1
|
Hatori M, Tsuji D, Suzuki K, Yokokawa T, Kawakami K, Moriyama R, Osada-Tsuchiya M, Otake A, Nakao M, Yano T, Arakawa Y, Matsuo K, Ohashi Y, Sakata Y, Kogure Y, Tamaki S, Wada A, Taki Y, Sasahira N, Ishii H, Yamaguchi M, Itoh K. Pharmacogenomic study of gemcitabine efficacy in patients with metastatic pancreatic cancer: A multicenter, prospective, observational cohort study (GENESECT study). Cancer 2024; 130:2988-2999. [PMID: 38682652 DOI: 10.1002/cncr.35343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Genetic polymorphisms of molecules are known to cause individual differences in the therapeutic efficacy of anticancer drugs. However, to date, germline mutations (but not somatic mutations) for anticancer drugs have not been adequately studied. The objective of this study was to investigate the association between germline polymorphisms of gemcitabine metabolic and transporter genes with carbohydrate antigen 19-9 (CA 19-9) response (decrease ≥50% from the pretreatment level at 8 weeks) and overall survival (OS) in patients with metastatic pancreatic cancer who receive gemcitabine-based chemotherapy. METHODS This multicenter, prospective, observational study enrolled patients with metastatic pancreatic cancer patients who were receiving gemcitabine monotherapy or gemcitabine plus nanoparticle albumin-bound paclitaxel combination chemotherapy. Thirteen polymorphisms that may be involved in gemcitabine responsiveness were genotyped, and univariate and multivariate logistic regression analyses were used to determine the association of these genotypes with CA 19-9 response and OS. The significance level was set at 5%. RESULTS In total, 180 patients from 11 hospitals in Japan were registered, and 159 patients whose CA 19-9 response could be assessed were included in the final analysis. Patients who had a CA 19-9 response had significantly longer OS (372 vs. 241 days; p = .007). RRM1 2464A>G and RRM2 175T>G polymorphisms suggested a weak association with CA 19-9 response and OS, but it was not statistically significant. COX-2 -765G>C polymorphism did not significantly correlate with CA 19-9 response but was significantly associated with OS (hazard ratio, 2.031; p = .019). CONCLUSIONS Genetic polymorphisms from the pharmacokinetics of gemcitabine did not indicate a significant association with efficacy, but COX-2 polymorphisms involved in tumor cell proliferation might affect OS.
Collapse
Affiliation(s)
- Masahiro Hatori
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Daiki Tsuji
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kenichi Suzuki
- Department of Clinical Pharmacology, School of Pharmacy Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takashi Yokokawa
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuyoshi Kawakami
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Moriyama
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Marika Osada-Tsuchiya
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Aki Otake
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masahiko Nakao
- Department of Pharmacy and Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Takuya Yano
- Department of Pharmacy, Sumitomo Besshi Hospital, Niihama, Japan
| | - Yuichiro Arakawa
- Department of Pharmacy, Tochigi Cancer Center, Utsunomiya, Japan
| | - Keisuke Matsuo
- Department of Pharmacy, Beppu Medical Center, Beppu, Japan
| | - Yasukata Ohashi
- Department of Pharmacy, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuhiko Sakata
- Department of Pharmacy, Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Yuki Kogure
- Department of Pharmacy, National Center for Higashi-Hiroshima Medical Center, Higashi-Hiroshima, Japan
| | - Shinya Tamaki
- Department of Pharmacy, KKR Sapporo Medical Center, Sapporo, Japan
| | - Atsushi Wada
- Department of Pharmacy, Kobe Minimally Invasive Cancer Center, Kobe, Japan
| | - Yusuke Taki
- Department of Pharmacy, Kikugawa General Hospital, Kikugawa, Japan
| | - Naoki Sasahira
- Department of Gastroenterology, Cancer Institute Hospital, Tokyo, Japan
| | - Hiroshi Ishii
- Division of Gastroenterology, Chiba Cancer Center, Tokyo, Japan
| | - Masakazu Yamaguchi
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
2
|
Mahajan P, Palkar M, Pingili RB. Drug reactive metabolite-induced hepatotoxicity: a comprehensive review. Toxicol Mech Methods 2024; 34:607-627. [PMID: 38504503 DOI: 10.1080/15376516.2024.2332613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Nowadays, drug-induced liver toxicity (DILT) is one of the main contributing factors to severe liver disease. In the United States (US) alone, DILT is the cause of more than 50% of instances of acute liver failure. Prescription or over-the-counter drugs, xenobiotics, and herbal and nutritional supplements can cause DILT and could produce anomalies in hepatic function tests. Some drugs induce hepatotoxicity directly, and others induce it indirectly (i. e. through their toxic or reactive metabolites). Currently, the United States Food and Drug Administration (US FDA) has issued black box warnings for about 1279 drugs due to their hepatotoxicity. When we analyzed their mechanism in inducing hepatotoxicity, we found nearly 18 drugs causing hepatotoxicity by their toxic metabolites. In this review, we attempted to highlight the well-known drugs that induce hepatotoxicity indirectly through their toxic metabolites including the enzymes involved in the formation of these metabolites. The Cytochrome P-450 (CYP), Hypoxanthine phosphoribosyltransferase 1, Alcohol oxidase, Uridine diphosphate (UDP)-glucuronosyltransferases, Xanthine dehydrogenase, Purine-nucleoside phosphorylase, Xanthine oxidase, Thiopurine S-methyltransferase, Inosine-5'-monophosphate dehydrogenase, and aldehyde dehydrogenase are involving in the formation of toxic metabolites. The metabolic reactions and enzymes discussed in this review help toxicologists, pharmacologists, and chemists to design and develop hepatotoxicity-free pharmaceutical products containing the inhibitors of these enzymes to reduce hepatotoxicity and improve human health.
Collapse
Affiliation(s)
- Piyush Mahajan
- Department of Pharmaceutical Quality Assurance, SVKM's NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, SVKM's NMIMS Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, Maharashtra, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| |
Collapse
|
3
|
Yugatama A, Huang YL, Hsu MJ, Lin JP, Chao FC, Lam JKW, Hsieh CM. Oral Delivery of Photopolymerizable Nanogels Loaded with Gemcitabine for Pancreatic Cancer Therapy: Formulation Design, and in vitro and in vivo Evaluations. Int J Nanomedicine 2024; 19:3753-3772. [PMID: 38686338 PMCID: PMC11057685 DOI: 10.2147/ijn.s443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙μg/mL) compared to oral free-GEM (19.04 hr∙μg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.
Collapse
Affiliation(s)
- Adi Yugatama
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmacy, Sebelas Maret University, Surakarta, 57126, Indonesia
| | - Ya-Lin Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Pei Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fang-Ching Chao
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay, 91400, France
| | - Jenny K W Lam
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
4
|
Balar PC, Apostolopoulos V, Chavda VP. A new era of immune therapeutics for pancreatic cancer: Monoclonal antibodies paving the way. Eur J Pharmacol 2024; 969:176451. [PMID: 38408598 DOI: 10.1016/j.ejphar.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, remains a devastating disease with a dismal prognosis and limited survival rates. Despite various drug treatments and regimens showing promise in managing the disease, the clinical outcomes have not significantly improved. Immunotherapy however, has become a forefront area in pancreatic cancer treatment. This approach comprises a range of agents, including small molecule drugs, antibodies, combination therapies, and vaccines. In the last 5-8 years, there has been an upsurge of research into the use of monoclonal antibodies to block receptors on cancer or immune cells, revolutionising cancer treatment and management. Several targets have been identified and studied, with the most encouraging noted in relation to checkpoint markers, namely, antibodies targeting anti-programmed cell death 1 (PD-1) and its receptor PD-L1. Herein, we present the clinical developments in immunotherapy in the last 5 years especially those which have been tested in humans against pancreatic cancer.
Collapse
Affiliation(s)
- Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Werribee Campus, Melbourne, VIC, 3030, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| |
Collapse
|
5
|
Jiang L, Zhang L, Shu Y, Zhang Y, Gao L, Qiu S, Zhang W, Dai W, Chen S, Huang Y, Liu Y. Deciphering the role of Enterococcus faecium cytidine deaminase in gemcitabine resistance of gallbladder cancer. J Biol Chem 2024; 300:107171. [PMID: 38492776 PMCID: PMC11007441 DOI: 10.1016/j.jbc.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Gemcitabine-based chemotherapy is a cornerstone of standard care for gallbladder cancer (GBC) treatment. Still, drug resistance remains a significant challenge, influenced by factors such as tumor-associated microbiota impacting drug concentrations within tumors. Enterococcus faecium, a member of tumor-associated microbiota, was notably enriched in the GBC patient cluster. In this study, we investigated the biochemical characteristics, catalytic activity, and kinetics of the cytidine deaminase of E. faecium (EfCDA). EfCDA showed the ability to convert gemcitabine to its metabolite 2',2'-difluorodeoxyuridine. Both EfCDA and E. faecium can induce gemcitabine resistance in GBC cells. Moreover, we determined the crystal structure of EfCDA, in its apo form and in complex with 2', 2'-difluorodeoxyuridine at high resolution. Mutation of key residues abolished the catalytic activity of EfCDA and reduced the gemcitabine resistance in GBC cells. Our findings provide structural insights into the molecular basis for recognizing gemcitabine metabolite by a bacteria CDA protein and may provide potential strategies to combat cancer drug resistance and improve the efficacy of gemcitabine-based chemotherapy in GBC treatment.
Collapse
Affiliation(s)
- Lin Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingxiao Zhang
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Shu
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Zhang
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhua Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenting Dai
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shili Chen
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Huang
- Department of General Surgery, Shanghai Research Center of Biliary Tract Disease, Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Yanova MR, Zhiyanov AP, Antipenko ID, Slobodov SA, Stepanova EV. Intracellular Gemcitabine Monophosphate Levels Predict Chemotherapy Efficacy in Gemcitabine-Treated Patients with Bladder Cancer. DOKL BIOCHEM BIOPHYS 2023; 513:324-327. [PMID: 37768422 DOI: 10.1134/s1607672923700503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023]
Abstract
Gemcitabine monophosphate (dFdCMP), one of the intracellular forms of phosphorylated gemcitabine, determines its antitumor activity. A pharmaco-molecular model for determining relative gemcitabine monophosphate level based on the assessment of the activity of ENT1 and ENT2 channels as well as dCK and CDA enzymes in tumor tissue was developed. Relative gemcitabine monophosphate level is a more relevant predictive factor of gemcitabine resistance of bladder cancer as compared with the expression of individual markers related to dFdCMP formation.
Collapse
Affiliation(s)
- M R Yanova
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia.
| | - A P Zhiyanov
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
| | - I D Antipenko
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
| | - S A Slobodov
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
| | - E V Stepanova
- Faculty of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
| |
Collapse
|
7
|
Hruba L, Das V, Hajduch M, Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem Pharmacol 2023; 215:115741. [PMID: 37567317 DOI: 10.1016/j.bcp.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Nucleoside-based drugs, recognized as purine or pyrimidine analogs, have been potent therapeutic agents since their introduction in 1950, deployed widely in the treatment of diverse diseases such as cancers, myelodysplastic syndromes, multiple sclerosis, and viral infections. These antimetabolites establish complex interactions with cellular molecular constituents, primarily via activation of phosphorylation cascades leading to consequential interactions with nucleic acids. However, the therapeutic efficacy of these agents is frequently compromised by the development of drug resistance, a continually emerging challenge in their clinical application. This comprehensive review explores the mechanisms of resistance to nucleoside-based drugs, encompassing a wide spectrum of phenomena from alterations in membrane transporters and activating kinases to changes in drug elimination strategies and DNA damage repair mechanisms. The critical analysis in this review underlines complex interactions of drug and cell and also guides towards novel therapeutic strategies to counteract resistance. The development of targeted therapies, novel nucleoside analogs, and synergistic drug combinations are promising approaches to restore tumor sensitivity and improve patient outcomes.
Collapse
Affiliation(s)
- Lenka Hruba
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic; Laboratory of Experimental Medicine, University Hospital, Olomouc 779 00, Czech Republic.
| |
Collapse
|
8
|
Lin Q, Shen S, Qian Z, Rasam SS, Serratore A, Jusko WJ, Kandel ES, Qu J, Straubinger RM. Comparative Proteomic Analysis Identifies Key Metabolic Regulators of Gemcitabine Resistance in Pancreatic Cancer. Mol Cell Proteomics 2022; 21:100409. [PMID: 36084875 PMCID: PMC9582795 DOI: 10.1016/j.mcpro.2022.100409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/21/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current-based MS1 workflow to quantify ∼6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and 'drug response' mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Zhicheng Qian
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Sailee S Rasam
- Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, USA.
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
| |
Collapse
|
9
|
Matsumoto T, Masuo Y, Tanaka A, Kimura T, Ioroi T, Yamakawa T, Kitahara H, Kato Y. A physiologically based pharmacokinetic and pharmacodynamic model for disposition of FF-10832. Int J Pharm 2022; 627:122250. [DOI: 10.1016/j.ijpharm.2022.122250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/29/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
|
10
|
Zhong W, Zhang X, Duan X, Liu H, Fang Y, Luo M, Fang Z, Miao C, Lin D, Wu J. Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy. Acta Biomater 2022; 144:67-80. [PMID: 35331940 DOI: 10.1016/j.actbio.2022.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/30/2022]
Abstract
Gemcitabine, as a standard and classic strategy for B-cell lymphoma in the clinic, is limited by its poor pharmacodynamics. Although stimuli-responsive polymeric nanodelivery systems have been widely investigated in the past decade, issues such as complicated procedures, low loading capacity, and uncontrollable release kinetics still hinder their clinical translation. In view of the above considerations, we attempt to construct hyperbranched polyprodrug micelles with considerable drug loading via simple procedures and make use of the particularity of the tumor microenvironment to ensure that the micelles are "inactivated" in normal tissues and "activated" in the tumor microenvironment. Hence, in this work, a redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) with considerable loading capacity (≈ 24.6%) exhibited on-demand and accurate control of gemcitabine release under a simulated tumor microenvironment and thus significantly induced the apoptosis of B-cell lymphoma in vitro. Moreover, in the A20 tumor xenograft murine model, GSP NPs efficiently decreased the expansion of tumor tissues with minimal systemic toxicity. In summary, these redox-responsive and self-assembling GSP NPs with a facile one-pot synthesis procedure may hold great potency in clinical translation for enhanced chemotherapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: A redox-responsive polymeric gemcitabine-prodrug (GEM-S-S-PEG) was one-pot synthesized via facile esterification and acylation. The self-assembled subsize (< 100 nm) GEM-S-S-PEG (GSP NPs) exhibited significant tumor therapeutic effects in vitro and in vivo. The polyprodrug GEM-S-S-PEG prepared in this study shows the great potential of redox-responsive nanodrugs for antitumor activity, which provides a reference value for the optimization of the design of functional polyprodrugs.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao Duan
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 511436, China
| | - Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhengwen Fang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Heping Hospital of Changzhi Medical College, The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, Shanxi 046000, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Aughton K, Elander NO, Evans A, Jackson R, Campbell F, Costello E, Halloran CM, Mackey JR, Scarfe AG, Valle JW, Carter R, Cunningham D, Tebbutt NC, Goldstein D, Shannon J, Glimelius B, Hackert T, Charnley RM, Anthoney A, Lerch MM, Mayerle J, Palmer DH, Büchler MW, Ghaneh P, Neoptolemos JP, Greenhalf W. hENT1 Predicts Benefit from Gemcitabine in Pancreatic Cancer but Only with Low CDA mRNA. Cancers (Basel) 2021; 13:5758. [PMID: 34830914 PMCID: PMC8616255 DOI: 10.3390/cancers13225758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Gemcitabine or 5-fluorouracil (5-FU) based treatments can be selected for pancreatic cancer. Equilibrative nucleoside transporter 1 (hENT1) predicts adjuvant gemcitabine treatment benefit over 5-FU. Cytidine deaminase (CDA), inside or outside of the cancer cell, will deaminate gemcitabine, altering transporter affinity. ESPAC-3(v2) was a pancreatic cancer trial comparing adjuvant gemcitabine and 5-FU. Tissue microarray sections underwent in situ hybridization and immunohistochemistry. Analysis of both CDA and hENT1 was possible with 277 patients. The transcript did not correlate with protein levels for either marker. High hENT1 protein was prognostic with gemcitabine; median overall survival was 26.0 v 16.8 months (p = 0.006). Low CDA transcript was prognostic regardless of arm; 24.8 v 21.2 months with gemcitabine (p = 0.02) and 26.4 v 14.6 months with 5-FU (p = 0.02). Patients with low hENT1 protein did better with 5-FU, but only if the CDA transcript was low (median survival of 5-FU v gemcitabine; 29.3 v 18.3 months, compared with 14.2 v 14.6 with high CDA). CDA mRNA is an independent prognostic biomarker. When added to hENT1 protein status, it may also provide treatment-specific predictive information and, within the frame of a personalized treatment strategy, guide to either gemcitabine or 5FU for the individual patient.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - Nils O Elander
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
- Department of Oncology, Linköping University, SE-581 83 Linköping, Sweden
| | - Anthony Evans
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - Richard Jackson
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - Fiona Campbell
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - Christopher M Halloran
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - John R Mackey
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Andrew G Scarfe
- Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Juan W Valle
- The Christie NHS Foundation Trust, University of Manchester, Manchester M20 4BX, UK
| | | | - David Cunningham
- Royal Marsden National Health Service (NHS) Foundation Trust, London SW3 6JJ, UK
| | | | - David Goldstein
- Prince of Wales Hospital and Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jennifer Shannon
- Nepean Cancer Centre, University of Sydney, Sydney, NSW 2747, Australia
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Thilo Hackert
- Department of Surgery, University of Heidelberg, 69047 Heidelberg, Germany
| | | | | | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
- Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, 81377 München, Germany
| | - Daniel H Palmer
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - Markus W Büchler
- Department of Surgery, University of Heidelberg, 69047 Heidelberg, Germany
| | - Paula Ghaneh
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| | - John P Neoptolemos
- Department of Surgery, University of Heidelberg, 69047 Heidelberg, Germany
| | - William Greenhalf
- Liverpool Experimental Cancer Medicine Centre, 2nd Floor Sherrington Building, Ashton St, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
12
|
Malchiodi ZX, Cao H, Gay MD, Safronenka A, Bansal S, Tucker RD, Weinberg BA, Cheema A, Shivapurkar N, Smith JP. Cholecystokinin Receptor Antagonist Improves Efficacy of Chemotherapy in Murine Models of Pancreatic Cancer by Altering the Tumor Microenvironment. Cancers (Basel) 2021; 13:4949. [PMID: 34638432 PMCID: PMC8508339 DOI: 10.3390/cancers13194949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is resistant to chemotherapy in part due to the dense desmoplastic fibrosis surrounding the tumor, the immunosuppressive cells in the tumor microenvironment (TME), and the early rate of metastases. In this study, we examined the effects of a CCK receptor antagonist, proglumide, alone and in combination with gemcitabine in murine models of pancreatic cancer. Tumor growth rate, metastases, and survival were assessed in mice bearing syngeneic murine or human pancreatic tumors treated with PBS (control), gemcitabine, proglumide, or the combination of gemcitabine and proglumide. Excised tumors were evaluated histologically for fibrosis, immune cells, molecular markers, and uptake of chemotherapy by mass spectroscopy. Peripheral blood was analyzed with a microRNAs biomarker panel associated with fibrosis and oncogenesis. Differentially expressed genes between tumors of mice treated with gemcitabine monotherapy and combination therapy were compared by RNAseq. When given in combination the two compounds exhibited inhibitory effects by decreasing tumor growth rate by 70%, metastases, and prolonging survival. Proglumide monotherapy altered the TME by decreasing fibrosis, increasing intratumoral CD8+ T-cells, and decreasing arginase-positive cells, thus rendering the tumor sensitive to chemotherapy. Proglumide altered the expression of genes involved in fibrosis, epithelial-mesenchymal transition, and invasion. CCK-receptor antagonism with proglumide renders pancreatic cancer susceptible to chemotherapy.
Collapse
Affiliation(s)
- Zoe X. Malchiodi
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Hong Cao
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Martha D. Gay
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Anita Safronenka
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Sunil Bansal
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Robin D. Tucker
- Department of Pathology, Georgetown University, Washington, DC 20057, USA;
| | - Benjamin A. Weinberg
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Amrita Cheema
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| | - Jill P. Smith
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (Z.X.M.); (S.B.); (A.C.)
- Department of Medicine, Georgetown University, Washington, DC 20057, USA; (H.C.); (M.D.G.); (A.S.); (B.A.W.)
| |
Collapse
|
13
|
Ruan JL, Browning RJ, Yildiz YO, Bau L, Kamila S, Gray MD, Folkes L, Hampson A, McHale AP, Callan JF, Vojnovic B, Kiltie AE, Stride E. Evaluation of Loading Strategies to Improve Tumor Uptake of Gemcitabine in a Murine Orthotopic Bladder Cancer Model Using Ultrasound and Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1596-1615. [PMID: 33707089 DOI: 10.1016/j.ultrasmedbio.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
In this study we compared three different microbubble-based approaches to the delivery of a widely used chemotherapy drug, gemcitabine: (i) co-administration of gemcitabine and microbubbles (Gem+MB); (ii) conjugates of microbubbles and gemcitabine-loaded liposomes (GemlipoMB); and (iii) microbubbles with gemcitabine directly bound to their surfaces (GembioMB). Both in vitro and in vivo investigations were carried out, respectively, in the RT112 bladder cancer cell line and in a murine orthotopic muscle-invasive bladder cancer model. The in vitro (in vivo) ultrasound exposure conditions were a 1 (1.1) MHz centre frequency, 0.07 (1.0) MPa peak negative pressure, 3000 (20,000) cycles and 100 (0.5) Hz pulse repetition frequency. Ultrasound exposure produced no significant increase in drug uptake either in vitro or in vivo compared with the drug-only control for co-administered gemcitabine and microbubbles. In vivo, GemlipoMB prolonged the plasma circulation time of gemcitabine, but only GembioMB produced a statistically significant increase in cleaved caspase 3 expression in the tumor, indicative of gemcitabine-induced apoptosis.
Collapse
Affiliation(s)
- Jia-Ling Ruan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Richard J Browning
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yesna O Yildiz
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sukanta Kamila
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Michael D Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Lisa Folkes
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Alix Hampson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anthony P McHale
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - John F Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Borivoj Vojnovic
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anne E Kiltie
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Tang M, Lozano Hernandez L, Reginald-Opara JN, Svirskis D, Leung E, Wang H, Wu Z. Zebularine suppressed gemcitabine-induced senescence and improved the cellular and plasma pharmacokinetics of gemcitabine, augmented by liposomal co-delivery. Int J Pharm 2021; 602:120659. [PMID: 33933647 DOI: 10.1016/j.ijpharm.2021.120659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Chemoresistance is a major factor driving cancer recurrence. This study investigated the potential of zebularine, a dual cytidine deaminase (CDA)/epigenetic inhibitor, to circumvent gemcitabine-resistance in pancreatic cancer using a nanomedicine co-delivery approach. The mRNA expression of key metabolic enzymes, including CDA for gemcitabine deactivation in a gemcitabine-resistant cell line Gr2000 and its parental MIA PaCa-2 was compared using quantitative reverse transcription polymerase chain reaction. A highly gemcitabine-resistant population (HRP) in Gr2000 were characterised for their growth pattern, β-galactosidase activity (a hallmark of senescence) and chemosensitivity to zebularine after isolation. The CDA inhibition effects of zebularine on the intracellular gemcitabine accumulation and pharmacokinetics in rats when co-delivered with pH-sensitive liposomes (pSL) were investigated. Gr2000 had a 3-time upregulated mRNA expression and enzyme activity for CDA. The HRP (28% of bulk Gr2000) were predominately senescent cells which re-proliferated following a growth arrest for a week. Zebularine suppressed the regrowth of senescent cells, meanwhile enhanced cellular gemcitabine concentration by 2-fold. When co-delivered with pSL, zebularine increased cellular gemcitabine concentration by 4-fold, and extended the half-life of gemcitabine in plasma by 22-fold in rats. In conclusion, multiple mechanisms including therapy-induced senescence were identified with gemcitabine-resistance. Co-delivery of zebularine using liposomes could provide multifaceted benefits in gemcitabine therapy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lina Lozano Hernandez
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Joy N Reginald-Opara
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
15
|
Wang Q, Zhu X, Wu Z, Sun T, Huang W, Wang Z, Ding X, Jiang C, Li F. Theranostic nanoparticles enabling the release of phosphorylated gemcitabine for advanced pancreatic cancer therapy. J Mater Chem B 2021; 8:2410-2417. [PMID: 32100811 DOI: 10.1039/d0tb00017e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gemcitabine (GEM) has been the recommended first-line drug for patients with pancreatic ductal adenocarcinoma cancer (PDAC) for the last twenty years. However, GEM-based treatment has failed in many patients because of the drug resistance acquired during tumorigenesis and development. To override resistance to GEM in pancreatic cancer, we developed a visualisable, photothermally controlled, drug release nanosystem (VPNS). This nanosystem has NaLuF4:Nd@NaLuF4 nanoparticles as the luminescent core, octabutoxyphthalocyanine palladium(ii) (PdPc) as the photothermal agent, and phosphorylated gemcitabine (pGEM) as the chemodrug. pGEM, one of the active forms of GEM, can circumvent the insufficient activation of GEM in cancer cell metabolism. The NaLuF4:Nd@NaLuF4 nanoparticles were employed to visualise the tumor lesion in vivo by their near-infrared luminescence. The near-infrared light-triggered photothermal effect from PdPc could trigger the release of pGEM loaded in a thermally responsive ligand and simultaneously enable photothermal cancer treatment. This work presents an effective method that suppresses the growth of tumour cells with dual-mode treatment and enables the improved treatment of orthotopic nude mice afflicted with pancreatic cancer.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China and Institute of Biomedical Sciences, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Xingjun Zhu
- Institute of Biomedical Sciences, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Wei Huang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Zhongmin Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Xiaoyi Ding
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Fuyou Li
- Institute of Biomedical Sciences, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
16
|
Winkler C, Armenia J, Jones GN, Tobalina L, Sale MJ, Petreus T, Baird T, Serra V, Wang AT, Lau A, Garnett MJ, Jaaks P, Coker EA, Pierce AJ, O'Connor MJ, Leo E. SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. Br J Cancer 2021; 124:951-962. [PMID: 33339894 PMCID: PMC7921667 DOI: 10.1038/s41416-020-01199-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Schlafen 11 (SLFN11) has been linked with response to DNA-damaging agents (DDA) and PARP inhibitors. An in-depth understanding of several aspects of its role as a biomarker in cancer is missing, as is a comprehensive analysis of the clinical significance of SLFN11 as a predictive biomarker to DDA and/or DNA damage-response inhibitor (DDRi) therapies. METHODS We used a multidisciplinary effort combining specific immunohistochemistry, pharmacology tests, anticancer combination therapies and mechanistic studies to assess SLFN11 as a potential biomarker for stratification of patients treated with several DDA and/or DDRi in the preclinical and clinical setting. RESULTS SLFN11 protein associated with both preclinical and patient treatment response to DDA, but not to non-DDA or DDRi therapies, such as WEE1 inhibitor or olaparib in breast cancer. SLFN11-low/absent cancers were identified across different tumour types tested. Combinations of DDA with DDRi targeting the replication-stress response (ATR, CHK1 and WEE1) could re-sensitise SLFN11-absent/low cancer models to the DDA treatment and were effective in upper gastrointestinal and genitourinary malignancies. CONCLUSION SLFN11 informs on the standard of care chemotherapy based on DDA and the effect of selected combinations with ATR, WEE1 or CHK1 inhibitor in a wide range of cancer types and models.
Collapse
Affiliation(s)
| | - Joshua Armenia
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Luis Tobalina
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Matthew J Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridge, UK
| | - Tudor Petreus
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Tarrion Baird
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d' Hebron Institute of Oncology, Barcelona, Spain
| | | | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
17
|
Heyder RS, Sunbul FS, Almuqbil RM, Fines CB, da Rocha SRP. Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. J Control Release 2021; 330:1178-1190. [PMID: 33212118 PMCID: PMC10939058 DOI: 10.1016/j.jconrel.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Gemcitabine (GMT) is a nucleoside analog used in the treatment of a variety of solid tumors. GMT was chemically modified with a hydrolysable linker, and subsequently incorporated into a poly(anhydride-ester) backbone via melt-polymerization, with the active antimetabolite GMT, thus, becoming the repeat unit that makes up this new material, a biodegradable polymer. Characterization of the structure of polymeric GMT (polyGMT) revealed the incorporation of an average 26 molecules of GMT per polymer chain, which corresponds to a drug loading of 58%w/w. The glass transition temperature of the formed polyGMT was determined to be 123 °C. PolyGMT was engineered into nanoparticles (NPs) using a dialysis-based method, with a resulting geometric diameter of 206 ± 38 nm. The particles are easily dispersible and stable in aqueous-based media, with a hydrodynamic diameter of 229 ± 28 nm. The prepared hydrolysable polyGMT NPs demonstrate ultra-long release profile due to the hydrophobic nature of the linker, and as per characteristic erosion behavior of polymers with anhydride-ester bonds. Accelerated in vitro release studies demonstrate the recovery of free GMT upon hydrolysis, with biological activity as assessed by cytotoxicity assays performed in adenocarcinoma human alveolar basal epithelial (A549) and highly metastatic murine osteosarcoma (K7M2) cells lines. The characteristics of polyGMT, including its thermal properties and built in hydrolysable structure, are thus conducive for use in the preparation of drug delivery systems. Engineered structures prepared with polyGMT can maintain their morphology at ambient and physiologically relevant conditions, and free GMT is recovered as the anhydride and ester bonds are hydrolyzed. This work is innovative as for the first time we demonstrate the ability to polymerize GMT in a hydrolysable polymer structure, and engineer NPs of this polymeric chemotherapy. The synthetic strategy allows for tuning of the polymer hydrophobicity and thus potentialize its behavior, including degradation profile, by varying the linker chemistry. Such controlled release hydrolysable polymers with very high drug loading and controlled erosion profiles are relevant as they may offer new opportunities in drug delivery applications for the treatment of malignant neoplasms.
Collapse
Affiliation(s)
- Rodrigo S Heyder
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Fatemah S Sunbul
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Rashed M Almuqbil
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Cory B Fines
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States.
| |
Collapse
|
18
|
Derissen EJB, Beijnen JH. Intracellular Pharmacokinetics of Pyrimidine Analogues used in Oncology and the Correlation with Drug Action. Clin Pharmacokinet 2020; 59:1521-1550. [PMID: 33064276 PMCID: PMC7717039 DOI: 10.1007/s40262-020-00934-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyrimidine analogues can be considered as prodrugs, like their natural counterparts, they have to be activated within the cell. The intracellular activation involves several metabolic steps including sequential phosphorylation to its monophosphate, diphosphate and triphosphate. The intracellularly formed nucleotides are responsible for the pharmacological effects. This review provides a comprehensive overview of the clinical studies that measured the intracellular nucleotide concentrations of pyrimidine analogues in patients with cancer. The objective was to gain more insight into the parallels between the different pyrimidine analogues considering their intracellular pharmacokinetics. For cytarabine and gemcitabine, the intracellular pharmacokinetics have been extensively studied over the years. However, for 5-fluorouracil, capecitabine, azacitidine and decitabine, the intracellular pharmacokinetics was only very minimally investigated. This is probably owing to the fact that there were no suitable bioanalytical assays for a long time. Since the advent of suitable assays, the first exploratory studies indicate that the intracellular 5-fluorouracil, azacitidine and decitabine nucleotide concentrations are very low compared with the intracellular nucleotide concentrations obtained during treatment with cytarabine or gemcitabine. Based on their pharmacology, the intracellular accumulation of nucleotides appears critical to the cytotoxicity of pyrimidine analogues. However, not many clinical studies have actually investigated the relationship between the intracellular nucleotide concentrations in patients with cancer and the anti-tumour effect. Only for cytarabine, a relationship was demonstrated between the intracellular triphosphate concentrations in leukaemic cells and the response rate in patients with AML. Future clinical studies should show, for the other pyrimidine analogues, whether there is a relationship between the intracellular nucleotide concentrations and the clinical outcome of patients. Research that examined the intracellular pharmacokinetics of cytarabine and gemcitabine focused primarily on the saturation aspect of the intracellular triphosphate formation. Attempts to improve the dosing regimen of gemcitabine were aimed at maximising the intracellular gemcitabine triphosphate concentrations. However, this strategy does not make sense, as efficient administration also means that less gemcitabine can be administered before dose-limiting toxicities are achieved. For all pyrimidine analogues, a linear relationship was found between the dose and the plasma concentration. However, no correlation was found between the plasma concentration and the intracellular nucleotide concentration. The concentration-time curves for the intracellular nucleotides showed considerable inter-individual variation. Therefore, the question arises whether pyrimidine analogue therapy should be more individualised. Future research should show which intracellular nucleotide concentrations are worth pursuing and whether dose individualisation is useful to achieve these concentrations.
Collapse
Affiliation(s)
- Ellen J B Derissen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC , Amsterdam, The Netherlands. .,Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Pharmacy , Elisabeth-TweeSteden Hospital, Dr. Deelenlaan 5, 5042 AD, Tilburg, The Netherlands.
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC , Amsterdam, The Netherlands.,Science Faculty, Division of Pharmaco-epidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
19
|
Seo HK, Lee SJ, Kwon WA, Jeong KC. Docetaxel-resistant prostate cancer cells become sensitive to gemcitabine due to the upregulation of ABCB1. Prostate 2020; 80:453-462. [PMID: 32134535 DOI: 10.1002/pros.23946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Docetaxel is the preferred chemotherapeutic agent for hormone-refractory prostate cancer (PC) patients. However, patients eventually develop docetaxel resistance, and no effective treatment options are available for them. OBJECTIVE We aimed to establish docetaxel resistance in castration-resistant prostate cancer (CRPC) cell lines (DU145/TXR, PC-3/TXR, and CWR22/TXR) and characterized transcriptional changes upon acquiring resistance to the docetaxel. METHODS Human PC cells (DU145, PC-3, CWR22) and all docetaxel-resistant cells were maintained in Roswell Park Memorial Institute Medium (RPMI) 1640 media supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. ABCB1 was detected by using both parental and docetaxel-resistant CRPCs prepared for flow cytometry. For the evaluation of tumor-suppressive effects under each chemotherapeutic agent, subcutaneous xenografts of DU145 or DU145/TXR were implanted at the mouse flank. RESULTS The P-glycoprotein-encoding gene ABCB1 was distinctively upregulated in the resistant cells, and its overexpression played an essential role in docetaxel resistance in CRPC. When tested for the cytotoxicity of gemcitabine, another option for chemotherapy, the docetaxel-resistant cells were shown to become sensitive to the drug, implying additional phenotypic transformation in the docetaxel-resistant cells. Studies using xenograft animal models demonstrated that the growth of tumors composed of both docetaxel-sensitive and docetaxel-resistant cells was deterred most profoundly when docetaxel and gemcitabine were administered together. CONCLUSION This study suggests that when a drug develops therapeutic resistance, sensitivity tests could be another option, ultimately providing insight into a novel alternative clinical strategy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Cell Cycle/drug effects
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Docetaxel/pharmacology
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Male
- Mice
- Mice, Nude
- PC-3 Cells
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Transcriptome
- Transfection
- Up-Regulation
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Ho Kyung Seo
- Department of Urology, Center for Urologic Cancer, Hospital Division of Tumor Immunology, Research Institute National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang-Jin Lee
- Department of Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Whi-An Kwon
- Department of Urology, Myongji Hospital, Hanyang University College of Medicine, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung-Chae Jeong
- Department of Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Sassen SDT, Zwaan CM, van der Sluis IM, Mathôt RAA. Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatr Blood Cancer 2020; 67:e28132. [PMID: 31876123 DOI: 10.1002/pbc.28132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/28/2022]
Abstract
Pharmacokinetic research has become increasingly important in pediatric oncology as it can have direct clinical implications and is a crucial component in individualized medicine. Population pharmacokinetics has become a popular method especially in children, due to the potential for sparse sampling, flexible sampling times, computing of heterogeneous data, and identification of variability sources. However, population pharmacokinetic reports can be complex and difficult to interpret. The aim of this article is to provide a basic explanation of population pharmacokinetics, using clinical examples from the field of pediatric oncology, to facilitate the translation of pharmacokinetic research into the daily clinic.
Collapse
Affiliation(s)
- Sebastiaan D T Sassen
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Garcia-Cremades M, Melillo N, Troconiz IF, Magni P. Mechanistic Multiscale Pharmacokinetic Model for the Anticancer Drug 2',2'-difluorodeoxycytidine (Gemcitabine) in Pancreatic Cancer. Clin Transl Sci 2020; 13:608-617. [PMID: 32043298 PMCID: PMC7214642 DOI: 10.1111/cts.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022] Open
Abstract
The aim of this work is to build a mechanistic multiscale pharmacokinetic model for the anticancer drug 2’,2’‐difluorodeoxycytidine (gemcitabine, dFdC), able to describe the concentrations of dFdC metabolites in the pancreatic tumor tissue in dependence of physiological and genetic patient characteristics, and, more in general, to explore the capabilities and limitations of this kind of modeling strategy. A mechanistic model characterizing dFdC metabolic pathway (metabolic network) was developed using in vitro literature data from two pancreatic cancer cell lines. The network was able to describe the time course of extracellular and intracellular dFdC metabolites concentrations. Moreover, a physiologically‐based pharmacokinetic model was developed to describe clinical dFdC profiles by using enzymatic and physiological information available in the literature. This model was then coupled with the metabolic network to describe the dFdC active metabolite profile in the pancreatic tumor tissue. Finally, global sensitivity analysis was performed to identify the parameters that mainly drive the interindividual variability for the area under the curve (AUC) of dFdC in plasma and of its active metabolite (dFdCTP) in tumor tissue. From this analysis, cytidine deaminase (CDA) concentration was identified as the main driver of plasma dFdC AUC interindividual variability, whereas CDA and deoxycytidine kinase concentration mainly explained the tumor dFdCTP AUC variability. However, the lack of in vitro and in vivo information needed to characterize key model parameters hampers the development of this kind of mechanistic approach. Further studies to better characterize pancreatic cell lines and patient enzymes polymorphisms are encouraged to refine and validate the current model.
Collapse
Affiliation(s)
- Maria Garcia-Cremades
- Pharmacometrics & Systems Pharmacology, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Nicola Melillo
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Iñaki F Troconiz
- Pharmacometrics & Systems Pharmacology, Department of Chemistry and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdisNA), University of Navarra, Pamplona, Spain
| | - Paolo Magni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Van Nuland M, Rosing H, Thijssen B, Burgers JA, Huitema ADR, Marchetti S, Schellens JHM, Beijnen JH. Pilot Study to Predict Pharmacokinetics of a Therapeutic Gemcitabine Dose From a Microdose. Clin Pharmacol Drug Dev 2020; 9:929-937. [PMID: 31970932 DOI: 10.1002/cpdd.774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Microdose studies are exploratory trials to determine early drug pharmacokinetics in humans. In this trial we examined whether the pharmacokinetics of gemcitabine at a therapeutic dose could be predicted from the pharmacokinetics of a microdose. In this prospective, open-label microdosing study, a gemcitabine microdose (100 µg) was given intravenously to participants on day 1, followed by a therapeutic dose (1250 mg/m2 ) on day 2. Gemcitabine and its metabolite 2',2'-difluorodeoxyuracil (dFdU) were quantified in plasma and intracellularly by using liquid chromatography-mass spectrometry). Noncompartmental pharmacokinetic analysis was performed. Ten patients participated in this study. The mean area under the plasma concentration-time curve (AUC0-8 ) of gemcitabine after microdosing was 0.00074 h·mg/L and after therapeutic dosing was 16 h·mg/L. The mean AUC0-8 of dFdU following the microdose and therapeutic dose were 0.022 h·mg/L and 169 h·mg/L, respectively. Exposure to gemcitabine after the therapeutic dose was within 2-fold of the exposure following a microdose, when linearly extrapolated to 1250 mg/m2 . However, the shape of the concentration-time curve was different, as reflected by poor scalability in volume of distribution (939 L versus 222 L). Furthermore, intracellularly phosphorylated gemcitabine and phosphorylated dFdU levels could not be predicted from the microdose. The AUC0-8 of gemcitabine at therapeutic dose was accurately predicted by the pharmacokinetics of a microdose, when linearly extrapolated to 1250 mg/m2 . Volume of distribution, elimination rate constant, and intracellular pharmacokinetics of the therapeutic dose could not be predicted from the microdose, which demonstrates limitations of the microdose approach in this case.
Collapse
Affiliation(s)
- M Van Nuland
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - H Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - B Thijssen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J A Burgers
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Clinical Pharmacy University Medical Center Utrecht, Utrecht University, the Netherlands
| | - S Marchetti
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J H M Schellens
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
23
|
Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Tan Hui Yin
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Taasjir Kaur
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Wei Jia
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - S Q Lawrence Tan
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - How Weijie
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eric Koh Sze Yang
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin Guan Keat
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagasekhara Molugulu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia; Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
24
|
Jadav T, Jain S, Kalia K, Sengupta P. Current Standing and Technical Guidance on Intracellular Drug Quantification: A New Site Specific Bioavailability Prediction Approach. Crit Rev Anal Chem 2019; 50:50-61. [DOI: 10.1080/10408347.2019.1570462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Sonali Jain
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
25
|
Alharbi AF, Kratzke RA, D'Cunha J, Maddaus MA, Sanghavi K, Kirstein MN. Gemcitabine and metabolite pharmacokinetics in advanced NSCLC patients after bronchial artery infusion and intravenous infusion. Cancer Chemother Pharmacol 2018; 83:387-391. [PMID: 30542769 DOI: 10.1007/s00280-018-3757-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE We investigated the safety, pharmacokinetics, and efficacy of gemcitabine administered via bronchial artery infusion (BAI) and IV infusion in advanced NSCLC patients. METHODS Patients were eligible if they had received at least two prior cytotoxic chemotherapy regimens. Gemcitabine was administered via BAI as 600 mg/m2 on day one of cycle one, followed by IV as 1000 mg/m2 on day eight of cycle one, and IV on days one and eight of all subsequent cycles. Pharmacokinetics for gemcitabine and dFdU metabolite in plasma, and dFdCTP active metabolite in peripheral blood mononuclear cells (PBMC) were evaluated. Intensive pharmacokinetic sampling was performed after BAI and IV infusions during cycle one. RESULTS Three male patients (age range 59-68 years) were evaluated. All patients responded with stable disease or better. One PR was observed after cycle three, and the remaining had SD. Cmax (mean ± SD) following BAI for gemcitabine, dFdCTP, and dFdU were 7.71 ± 0.13, 66.5 ± 40.6, and 38 ± 6.27 µM and following IV infusion, 17 ± 2.36, 50.8 ± 3.61, and 83.2 ± 12.3 µM, respectively. The AUCinf (mean ± SD) following BAI for gemcitabine, dFdCTP, and dFdU were 6.89 ± 1.2, 791.1 ± 551.2, and 829.9 ± 217.8 µM h and following IV infusion, 12.5 ± 3.13, 584 ± 86.6, and 1394.64 ± 682.2 µM h, respectively. The AUC and Cmax of dFdCTP after BAI were higher than IV. The median OS was 6.27 months. No grade 3 or 4 toxicity was observed. The most common side effects were all grade ≤ 2 involving nausea, vomiting, rigor, thrombocytopenia, and anemia. CONCLUSIONS Systemic exposure to dFdCTP was higher after BAI than IV in two out of three patients.
Collapse
Affiliation(s)
- Abeer F Alharbi
- Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert A Kratzke
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jonathan D'Cunha
- Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Michael Anthony Maddaus
- Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kinjal Sanghavi
- Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark N Kirstein
- Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
26
|
Derissen EJB, Huitema ADR, Rosing H, Schellens JHM, Beijnen JH. Intracellular pharmacokinetics of gemcitabine, its deaminated metabolite 2',2'-difluorodeoxyuridine and their nucleotides. Br J Clin Pharmacol 2018; 84:1279-1289. [PMID: 29451684 DOI: 10.1111/bcp.13557] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/01/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is a prodrug that has to be phosphorylated within the tumour cell to become active. Intracellularly formed gemcitabine diphosphate (dFdCDP) and triphosphate (dFdCTP) are considered responsible for the antineoplastic effects of gemcitabine. However, a major part of gemcitabine is converted into 2',2'-difluoro-2'-deoxyuridine (dFdU) by deamination. In the cell, dFdU can also be phosphorylated to its monophosphate (dFdUMP), diphosphate (dFdUDP) and triphosphate (dFdUTP). In vitro data suggest that these dFdU nucleotides might also contribute to the antitumour effects, although little is known about their intracellular pharmacokinetics (PK). Therefore, the objective of the present study was to gain insight into the intracellular PK of all dFdC and dFdU nucleotides formed during gemcitabine treatment. METHODS Peripheral blood mononuclear cell (PBMC) samples were collected from 38 patients receiving gemcitabine, at multiple time points after infusion. Gemcitabine, dFdU and their nucleotides were quantified in PBMCs. In addition, gemcitabine and dFdU plasma concentrations were monitored. The individual PK parameters in plasma and in PBMCs were determined. RESULTS Both in plasma and in PBMCs, dFdU was present in higher concentrations than gemcitabine [mean intracellular area under the concentration-time curve from time zero to 24 h (AUC0-24 h ) 1650 vs. 95 μM*h]. However, the dFdUMP, dFdUDP and dFdUTP concentrations in PBMCs were much lower than the dFdCDP and dFdCTP concentrations. The mean AUC0-24 h for dFdUTP was 312 μM*h vs. 2640 μM*h for dFdCTP. CONCLUSIONS The study provides the first complete picture of all nucleotides that are formed intracellularly during gemcitabine treatment. Low intracellular dFdU nucleotide concentrations were found, which calls into question the relevance of these nucleotides for the cytotoxic effects of gemcitabine.
Collapse
Affiliation(s)
- Ellen J B Derissen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands.,Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508, TB, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg, 6, 1066, EC, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508, TB, Utrecht, The Netherlands
| |
Collapse
|