C Heymanslaan 10, 9000, Ghent, Belgium.,Safepedrug Unit, Ghent, Belgium
| |
Collapse
|
6
|
Naito T, Ohshiro J, Sato H, Torikai E, Suzuki M, Ogawa N, Kawakami J. Relationships between concomitant biologic DMARDs and prednisolone administration and blood tacrolimus exposure or serum CYP3A4/5-related markers in rheumatoid arthritis patients. Clin Biochem 2019; 69:8-14. [DOI: 10.1016/j.clinbiochem.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022]
|
7
|
Luo J, Chen J, Sun Y, Zhou H, Xu K, Huang F, Huang P. Quantitative contrast-enhanced ultrasound of renal perfusion: a technology for the assessment of early diabetic nephropathy in cynomolgus macaques with type 2 diabetes mellitus. Abdom Radiol (NY) 2019; 44:1850-1857. [PMID: 30694370 DOI: 10.1007/s00261-019-01908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The aim of this study was to investigate the effectiveness of contrast-enhanced ultrasound (CEUS) in predicting early nephropathy in cynomolgus macaques with spontaneous type 2 diabetes mellitus (T2DM). METHODS Six cynomolgus macaques with spontaneous T2DM and six normal cynomolgus macaques (Group 1) were included in this study. The time-intensity curve was used to obtain parameters such as peak values, red blood volume (RBV), red blood flow (RBF), time to peak (TTP), and mean transit time (MTT). Biopsy renal tissue samples were assessed histopathologically. Six cynomolgus macaques with spontaneous T2DM were subgrouped into T2DM without nephropathy group (Group 2) and T2DM with nephropathy group (Group 3) based on histopathological findings. RESULTS Peak value had the largest area under the curve comparing with RBF, RBV, TTP, MTT. The sensitivity and specificity of peak value with cut-off value of 38.65 dB for the diagnosis of DN were 98.3% and 83%, respectively. Peak value, RBV, and RBF in Group 3 was significantly decreased compared with Group 1 and Group 2 (P = 0.000, x2 = 23.99; P = 0.003, x2 = 9.14; P = 0.02, x2 = 5.14). CONCLUSIONS The perfusion parameter of peak value in CEUS might be useful in predicting early diabetic nephropathy in spontaneous T2DM cynomolgus macaques.
Collapse
|
8
|
Penzak SR, Rojas-Fernandez C. 4β-Hydroxycholesterol as an Endogenous Biomarker for CYP3A Activity: Literature Review and Critical Evaluation. J Clin Pharmacol 2019; 59:611-624. [PMID: 30748026 DOI: 10.1002/jcph.1391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
A number of cytochrome P450 (CYP)3A phenotyping probes have been used to characterize the drug interaction potential of new molecular entities; of these, midazolam has emerged as the gold standard. Recently, plasma 4β-hydroxycholesterol (4β-OHC), the metabolite of CYP3A-mediated cholesterol metabolism, has been championed as an endogenous biomarker for CYP3A, particularly during chronic conditions where CYP3A activity is altered by disease and in long-term treatment studies where midazolam administration is not optimal. Multiple studies in humans have shown that 4β-OHC can qualitatively differentiate among weak, moderate, and potent CYP3A induction when an inducer, typically rifampin, is administered for up to 2 weeks. Conversely, longer durations of CYP3A inhibitor administration (≥1 month) appear to be necessary to differentiate among weak, moderate, and potent CYP3A inhibitors. A number of studies have reported statistically significant linear relationships between 4β-OHC plasma concentrations (and 4β-OHC:cholesterol ratios) and midazolam clearance. However, sufficiently powered studies assessing the ability of 4β-OHC or 4β-OHC:cholesterol ratios to measure CYP3A activity (ie, predictive performance) have not been conducted to date. Additional limitations associated with 4β-OHC phenotyping include inability to detect acute changes in CYP3A activity, uncertainty with regard to its intestinal formation, ambiguity surrounding the role of CYP3A5 in its metabolism, and lack of clarity regarding the role of transporters in its disposition. As such, the data do not support the use of 4β-OHC or 4β-OHC:cholesterol ratios as an endogenous biomarker for CYP3A activity.
Collapse
Affiliation(s)
- Scott R Penzak
- Auburn University Harrison School of Pharmacy, Auburn, AL, USA
| | | |
Collapse
|
9
|
Hautajärvi H, Hukkanen J, Turpeinen M, Mattila S, Tolonen A. Quantitative analysis of 4β- and 4α‑hydroxycholesterol in human plasma and serum by UHPLC/ESI-HR-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:179-186. [DOI: 10.1016/j.jchromb.2018.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/06/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023]
|
10
|
Gjestad C, Haslemo T, Andreassen OA, Molden E. Gjestad et al. reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1624-1625. [PMID: 29749106 DOI: 10.1111/bcp.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Caroline Gjestad
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Kuypers DRJ, Vanhove T. Kuypers and Vanhove reply to 'Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity?' by Neuhoff and Tucker. Br J Clin Pharmacol 2018; 84:1622-1623. [PMID: 29691891 DOI: 10.1111/bcp.13592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
12
|
Neuhoff S, Tucker GT. Was 4β-hydroxycholesterol ever going to be a useful marker of CYP3A4 activity? Br J Clin Pharmacol 2018; 84:1620-1621. [PMID: 29464732 DOI: 10.1111/bcp.13538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
|
13
|
Vanhove T, Hasan M, Annaert P, Oswald S, Kuypers DRJ. Pretransplant 4β-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation. Br J Clin Pharmacol 2017; 83:2406-2415. [PMID: 28603840 DOI: 10.1111/bcp.13343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
AIMS The CYP3A metric 4β-hydroxycholesterol (4βOHC) has been shown to correlate with tacrolimus steady-state apparent oral clearance (CL/F). Recently, pretransplant 4βOHC was shown not to predict tacrolimus CL/F after transplantation in a cohort of renal recipients (n = 79). The goal of the current study was determine whether these findings could be validated in a substantially larger cohort. METHODS In a retrospective analysis of 279 renal recipients, tacrolimus trough concentrations (C0), daily dose, haematocrit and other relevant covariates were registered every day for the first 14 days after transplantation. 4βOHC and cholesterol were quantified on plasma collected immediately pretransplant using liquid chromatography tandem-mass spectrometry. Patients were genotyped for CYP3A5*1 and CYP3A4*22. RESULTS A total of 3551 tacrolimus C0 concentrations were registered. In a linear mixed model for the 14-day period, determinants of tacrolimus C0 were CYP3A5 genotype, haematocrit, age and weight (overall R2 = 0.179). Determinants of daily dose were CYP3A5 genotype, age, methylprednisolone dose, tacrolimus formulation, ALT and estimated glomerular filtration rate (overall R2 = 0.242). Considering each of the first 5 days separately, 4βOHC had a limited effect on tacrolimus C0 on day 3 only (-1.00 ng ml-1 per ln, P = 0.035) but not on any other day, and no effect on dose or C0/dose. During the first 5 days, haematocrit and age, which were previously established as determinants of tacrolimus disposition under steady-state conditions, never explained more than 17.7% of between-subject variability in tacrolimus C0/dose. CONCLUSIONS The CYP3A metric 4βOHC cannot be used to predict tacrolimus dose requirements in the first days after transplantation.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Mahmoud Hasan
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Hospital Greifswald, Greifswald, Germany
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Stefan Oswald
- Department of Clinical Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Hospital Greifswald, Greifswald, Germany
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|