1
|
Zhang Q, Zhang J, Gu H, Yang Y, Zhang H, Miao C. Perioperative NETosis and Cancer Progression: Current Evidence and Future Perspectives. Curr Oncol Rep 2024; 26:1169-1175. [PMID: 39012468 DOI: 10.1007/s11912-024-01573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, an ongoing and exaggerated NETs formation may have adverse clinical consequences and even promote cancer progression. This review will discuss the complex relationship between NETosis and cancer progression. RECENT FINDINGS NETs exhibits cancer-promoting effects by causing cancer metastaisis and tumor-associated thrombosis. Many studies have found that many mechanisms are involved in the process, and the corresponding targets could be applied for cancer therapy. Although NETs may have anti-bacteria effects, it is necessary to inhibit an excessive NETs formation, mostly showing cancer-promoting effects. The contribution of NETs to cancer progression has gained a growing appreciation and the approaches to targeting NETs deposition exhibited beneficial effects both in primary and metastatic tumors, which, however, has been challenged by a recent finding demonstrating an opposite effect of NETs to suppress tumor growth via the activation of immune response against tumor. This seeming discrepancy reflects we are in the early stage of NETs study facing fundamental questions and a better understanding of the underlying mechanism is urgently needed.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jing Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Haiyun Gu
- Department of Anesthesiology, Rizhao People's Hospital, Shandong, China
| | - Yan Yang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
2
|
Chen X, Lou Y, Zhou F, Shi D, Liu X, Tao F. Identification of novel indolinone derivatives as CTSC inhibitors to treat inflammatory bowel disease by modulating inflammatory factors. Eur J Med Chem 2024; 280:116914. [PMID: 39383651 DOI: 10.1016/j.ejmech.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Novel inflammatory bowel disease (IBD) therapeutic drugs, mainly biologics that neutralize pro-inflammatory factors and janus kinase inhibitors that inhibit cytokine-mediated signal transduction, face problems including low efficacy rates, limited therapeutic benefits, and infection risks. It is an important task to find proteins that broadly regulate a variety of cytokines and to develop corresponding drugs. Cathepsin C (CTSC) mediates neutrophil-related inflammatory, participates in the recruitment and activation of inflammatory cells, and regulates cytokines levels, and is considered an ideal target for IBD treatment. In this study, starting from the in-house molecule, through medicinal chemistry and target-based design, a novel CTSC inhibitor B22 with IBD therapeutic efficacy was discovered. In vitro target verification and mechanism study indicated that B22 inhibit CTSC activity by binding to S2 pocket and S1 site, further inhibiting downstream serine protease activity. In addition, B22 exhibited anti-inflammatory activity and regulated various cytokines levels. In vivo studies highlighted B22 bears acceptable toxicity and suitable pharmacokinetic properties, and displays anti-inflammatory activity in IBD model. In conclusion, B22 is a potential anti-inflammatory molecule for IBD by targeting CTSC and deserves further research.
Collapse
Affiliation(s)
- Xing Chen
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Feilong Zhou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Daxing Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, PR China.
| | - Fangbiao Tao
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
3
|
Tadayasu Y, Sarubbi D, Furuichi T, Eleftheraki A, Nakamura S, Sauter W, Hanada R. A randomized phase I study of the safety and pharmacokinetics of BI 1291583 in healthy Japanese male subjects. Br J Clin Pharmacol 2024. [PMID: 39299301 DOI: 10.1111/bcp.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Bronchiectasis patients face an unmet need for treatment options that reduce inflammation. Cathepsin C inhibition is expected to achieve this by reducing the activation of neutrophil-derived serine proteases. Here, we present safety and pharmacokinetic (PK) data from a Phase I trial evaluating the novel cathepsin C inhibitor BI 1291583 in healthy Japanese male subjects. METHODS This randomized, double-blind, placebo-controlled, parallel-group study investigated BI 1291583 in healthy Japanese male subjects (jRCT2071210111) and consisted of a single-rising-dose (SRD) part and a multiple-dose (MD) part. The primary endpoint was the percentage of subjects with drug-related treatment-emergent adverse events (AEs). Secondary PK endpoints (SRD: AUC0-∞ and Cmax; MD: AUCτ,1 and Cmax,1 after first dose and AUCτ,ss and Cmax,ss after last dose), as well as further safety and PK endpoints, were also assessed. RESULTS Overall, 36 subjects (n = 24 for SRD part; n = 12 for MD part) entered this Phase I trial. BI 1291583 was safe and well tolerated across the doses tested. All AEs were of mild intensity, with no drug-related treatment-emergent AEs, deaths, serious AEs or AEs of special interest reported in either part of the trial. Following both SRD and MD administration, BI 1291583 was readily absorbed, and PK was supraproportional over the doses assessed. CONCLUSION The results show that BI 1291583 has an appropriate benefit-risk ratio for Japanese patients, with no safety or exposure concerns at the doses studied. Japanese patients with bronchiectasis can be safely integrated into future global clinical trials of BI 1291583, with no dose adjustment required.
Collapse
Affiliation(s)
| | - Donald Sarubbi
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | | | | | - Wiebke Sauter
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | | |
Collapse
|
4
|
Chitsamankhun C, Siritongtaworn N, Fournier BPJ, Sriwattanapong K, Theerapanon T, Samaranayake L, Porntaveetus T. Cathepsin C in health and disease: from structural insights to therapeutic prospects. J Transl Med 2024; 22:777. [PMID: 39164687 PMCID: PMC11337848 DOI: 10.1186/s12967-024-05589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Cathepsin C (CTSC) is a lysosomal cysteine protease constitutively expressed at high levels in the lung, kidney, liver, and spleen. It plays a key role in the activation of serine proteases in cytotoxic T cells, natural killer cells (granzymes A and B), mast cells (chymase and tryptase) and neutrophils (cathepsin G, neutrophil elastase, proteinase 3) underscoring its pivotal significance in immune and inflammatory defenses. Here, we comprehensively review the structural attributes, synthesis, and function of CTSC, with a focus on its variants implicated in the etiopathology of several syndromes associated with neutrophil serine proteases, including Papillon-Lefevre syndrome (PLS), Haim-Munk Syndrome (HMS), and aggressive periodontitis (AP). These syndromes are characterized by palmoplantar hyperkeratosis, and early-onset periodontitis (severe gum disease) resulting in premature tooth loss. Due to the critical role played by CTSC in these and several other conditions it is being explored as a potential therapeutic target for autoimmune and inflammatory disorders. The review also discusses in depth the gene variants of CTSC, and in particular their postulated association with chronic obstructive pulmonary disease (COPD), COVID-19, various cancers, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, sudden cardiac death (SCD), atherosclerotic vascular disease, and neuroinflammatory disease. Finally, the therapeutic potential of CTSC across a range of human diseases is discussed.
Collapse
Affiliation(s)
- Chakriya Chitsamankhun
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nutwara Siritongtaworn
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - B P J Fournier
- Dental Faculty, Oral Biology Department, Reference Center of Oral and Dental Rare Diseases, Rothschild Hospital, Université Paris Cité, Paris, France
| | - Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lakshman Samaranayake
- Faculty of Dentistry, University of Hong Kong, Hospital Road, Hong Kong, Hong Kong
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Graduate Program in Geriatric and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Badorrek P, Diefenbach C, Kögler H, Eleftheraki A, Seitz F, Hohlfeld JM. Novel cathepsin C inhibitor, BI 1291583, intended for treatment of bronchiectasis: Phase I characterization in healthy volunteers. Clin Transl Sci 2024; 17:e13891. [PMID: 39175217 PMCID: PMC11341832 DOI: 10.1111/cts.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Novel treatments are needed to reduce inflammation, improve symptoms, address exacerbations, and slow disease progression in bronchiectasis. Cathepsin C (CatC) inhibition promises to achieve this through reduction of neutrophil-derived serine protease (including neutrophil elastase [NE] and proteinase 3 [PR3]) activation. Here, we present the phase I characterization of the novel CatC inhibitor, BI 1291583. Five phase I trials of BI 1291583 in healthy subjects are presented: a single-rising-dose study (NCT03414008) and two multiple-rising-dose studies (NCT03868540 and NCT04866160) assessing the safety, tolerability, pharmacodynamics, and pharmacokinetics of BI 1291583; a food effect study (NCT03837964); and a drug-drug interaction study (NCT03890887) of BI 1291583 and itraconazole. BI 1291583 was safe and well tolerated across the doses tested in these trials. Most adverse events (AEs) were mild or moderate in intensity, with no serious AEs, AEs of special interest or deaths reported in any trial. Drug-related skin exfoliation was not reported more frequently in subjects treated with BI 1291583 compared with placebo. BI 1291583 was readily absorbed, and pharmacokinetics were supra-proportional over the dose ranges assessed. Additionally, BI 1291583 inhibited CatC in a dose-dependent manner, inhibited downstream NE activity, and decreased PR3 levels. No food effect was observed. Co-administration of multiple doses of itraconazole increased BI 1291583 exposure approximately twofold. Due to these promising phase I results, a multinational phase II program of BI 1291583 in adults with bronchiectasis is ongoing (Airleaf™ [NCT05238675], Clairafly™ [NCT05865886], and Clairleaf™ [NCT05846230]).
Collapse
Affiliation(s)
- Philipp Badorrek
- Department of Clinical Airway ResearchFraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
| | | | - Harald Kögler
- Boehringer Ingelheim International GmbHIngelheimGermany
| | | | | | - Jens M. Hohlfeld
- Department of Clinical Airway ResearchFraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
- Department of Respiratory MedicineHannover Medical SchoolHannoverGermany
- German Centre for Lung Research (DZL)HannoverGermany
| |
Collapse
|
6
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
7
|
Chalmers JD, Badorrek P, Diefenbach C, Kögler H, Sauter W, Kreideweiss S, Hohlfeld JM. The preclinical and phase 1 development of the novel oral cathepsin C inhibitor BI 1291583. ERJ Open Res 2024; 10:00725-2023. [PMID: 38529344 PMCID: PMC10962448 DOI: 10.1183/23120541.00725-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 03/27/2024] Open
Abstract
Preclinical and phase 1 study results indicate that BI 1291583 is a reversible, highly potent and highly selective CatC inhibitor that markedly inhibits active NSP production in a dose-dependent manner, supporting phase 2 trials in bronchiectasis patients https://bit.ly/47PZ8E5.
Collapse
Affiliation(s)
- James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Philipp Badorrek
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | | | - Harald Kögler
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Wiebke Sauter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Jens M. Hohlfeld
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Centre for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
8
|
Kim N, Yeo MK, Sun P, Lee D, Kim DK, Lee SI, Chung C, Kang DH, Lee JE. Cathepsin C regulates tumor progression via the Yes-associated protein signaling pathway in non-small cell lung cancer. Am J Cancer Res 2024; 14:97-113. [PMID: 38323275 PMCID: PMC10839315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024] Open
Abstract
Cathepsin C (CTSC), also known as dipeptidyl peptidase I, is a cathepsin with lysosomal exocysteine protease activity and a central coordinator for the activation of neutrophil-derived serine proteases in the lysosomes of neutrophils. Although the role of CTSC in various cancers, including liver and breast cancers, has recently been reported, its role in non-small cell lung cancer (NSCLC) is largely unknown. This study aimed to investigate the functional role of CTSC in NSCLC and the molecular mechanisms underlying CTSC involvement in disease progression. CTSC overexpression markedly enhanced the growth, motility, and invasiveness of NSCLC cells in vitro and in vivo. CTSC knockdown using shRNA in NSCLC cells reversed the migratory and invasive behavior of NSCLC cells. CTSC also induced epithelial-mesenchymal transition through the Yes-associated protein signaling pathway. In addition, our analyses of clinical samples confirmed that high CTSC expression was associated with lymph node metastasis and recurrence in lung adenocarcinoma. In conclusion, CTSC plays an important role in the progression of NSCLC. Thus, targeting CTSC may be a promising treatment option for patients with NSCLC.
Collapse
Affiliation(s)
- Nayoung Kim
- Cancer Research Institute, Chungnam National UniversityDaejeon 35015, Republic of Korea
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| | - Pureum Sun
- Research Institute for Medical Sciences, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| | - Dahye Lee
- Infection Control Convergence Research Center, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| | - Duk Ki Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| | - Song-I Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| | - Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| | - Jeong Eun Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National UniversityDaejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Abstract
Mast cell granules are packed with proteases, which are released with other mediators by degranulating stimuli. Several of these proteases are targets of potentially therapeutic inhibitors based on hypothesized contributions to diseases, notably asthma and ulcerative colitis for β-tryptases, heart and kidney scarring for chymases, and airway infection for dipeptidyl peptidase-I. Small-molecule and antibody-based β-tryptase inhibitors showing preclinical promise were tested in early-phase human trials with some evidence of benefit. Chymase inhibitors were given safely in Phase II trials without demonstrating benefits, whereas dipeptidyl peptidase-I inhibitor improved bronchiectasis, in effects likely related to inactivation of the enzyme in neutrophils.
Collapse
|
10
|
Tromsdorf N, Ullrich FTH, Rethmeier M, Sommerhoff CP, Schaschke N. E-64c-Hydrazide Based Cathepsin C Inhibitors: Optimizing the Interactions with the S1'-S2' Area. ChemMedChem 2023; 18:e202300218. [PMID: 37424408 DOI: 10.1002/cmdc.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The zymogens of the neutrophil serine proteases elastase, proteinase 3, and cathepsin G are converted proteolytically into their pro-inflammatory active forms by the action of cathepsin C. The inhibition of this cysteine protease therefore is an interesting therapeutic approach for the treatment of inflammatory disorders with a high neutrophil burden such as COPD. Based on E-64c-hydrazide as lead structure, we have recently developed a covalently acting cathepsin C inhibitor using a n-butyl residue attached at the amine nitrogen of the hydrazide moiety to efficiently address the deep hydrophobic S2 pocket. To further optimize the affinity and selectivity profile of this inhibitor, the S1'-S2' area was now investigated by a combinatorial approach, showing that Nle-tryptamide is a ligand superior to the initially used Leu-isoamylamide. Using the neutrophil precursor line U937 as a cell culture model, this optimized inhibitor blocks the intracellular cathepsin C activity and thereby suppresses the activation of neutrophil elastase.
Collapse
Affiliation(s)
- Nora Tromsdorf
- Fakultät für Chemie, Hochschule Aalen, Beethovenstraße 1, 73430, Aalen, Germany
| | - Fabian T H Ullrich
- Institut für Didaktik und Ausbildungsforschung in der Medizin und Institut für Laboratoriumsmedizin, LMU Klinikum, LMU München, Pettenkoferstraße 8a, 80336, München, Germany
| | - Markus Rethmeier
- Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Christian P Sommerhoff
- Institut für Didaktik und Ausbildungsforschung in der Medizin und Institut für Laboratoriumsmedizin, LMU Klinikum, LMU München, Pettenkoferstraße 8a, 80336, München, Germany
| | - Norbert Schaschke
- Fakultät für Chemie, Hochschule Aalen, Beethovenstraße 1, 73430, Aalen, Germany
| |
Collapse
|
11
|
Kreideweiss S, Schänzle G, Schnapp G, Vintonyak V, Grundl MA. BI 1291583: a novel selective inhibitor of cathepsin C with superior in vivo profile for the treatment of bronchiectasis. Inflamm Res 2023; 72:1709-1717. [PMID: 37542002 PMCID: PMC10499737 DOI: 10.1007/s00011-023-01774-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Airway inflammation in chronic inflammatory lung diseases (e.g. bronchiectasis) is partly mediated by neutrophil-derived serine protease (NSP)/antiprotease imbalance. NSPs are activated during neutrophil myelopoiesis in bone marrow by cathepsin C (CatC; DPP1). CatC is therefore an attractive target to reduce NSP activity in the lungs of patients with bronchiectasis, restoring the protease/antiprotease balance. We report results from the preclinical pharmacological assessment of the novel CatC inhibitor BI 1291583. METHODS Binding kinetics of BI 1291583 to human CatC were determined by surface plasmon resonance. In vitro inhibition of human CatC activity was determined by CatC-specific fluorescent assay, and selectivity was assessed against related cathepsins and unrelated proteases. Inhibition of NSP neutrophil elastase (NE) production was assessed in a human neutrophil progenitor cell line. In vivo inhibition of NE and NSP proteinase 3 (PR3) in bronchoalveolar lavage fluid (BALF) neutrophils after lipopolysaccharide (LPS) challenge and distribution of BI 1291583 was determined in a mouse model. RESULTS BI 1291583 bound human CatC in a covalent, reversible manner, selectively and fully inhibiting CatC enzymatic activity. This inhibition translated to concentration-dependent inhibition of NE activation in U937 cells and dose-dependent, almost-complete inhibition of NE and PR3 activity in BALF neutrophils in an in vivo LPS-challenge model in mice. BI 1291583 exhibited up to 100 times the exposure in the target tissue bone marrow compared with plasma. CONCLUSION BI 1291583-mediated inhibition of CatC is expected to restore the protease-antiprotease balance in the lungs of patients with chronic airway inflammatory diseases such as bronchiectasis.
Collapse
Affiliation(s)
| | | | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Marc A Grundl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
12
|
Basso J, Chen KJ, Zhou Y, Mark L, LaSala D, Dorfman A, Atalla M, Chun D, Viramontes V, Chang C, Leifer F, McDonald PP, Cipolla DC. The pharmacokinetic profile of brensocatib and its effect on pharmacodynamic biomarkers including NE, PR3, and CatG in various rodent species. Front Pharmacol 2023; 14:1208780. [PMID: 37538173 PMCID: PMC10394516 DOI: 10.3389/fphar.2023.1208780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Brensocatib is a novel, oral, selective, reversible inhibitor of dipeptidyl peptidase 1 (DPP1), which activates several neutrophil serine proteases (NSPs), including neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CatG) in the bone marrow during the early stage of neutrophil maturation. These NSPs are associated with pathogen destruction and inflammatory mediation; their dysregulated activation can result in excess secretion of active NSPs causing damaging inflammation and contributing to neutrophil-mediated inflammatory and autoimmune diseases. Pharmacological inhibition of DPP1 in the bone marrow could therefore represent an attractive strategy for these neutrophil-driven diseases. A completed Phase 2 trial in non-cystic fibrosis bronchiectasis patients (ClinicalTrials.gov number NCT03218917; EudraCT number: 2017-002533-32) indeed demonstrated that administration of brensocatib attenuated the damaging effects of chronic inflammation by inhibiting the downstream activation of NSPs. To support a range of preclinical programs and further understand how rodent species and strains may affect brensocatib's pharmacokinetic (PK) profile and its pharmacodynamic (PD) effects on NE, PR3, and CatG, an extensive naïve dosing study with brensocatib at different dosing levels, frequencies, and durations was undertaken. Dose-dependent PK exposure responses (AUC and Cmax) were observed regardless of the rodent species and strain. Overall, mice showed greater reduction in NSP activities compared to rats. Both mice and rats dosed once daily (QD) had equivalent NSP activity reduction compared to BID (twice a day) dosing when the QD dose was 1.5-times the BID daily dose. For both mouse strains, CatG activity was reduced the most, followed by NE, then PR3; whereas, for both rat strains, PR3 activity was reduced the most, followed by CatG, and then NE. Maximum reduction in NSP activities was observed after ∼7 days and recoveries were nearly symmetrical. These results may facilitate future in vivo brensocatib study dosing considerations, such as the timing of prophylactic or therapeutic administration, choice of species, dosage and dosing frequency.
Collapse
|
13
|
Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1333-1352. [PMID: 37408603 PMCID: PMC10318108 DOI: 10.2147/copd.s419056] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Airway inflammation, driven by different types of inflammatory cells and mediators, plays a fundamental role in COPD and its progression. Neutrophils, eosinophils, macrophages, and CD4+ and CD8+ T lymphocytes are key players in this process, although the extent of their participation varies according to the patient's endotype. Anti-inflammatory medications may modify the natural history and progression of COPD. However, since airway inflammation in COPD is relatively resistant to corticosteroid therapy, innovative pharmacological anti-inflammatory approaches are required. The heterogeneity of inflammatory cells and mediators in annethe different COPD endo-phenotypes requires the development of specific pharmacologic agents. Indeed, over the past two decades, several mechanisms that influence the influx and/or activity of inflammatory cells in the airways and lung parenchyma have been identified. Several of these molecules have been tested in vitro models and in vivo in laboratory animals, but only a few have been studied in humans. Although early studies have not been encouraging, useful information emerged suggesting that some of these agents may need to be further tested in specific subgroups of patients, hopefully leading to a more personalized approach to treating COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
14
|
Chalmers JD, Gupta A, Chotirmall SH, Armstrong A, Eickholz P, Hasegawa N, McShane PJ, O'Donnell AE, Shteinberg M, Watz H, Eleftheraki A, Diefenbach C, Sauter W. A Phase 2 randomised study to establish efficacy, safety and dosing of a novel oral cathepsin C inhibitor, BI 1291583, in adults with bronchiectasis: Airleaf. ERJ Open Res 2023; 9:00633-2022. [PMID: 37465817 PMCID: PMC10351677 DOI: 10.1183/23120541.00633-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/28/2023] [Indexed: 07/20/2023] Open
Abstract
New therapies are needed to prevent exacerbations, improve quality of life and slow disease progression in bronchiectasis. Inhibition of cathepsin C (CatC) activity has the potential to decrease activation of neutrophil-derived serine proteases in patients with bronchiectasis, thereby reducing airway inflammation, improving symptoms, reducing exacerbations and preventing further airway damage. Here we present the design of a phase 2 trial (Airleaf™; NCT05238675) assessing the efficacy and safety of a novel CatC inhibitor, BI 1291583, in adult patients with bronchiectasis. This multinational, randomised, double-blind, placebo-controlled, parallel-group, dose-finding study has a screening period of at least 6 weeks, a treatment period of 24-48 weeks and a follow-up period of 4 weeks. ∼240 adults with bronchiectasis of multiple aetiologies will be randomised to placebo once daily, or BI 1291583 1 mg once daily, 2.5 mg once daily or 5 mg once daily in a 2:1:1:2 ratio, stratified by Pseudomonas aeruginosa infection and maintenance use of macrolides. The primary efficacy objective is to evaluate the dose-response relationship for the three oral doses of BI 1291583 versus placebo on time to first pulmonary exacerbation up to Week 48 (the primary end-point). Efficacy will be assessed using exacerbations, patient-reported outcomes, measures of symptoms, sputum neutrophil elastase activity and pulmonary function testing. Safety assessment will include adverse event reporting, physical examination, monitoring of vital signs, safety laboratory parameters, 12-lead electrocardiogram, and periodontal and dermatological assessments. If efficacy and safety are demonstrated, results will support further investigation of BI 1291583 in phase 3 trials.
Collapse
Affiliation(s)
- James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Abhya Gupta
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Peter Eickholz
- Department of Periodontology, Goethe University Frankfurt, Frankfurt, Germany
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University, Tokyo, Japan
| | | | | | | | - Henrik Watz
- Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | | | - Wiebke Sauter
- Boehringer Ingelheim International GmbH, Biberach, Germany
| |
Collapse
|
15
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
An optimized method of extracting and quantifying active Neutrophil serine proteases from human whole blood cells. PLoS One 2022; 17:e0272575. [PMID: 36044421 PMCID: PMC9432755 DOI: 10.1371/journal.pone.0272575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose
Neutrophil serine proteases (NSPs) are implicated in numerous inflammatory diseases. Thus, a robust methodology to monitor and quantify NSPs is important to study disease progression and evaluate the effect of pharmacological interventions. A comparison of the various methods used to extract NSPs from neutrophil granulocytes has not been published, providing the impetus to conduct this method optimization and comparison study.
Methods
Two NSP recovery methodologies were evaluated on samples from five human donors: zymosan stimulation and cell pellet extraction. For the zymosan stimulation method, 1 mL donor blood was added to zymosan and samples were incubated at 37°C for 30 min while shaking. Samples were then centrifuged, and the plasma was collected for quantitation of NSP activity. For the cell pellet extraction procedure, 2 mL whole blood samples were centrifuged into white blood cell pellets following red blood cell lysis. To each pellet, three sequential lysis steps were performed using either 0.05% Nonidet P-40 Substitute (NP40) or 0.02% Triton X-100 lysis buffers under agitation followed by centrifugation. NSP activities were quantified using an exogenous peptide substrate specific to each of the three NSPs being analyzed: neutrophil elastase, cathepsin G, and proteinase 3.
Results and discussion
The zymosan stimulation method resulted in lower recovery of active NSPs and was unable to stimulate significant release of active cathepsin G. In contrast, the NP40 pellet extraction method showed consistent inter-donor NSP release with greater recoveries of active NSPs than the Triton method or the zymosan stimulation method. Overall, the pellet extraction procedure provided 13.3-fold greater recovery of active neutrophil elastase, 283-fold greater recovery of active cathepsin G, and 2.9-fold greater recovery of active proteinase 3 than the zymosan method.
Conclusion
The NP40 cell pellet extraction method resulted in greater extraction of active NSPs compared to the other methods investigated here, which may allow for a more accurate and complete biomarker profile when evaluating human clinical samples.
Collapse
|
17
|
Chen X, Yan Y, Du J, Shen X, He C, Pan H, Zhu J, Liu X. Non-peptidyl non-covalent cathepsin C inhibitoEEr bearing a unique thiophene-substituted pyridine: Design, structure-activity relationship and anti-inflammatory activity in vivo. Eur J Med Chem 2022; 236:114368. [DOI: 10.1016/j.ejmech.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
|
18
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
19
|
Shen XB, Chen X, Zhang ZY, Wu FF, Liu XH. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities. Eur J Med Chem 2021; 225:113818. [PMID: 34492551 DOI: 10.1016/j.ejmech.2021.113818] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Cathepsin C, an important lysosomal cysteine protease, mediates the maturation process of neutrophil serine proteases, and participates in the inflammation and immune regulation process associated with polymorphonuclear neutrophils. Therefore, cathepsin C is considered to be an attractive target for treating inflammatory diseases. With INS1007 (trade name: brensocatib) being granted a breakthrough drug designation by FDA for the treatment of Adult Non-cystic Fibrosis Bronchiectasis and Coronavirus Disease 2019, the development of cathepsin C inhibitor will attract attentions from medicinal chemists in the future soon. Here, we summarized the research results of cathepsin C as a therapeutic target, focusing on the development of cathepsin C inhibitor, and provided guidance and reference opinions for the upcoming development boom of cathepsin C inhibitor.
Collapse
Affiliation(s)
- Xiao Bao Shen
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fu Fang Wu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Xin Hua Liu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Chen X, Yan Y, Zhang Z, Zhang F, Liu M, Du L, Zhang H, Shen X, Zhao D, Shi JB, Liu X. Discovery and In Vivo Anti-inflammatory Activity Evaluation of a Novel Non-peptidyl Non-covalent Cathepsin C Inhibitor. J Med Chem 2021; 64:11857-11885. [PMID: 34374541 DOI: 10.1021/acs.jmedchem.1c00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cathepsin C (Cat C) participates in inflammation and immune regulation by affecting the activation of neutrophil serine proteases (NSPs). Therefore, cathepsin C is an attractive target for treatment of NSP-related inflammatory diseases. Here, the complete discovery process of the first potent "non-peptidyl non-covalent cathepsin C inhibitor" was described with hit finding, structure optimization, and lead discovery. Starting with hit 14, structure-based optimization and structure-activity relationship study were comprehensively carried out, and lead compound 54 was discovered as a potent drug-like cathepsin C inhibitor both in vivo and in vitro. Also, compound 54 (with cathepsin C Enz IC50 = 57.4 nM) exhibited effective anti-inflammatory activity in an animal model of chronic obstructive pulmonary disease. These results confirmed that the non-peptidyl and non-covalent derivative could be used as an effective cathepsin C inhibitor and encouraged us to continue further drug discovery on the basis of this finding.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yaoyao Yan
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Zhaoyan Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Faming Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Mingming Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Leran Du
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Haixia Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xiaobao Shen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Dahai Zhao
- Affiliated Hospital 2, Anhui Medical University, Hefei 230601, P. R. China
| | - Jing Bo Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
21
|
Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, Sibila O, Chotirmall SH, Voza A, Marchisio P, Blasi F, Aliberti S. Protease-Antiprotease Imbalance in Bronchiectasis. Int J Mol Sci 2021; 22:5996. [PMID: 34206113 PMCID: PMC8199509 DOI: 10.3390/ijms22115996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Airway inflammation plays a central role in bronchiectasis. Protease-antiprotease balance is crucial in bronchiectasis pathophysiology and increased presence of unopposed proteases activity may contribute to bronchiectasis onset and progression. Proteases' over-reactivity and antiprotease deficiency may have a role in increasing inflammation in bronchiectasis airways and may lead to extracellular matrix degradation and tissue damage. Imbalances in serine proteases and matrix-metallo proteinases (MMPs) have been associated to bronchiectasis. Active neutrophil elastase has been associated with disease severity and poor long-term outcomes in this disease. Moreover, high levels of MMPs have been associated with radiological and disease severity. Finally, severe deficiency of α1-antitrypsin (AAT), as PiSZ and PiZZ (proteinase inhibitor SZ and ZZ) phenotype, have been associated with bronchiectasis development. Several treatments are under study to reduce protease activity in lungs. Molecules to inhibit neutrophil elastase activity have been developed in both oral or inhaled form, along with compounds inhibiting dipeptydil-peptidase 1, enzyme responsible for the activation of serine proteases. Finally, supplementation with AAT is in use for patients with severe deficiency. The identification of different targets of therapy within the protease-antiprotease balance contributes to a precision medicine approach in bronchiectasis and eventually interrupts and disrupts the vicious vortex which characterizes the disease.
Collapse
Affiliation(s)
- Martina Oriano
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesco Amati
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
| | - Andrea Gramegna
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Anthony De Soyza
- Population and Health Science Institute, NIHR Biomedical Research Centre for Ageing & Freeman Hospital, Newcastle University, Newcastle NE2 4HH, UK;
| | - Marco Mantero
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, IDIBAPS, CIBERES, 08036 Barcelona, Spain;
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Teaching Hospital, 20122 Milan, Italy;
| | - Paola Marchisio
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Paediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.O.); (F.A.); (A.G.); (M.M.); (P.M.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
22
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
23
|
Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, Wang Y, Yang S, Liang C, Liang Y, Wen J, Liu Y, Luo W, Lv X, He Y, Cheng DD, Zhou T, Zhao W, Zhang P, Zhang X, Xiao Y, Qian Y, Wang H, Gao Q, Yang QC, Yang Q, Hu G. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 2021; 39:423-437.e7. [PMID: 33450198 DOI: 10.1016/j.ccell.2020.12.012] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022]
Abstract
Lung metastasis is the major cause of breast cancer-related mortality. The neutrophil-associated inflammatory microenvironment aids tumor cells in metastatic colonization in lungs. Here, we show that tumor-secreted protease cathepsin C (CTSC) promotes breast-to-lung metastasis by regulating recruitment of neutrophils and formation of neutrophil extracellular traps (NETs). CTSC enzymatically activates neutrophil membrane-bound proteinase 3 (PR3) to facilitate interleukin-1β (IL-1β) processing and nuclear factor κB activation, thus upregulating IL-6 and CCL3 for neutrophil recruitment. In addition, the CTSC-PR3-IL-1β axis induces neutrophil reactive oxygen species production and formation of NETs, which degrade thrombospondin-1 and support metastatic growth of cancer cells in the lungs. CTSC expression and secretion are associated with NET formation and lung metastasis in human breast tumors. Importantly, targeting CTSC with compound AZD7986 effectively suppresses lung metastasis of breast cancer in a mouse model. Overall, our findings reveal a mechanism of how tumor cells regulate neutrophils in metastatic niches and support CTSC-targeting approaches for cancer treatment.
Collapse
Affiliation(s)
- Yansen Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiatao Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dasa He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuyao Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pu Tian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuaixi Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Chenxi Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajun Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jili Wen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenqian Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianzhe Lv
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tianhao Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenjing Zhao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
24
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Chenna BC, Li L, Mellott DM, Zhai X, Siqueira-Neto JL, Calvet Alvarez C, Bernatchez JA, Desormeaux E, Alvarez Hernandez E, Gomez J, McKerrow JH, Cruz-Reyes J, Meek TD. Peptidomimetic Vinyl Heterocyclic Inhibitors of Cruzain Effect Antitrypanosomal Activity. J Med Chem 2020; 63:3298-3316. [PMID: 32125159 DOI: 10.1021/acs.jmedchem.9b02078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cruzain, an essential cysteine protease of the parasitic protozoan, Trypanosoma cruzi, is an important drug target for Chagas disease. We describe here a new series of reversible but time-dependent inhibitors of cruzain, composed of a dipeptide scaffold appended to vinyl heterocycles meant to provide replacements for the irreversible reactive "warheads" of vinyl sulfone inactivators of cruzain. Peptidomimetic vinyl heterocyclic inhibitors (PVHIs) containing Cbz-Phe-Phe/homoPhe scaffolds with vinyl-2-pyrimidine, vinyl-2-pyridine, and vinyl-2-(N-methyl)-pyridine groups conferred reversible, time-dependent inhibition of cruzain (Ki* = 0.1-0.4 μM). These cruzain inhibitors exhibited moderate to excellent selectivity versus human cathepsins B, L, and S and showed no apparent toxicity to human cells but were effective in cell cultures of Trypanosoma brucei brucei (EC50 = 1-15 μM) and eliminated T. cruzi in infected murine cardiomyoblasts (EC50 = 5-8 μM). PVHIs represent a new class of cruzain inhibitors that could progress to viable candidate compounds to treat Chagas disease and human sleeping sickness.
Collapse
Affiliation(s)
- Bala C Chenna
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Linfeng Li
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Drake M Mellott
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Xiang Zhai
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Claudia Calvet Alvarez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jean A Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Emily Desormeaux
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Elizabeth Alvarez Hernandez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Jana Gomez
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jorge Cruz-Reyes
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| | - Thomas D Meek
- Department of Biochemistry & Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, United States
| |
Collapse
|
26
|
Tan MSY, Davison D, Sanchez MI, Anderson BM, Howell S, Snijders A, Edgington-Mitchell LE, Deu E. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases. PLoS One 2020; 15:e0227341. [PMID: 31923258 PMCID: PMC6953825 DOI: 10.1371/journal.pone.0227341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Clan CA cysteine proteases, also known as papain-like proteases, play important roles throughout the malaria parasite life cycle and are therefore potential drug targets to treat this disease and prevent its transmission. In order to study the biological function of these proteases and to chemically validate some of them as viable drug targets, highly specific inhibitors need to be developed. This is especially challenging given the large number of clan CA proteases present in Plasmodium species (ten in Plasmodium falciparum), and the difficulty of designing selective inhibitors that do not cross-react with other members of the same family. Additionally, any efforts to develop antimalarial drugs targeting these proteases will also have to take into account potential off-target effects against the 11 human cysteine cathepsins. Activity-based protein profiling has been a very useful tool to determine the specificity of inhibitors against all members of an enzyme family. However, current clan CA proteases broad-spectrum activity-based probes either target endopeptidases or dipeptidyl aminopeptidases, but not both subfamilies efficiently. In this study, we present a new series of dipeptydic vinyl sulfone probes containing a free N-terminal tryptophan and a fluorophore at the P1 position that are able to label both subfamilies efficiently, both in Plasmodium falciparum and in mammalian cells, thus making them better broad-spectrum activity-based probes. We also show that some of these probes are cell permeable and can therefore be used to determine the specificity of inhibitors in living cells. Interestingly, we show that the choice of fluorophore greatly influences the specificity of the probes as well as their cell permeability.
Collapse
Affiliation(s)
| | - Dara Davison
- The Francis Crick Institute, London, United Kingdom
| | - Mateo I. Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
| | - Bethany M. Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville Victoria, Australia
| | | | | | - Laura E. Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Maxillofacial Surgery, College of Dentistry, New York University, New York, New York, United States of America
| | - Edgar Deu
- The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Sanchez MI, de Vries LE, Lehmann C, Lee JT, Ang KK, Wilson C, Chen S, Arkin MR, Bogyo M, Deu E. Identification of Plasmodium dipeptidyl aminopeptidase allosteric inhibitors by high throughput screening. PLoS One 2019; 14:e0226270. [PMID: 31851699 PMCID: PMC6919601 DOI: 10.1371/journal.pone.0226270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/22/2019] [Indexed: 12/04/2022] Open
Abstract
Dipeptidyl aminopeptidases (DPAPs) are cysteine proteases that cleave dipeptides from the N-terminus of protein substrates and have been shown to play important roles in many pathologies including parasitic diseases such as malaria, toxoplasmosis and Chagas's disease. Inhibitors of the mammalian homologue cathepsin C have been used in clinical trials as potential drugs to treat chronic inflammatory disorders, thus proving that these enzymes are druggable. In Plasmodium species, DPAPs play important functions at different stages of parasite development, thus making them potential antimalarial targets. Most DPAP inhibitors developed to date are peptide-based or peptidomimetic competitive inhibitors. Here, we used a high throughput screening approach to identify novel inhibitor scaffolds that block the activity of Plasmodium falciparum DPAP1. Most of the hits identified in this screen also inhibit Plasmodium falciparum DPAP3, cathepsin C, and to a lesser extent other malarial clan CA proteases, indicating that these might be general DPAP inhibitors. Interestingly, our mechanism of inhibition studies indicate that most hits are allosteric inhibitors, which opens a completely new strategy to inhibit these enzymes, study their biological function, and potentially develop new inhibitors as starting points for drug development.
Collapse
Affiliation(s)
- Mateo I. Sanchez
- Departments of Pathology and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Laura E. de Vries
- Chemical Biology Approaches to Malaria Lab, The Francis Crick Institute, London, United Kingdom
| | - Christine Lehmann
- Chemical Biology Approaches to Malaria Lab, The Francis Crick Institute, London, United Kingdom
| | - Jeong T. Lee
- Departments of Pathology and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Kenny K. Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Christopher Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Steven Chen
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA, United States of America
| | - Matthew Bogyo
- Departments of Pathology and Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
28
|
Rebernik M, Snoj T, Klemenčič M, Novinec M. Interplay between tetrameric structure, enzymatic activity and allosteric regulation of human dipeptidyl-peptidase I. Arch Biochem Biophys 2019; 675:108121. [DOI: 10.1016/j.abb.2019.108121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
|
29
|
Premedication with a cathepsin C inhibitor alleviates early primary graft dysfunction in mouse recipients after lung transplantation. Sci Rep 2019; 9:9925. [PMID: 31289357 PMCID: PMC6616352 DOI: 10.1038/s41598-019-46206-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophil serine proteases (NSPs), like proteinase 3 (PR3) and neutrophil elastase (NE) are implicated in ischemia-reperfusion responses after lung transplantation (LTx). Cathepsin C (CatC) acts as the key regulator of NSP maturation during biosynthesis. We hypothesized that CatC inhibitors would reduce vascular breakdown and inflammation during reperfusion in pretreated lung transplant recipients by blocking NSP maturation in the bone marrow. An orthotopic LTx model in mice was used to mimic the induction of an ischemia-reperfusion response after 18 h cold storage of the graft and LTx. Recipient mice were treated subcutaneously with a chemical CatC inhibitor (ICatC) for 10 days prior to LTx. We examined the effect of the ICatC treatment by measuring the gas exchange function of the left lung graft, protein content, neutrophil numbers and NSP activities in the bone marrow 4 h after reperfusion. Pre-operative ICatC treatment of the recipient mice improved early graft function and lead to the disappearance of active NSP protein in the transplanted lung. NSP activities were also substantially reduced in bone marrow neutrophils. Preemptive NSP reduction by CatC inhibition may prove to be a viable and effective approach to reduce immediate ischemia reperfusion responses after LTx.
Collapse
|
30
|
de Vries LE, Sanchez MI, Groborz K, Kuppens L, Poreba M, Lehmann C, Nevins N, Withers-Martinez C, Hirst DJ, Yuan F, Arastu-Kapur S, Horn M, Mares M, Bogyo M, Drag M, Deu E. Characterization of P. falciparum dipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptide-based substrates and covalent inhibitors. FEBS J 2019; 286:3998-4023. [PMID: 31177613 PMCID: PMC6851853 DOI: 10.1111/febs.14953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
Abstract
Malarial dipeptidyl aminopeptidases (DPAPs) are cysteine proteases important for parasite development thus making them attractive drug targets. In order to develop inhibitors specific to the parasite enzymes, it is necessary to map the determinants of substrate specificity of the parasite enzymes and its mammalian homologue cathepsin C (CatC). Here, we screened peptide-based libraries of substrates and covalent inhibitors to characterize the differences in specificity between parasite DPAPs and CatC, and used this information to develop highly selective DPAP1 and DPAP3 inhibitors. Interestingly, while the primary amino acid specificity of a protease is often used to develop potent inhibitors, we show that equally potent and highly specific inhibitors can be developed based on the sequences of nonoptimal peptide substrates. Finally, our homology modelling and docking studies provide potential structural explanations of the differences in specificity between DPAP1, DPAP3, and CatC, and between substrates and inhibitors in the case of DPAP3. Overall, this study illustrates that focusing the development of protease inhibitors solely on substrate specificity might overlook important structural features that can be exploited to develop highly potent and selective compounds.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mateo I Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Katarzyna Groborz
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Laurie Kuppens
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Marcin Poreba
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Christine Lehmann
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Neysa Nevins
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | | | - David J Hirst
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Stevenage, UK
| | - Fang Yuan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirin Arastu-Kapur
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mares
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcin Drag
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
31
|
Hou W, Sun H, Ma Y, Liu C, Zhang Z. Identification and Optimization of Novel Cathepsin C Inhibitors Derived from EGFR Inhibitors. J Med Chem 2019; 62:5901-5919. [DOI: 10.1021/acs.jmedchem.9b00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Weijie Hou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Huan Sun
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Yongfen Ma
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Chunyan Liu
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Zhiyuan Zhang
- National Institute of Biological Sciences (NIBS), 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| |
Collapse
|
32
|
Korkmaz B, Lesner A, Wysocka M, Gieldon A, Håkansson M, Gauthier F, Logan DT, Jenne DE, Lauritzen C, Pedersen J. Structure-based design and in vivo anti-arthritic activity evaluation of a potent dipeptidyl cyclopropyl nitrile inhibitor of cathepsin C. Biochem Pharmacol 2019; 164:349-367. [PMID: 30978322 DOI: 10.1016/j.bcp.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022]
Abstract
Cathepsin C (CatC) is a dipeptidyl-exopeptidase which activates neutrophil serine protease precursors (elastase, proteinase 3, cathepsin G and NSP4) by removing their N-terminal propeptide in bone marrow cells at the promyelocytic stage of neutrophil differentiation. The resulting active proteases are implicated in chronic inflammatory and autoimmune diseases. Hence, inhibition of CatC represents a therapeutic strategy to suppress excessive protease activities in various neutrophil mediated diseases. We designed and synthesized a series of dipeptidyl cyclopropyl nitrile compounds as putative CatC inhibitors. One compound, IcatCXPZ-01 ((S)-2-amino-N-((1R,2R)-1-cyano-2-(4'-(4-methylpiperazin-1-ylsulfonyl)biphenyl-4-yl)cyclopropyl)butanamide)) was identified as a potent inhibitor of both human and rodent CatC. In mice, pharmacokinetic studies revealed that IcatCXPZ-01 accumulated in the bone marrow reaching levels suitable for CatC inhibition. Subcutaneous administration of IcatCXPZ-01 in a monoclonal anti-collagen antibody induced mouse model of rheumatoid arthritis resulted in statistically significant anti-arthritic activity with persistent decrease in arthritis scores and paw thickness.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", 37032 Tours, France; Université de Tours, 37032 Tours, France.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Francis Gauthier
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", 37032 Tours, France; Université de Tours, 37032 Tours, France
| | | | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich, Germany; Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | | | - John Pedersen
- Neuprozyme Therapeutics A/S, 2970 Hörsholm, Denmark.
| |
Collapse
|
33
|
AhYoung AP, Lin SJ, Gerhardy S, van Lookeren Campagne M, Kirchhofer D. An ancient mechanism of arginine-specific substrate cleavage: What's 'up' with NSP4? Biochimie 2019; 166:19-26. [PMID: 30946946 DOI: 10.1016/j.biochi.2019.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022]
Abstract
The recently discovered neutrophil serine protease 4 (NSP4) is the fourth member of the NSP family, which includes the well-studied neutrophil elastase, proteinase 3 and cathepsin G. Like the other three NSP members, NSP4 is synthesized by myeloid precursors in the bone marrow and, after cleavage of the two-amino acid activation peptide, is stored as an active protease in azurophil granules of neutrophils. Based on its primary amino acid sequence, NSP4 is predicted to have a shallow S1 specificity pocket with elastase-like substrate specificity. However, NSP4 was found to preferentially cleave after an arginine residue. Structural studies resolved this paradox by revealing an unprecedented mechanism of P1-arginine recognition. In contrast to the canonical mechanism in which the P1-arginine residue points down into a deep S1 pocket, the arginine side chain adopts a surface-exposed 'up' conformation in the NSP4 active site. This conformation is stabilized by the Phe190 residue, which serves as a hydrophobic platform for the aliphatic portion of the arginine side chain, and a network of hydrogen bonds between the arginine guanidium group and the NSP4 residues Ser192 and Ser216. This unique configuration allows NSP4 to cleave even after naturally modified arginine residues, such as citrulline and methylarginine. This non-canonical mechanism, characterized by the hallmark 'triad' Phe190-Ser192-Ser216, is largely preserved throughout evolution starting with bony fish, which appeared about 400 million years ago. Although the substrates and physiological role of NSP4 remain to be determined, its remarkable evolutionary conservation, restricted tissue expression and homology to other neutrophil serine proteases anticipate a function in immune-related processes.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - S Jack Lin
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
34
|
Non-cystic fibrosis bronchiectasis: actual problem review and treatment prospects. КЛИНИЧЕСКАЯ ПРАКТИКА 2018. [DOI: 10.17816/clinpract9455-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review introduces some actual data related to the etiology, epidemiology, pathogenesis of non-cystic fibrosis bronchiectasis, presents the nowaday tendencies of treatment methods development.
Collapse
|
35
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
3D-QSAR, molecular docking and molecular dynamics simulations of oxazepane amidoacetonitrile derivatives as novel DPPI inhibitors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Palmér R, Mäenpää J, Jauhiainen A, Larsson B, Mo J, Russell M, Root J, Prothon S, Chialda L, Forte P, Egelrud T, Stenvall K, Gardiner P. Dipeptidyl Peptidase 1 Inhibitor AZD7986 Induces a Sustained, Exposure-Dependent Reduction in Neutrophil Elastase Activity in Healthy Subjects. Clin Pharmacol Ther 2018; 104:1155-1164. [PMID: 29484635 PMCID: PMC6282495 DOI: 10.1002/cpt.1053] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
Abstract
Neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. High NSP levels can be detrimental, particularly in lung tissue, and inhibition of NSPs is therefore an interesting therapeutic opportunity in multiple lung diseases, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. We conducted a randomized, placebo‐controlled, first‐in‐human study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of the DPP1 inhibitor AZD7986 in healthy subjects. Pharmacokinetic and pharmacodynamic data were analyzed using nonlinear mixed effects modeling and showed that AZD7986 inhibits whole blood NE activity in an exposure‐dependent, indirect manner—consistent with in vitro and preclinical predictions. Several dose‐dependent, possibly DPP1‐related, nonserious skin findings were observed, but these were not considered to prevent further clinical development. Overall, the study results provided confidence to progress AZD7986 to phase II and supported selection of a clinically relevant dose.
Collapse
Affiliation(s)
- Robert Palmér
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jukka Mäenpää
- Patient Safety, Respiratory, Inflammation, Autoimmunity, Infections and Vaccines Therapeutic Area, AstraZeneca, Gothenburg, Sweden
| | - Alexandra Jauhiainen
- Early Clinical Biometrics, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Bengt Larsson
- RIA Translational Medicines Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - John Mo
- Translational Biology, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Muir Russell
- Precision Medicine Laboratories, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - James Root
- Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Susanne Prothon
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ligia Chialda
- Parexel Early Phase Clinical Unit, Harrow, London, UK
| | - Pablo Forte
- Parexel Early Phase Clinical Unit, Harrow, London, UK
| | | | - Kristina Stenvall
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Philip Gardiner
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
38
|
Chalmers JD, Chotirmall SH. Bronchiectasis: new therapies and new perspectives. THE LANCET RESPIRATORY MEDICINE 2018; 6:715-726. [PMID: 29478908 DOI: 10.1016/s2213-2600(18)30053-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
European Respiratory Society guidelines for the management of adult bronchiectasis highlight the paucity of treatment options available for patients with this disorder. No treatments have been licensed by regulatory agencies worldwide, and most therapies used in clinical practice are based on very little evidence. Development of new treatments is needed urgently. We did a systematic review of scientific literature and clinical trial registries to identify agents in early-to-late clinical development for bronchiectasis in adults. In this Review, we discuss the mechanisms and potential roles of emerging therapies, including drugs that target airway and systemic inflammation, mucociliary clearance, and epithelial dysfunction. To ensure these treatments achieve success in randomised clinical trials-and therefore reach patients-we propose a reassessment of the current approach to bronchiectasis. Although understanding of the pathophysiology of bronchiectasis is at an early stage, we argue that bronchiectasis is a heterogeneous disease with many different biological mechanisms that drive disease progression (endotypes), and therefore the so-called treatable traits approach used in asthma and chronic obstructive pulmonary disease could be applied to bronchiectasis, with future trials targeted at the specific disease subgroups most likely to benefit.
Collapse
Affiliation(s)
- James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
39
|
Miller BE, Mayer RJ, Goyal N, Bal J, Dallow N, Boyce M, Carpenter D, Churchill A, Heslop T, Lazaar AL. Epithelial desquamation observed in a phase I study of an oral cathepsin C inhibitor (GSK2793660). Br J Clin Pharmacol 2017; 83:2813-2820. [PMID: 28800383 DOI: 10.1111/bcp.13398] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS Cathepsin C (CTSC) is necessary for the activation of several serine proteases including neutrophil elastase (NE), cathepsin G and proteinase 3. GSK2793660 is an oral, irreversible inhibitor of CTSC that is hypothesized to provide an alternative route to achieve NE inhibition and was tested in a Phase I study. METHODS Single escalating oral doses of GSK2793660 from 0.5 to 20 mg or placebo were administered in a randomized crossover design to healthy male subjects; a separate cohort received once daily doses of 12 mg or placebo for 21 days. Data were collected on safety, pharmacokinetics, CTSC enzyme inhibition and blood biomarkers. RESULTS Single, oral doses of GSK2793660 were able to dose-dependently inhibit whole blood CTSC activity. Once daily dosing of 12 mg GSK2793660 for 21 days achieved ≥90% inhibition (95% CI: 56, 130) of CTSC within 3 h on day 1. Only modest reductions of whole blood enzyme activity of approximately 20% were observed for NE, cathepsin G and proteinase 3. Seven of 10 subjects receiving repeat doses of GSK2793660 manifested epidermal desquamation on palmar and plantar surfaces beginning 7-10 days after dosing commencement. There were no other clinically important safety findings. CONCLUSIONS GSK2793660 inhibited CTSC activity but not the activity of downstream neutrophil serine proteases. The palmar-plantar epidermal desquamation suggests a previously unidentified role for CTSC or one of its target proteins in the maintenance and integrity of the epidermis at these sites, with some similarities to the phenotype of CTSC-deficient humans.
Collapse
Affiliation(s)
- Bruce E Miller
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Ruth J Mayer
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Navin Goyal
- Clinical Pharmacology Modeling and Simulation, GSK R&D, King of Prussia, Pennsylvania, USA
| | - Joanne Bal
- Clinical Pharmacology Sciences and Study Operations, GSK R&D, Stockley Park, UK
| | | | - Malcolm Boyce
- Hammersmith Medicines Research, Cumberland Avenue, London, UK
| | - Donald Carpenter
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| | | | - Teresa Heslop
- Department of In vitro/In vivo Translation, GlaxoSmithKline, Ware, UK
| | - Aili L Lazaar
- Respiratory Therapy Area Unit, GSK R&D, King of Prussia, Pennsylvania, USA
| |
Collapse
|