1
|
Shibata Y, Matsumoto N, Murase R, Kubota Y, Ishida H, Shimada K, Fujita KI. A polymorphism in ABCA2 is associated with neutropenia induced by capecitabine in Japanese patients with colorectal cancer. Cancer Chemother Pharmacol 2023; 92:465-474. [PMID: 37653272 DOI: 10.1007/s00280-023-04584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Capecitabine is a prodrug that converts to 5-fluorouracil (5-FU) in three steps. A previous study showed that ABCA2 rs2271862 (C > T) and ABCG5 rs6720173 were associated with increased clearance of 5-FU and 5'-deoxy-5-fluorouridine, respectively, in Spanish patients with colorectal cancer (CRC) (Br J Clin Pharmacol 2021) and reported that ABCA2 rs2271862 was associated with decreased risk of capecitabine-induced neutropenia. Other studies have reported that ABCB1 rs1128503, rs2032592, and rs1045642 were associated with capecitabine-induced toxicity in Spanish CRC patients (Oncotarget 2015, Phamacogenomics 2010). Here, we prospectively examined the effects of ABC transporter genes polymorphisms on capecitabine pharmacokinetics and toxicity. METHODS We enrolled patients with postoperative CRC treated with adjuvant capecitabine plus oxaliplatin (CapeOX) and patients with metastatic CRC receiving CapeOX. Pharmacokinetic analysis of the first capecitabine dose (1000 mg/m2) was performed on day 1. We analyzed plasma concentrations of capecitabine and its three metabolites by high-performance liquid chromatography and ABC transporter genes polymorphisms using direct sequencing. RESULTS Patients with ABCA2 rs2271862 T/T genotype had significantly lower area under the plasma concentration-time curve of capecitabine, but not of its metabolites, which were divided by the dose of the parent drug, than patients with C/C or C/T genotype (P = 0.0238). Frequency of ≥ grade 2 neutropenia was significantly lower in patients with ABCA2 rs2271862 T/T genotype (P = 0.00915). Polymorphisms in ABCG5 and ABCB1 were not associated with capecitabine pharmacokinetics and toxicity. CONCLUSIONS We found that ABCA2 polymorphism was significantly associated with systemic exposure to capecitabine and capecitabine-induced neutropenia in Japanese patients with CRC.
Collapse
Affiliation(s)
- Yukitaka Shibata
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Natsumi Matsumoto
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Remi Murase
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroo Ishida
- Division of Medical Oncology, Showa University Northern Yokohama Hospital, 35-1 Chigasakichuo, Tsuzuki-ku, Yokohama, 224-8503, Japan
| | - Ken Shimada
- Division of Medical Oncology, Showa University Koto Toyosu Hospital, Koto-ku, Tokyo, 135-8577, Japan
| | - Ken-Ichi Fujita
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
2
|
Wang Y, Hu H, Yu L, Zeng S. Physiologically Based Pharmacokinetic Modeling for Prediction of 5-FU Pharmacokinetics in Cancer Patients with Hepatic Impairment After 5-FU and Capecitabine Administration. Pharm Res 2023; 40:2177-2194. [PMID: 37610618 DOI: 10.1007/s11095-023-03585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE 5-fluorouracil (5-FU) and its prodrug capecitabine are commonly prescribed anti-tumor medications. We aimed to establish physiologically based pharmacokinetic (PBPK) models of capecitabine-metabolites and 5-FU-metabolites to describe their pharmacokinetics in tumor and plasma of cancer patients with liver impairment. METHODS Models including the cancer compartment were developed in PK-Sim® and MoBi® and evaluated by R programming language with 25 oral capecitabine and 18 intravenous 5-FU studies for cancer patients with and without liver impairment. RESULTS The PBPK models were constructed successfully as most simulated Cmax and AUClast were within two-fold error of observed values. The simulated alterations of tumor 5-FU Cmax and AUClast in cancer patients with severe liver injury compared with normal liver function were 1.956 and 3.676 after oral administration of capecitabine, but no significant alteration was observed after intravenous injection of 5-FU. Besides, 5-FU concentration in tumor tissue increases with higher tumor blood flow but not tumor size. Sensitivity analysis revealed that dihydropyrimidine dehydrogenase (DPD) and other metabolic enzymes' activity, capecitabine intestinal permeability and plasma protein scale factor played a vital role in tumor and plasma 5-FU pharmacokinetics. CONCLUSIONS PBPK model prediction suggests no dosage adaption of capecitabine or 5-FU is required for cancer patients with hepatic impairment but it would be reduced when the toxic reaction is observed. Furthermore, tumor blood flow rate rather than tumor size is critical for 5-FU concentration in tumor. In summary, these models could predict pharmacokinetics of 5-FU in tumor in cancer patients with varying characteristics in different scenarios.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310006, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310006, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310006, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Lunar N, Etienne-Grimaldi MC, Macaire P, Thomas F, Dalenc F, Ferrero JM, Pivot X, Milano G, Royer B, Schmitt A. Population pharmacokinetic and pharmacodynamic modeling of capecitabine and its metabolites in breast cancer patients. Cancer Chemother Pharmacol 2021; 87:229-239. [PMID: 33386926 DOI: 10.1007/s00280-020-04208-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The present study was performed to examine relationships between systemic exposure of capecitabine metabolites (5-FU, 5'-DFCR and 5'-DFUR) and toxicity or clinical response in patients with metastatic breast cancer. METHODS A population pharmacokinetic model for capecitabine and its three metabolites was built. Typical parameter values, characteristics of random distributions, associated with parameters, and covariates impact were estimated. Area under the curve (AUC) were computed for 5-FU and compared with grades of toxicity. Pharmacokinetic modeling was based on data collected on the first treatment cycle. Toxicity was assessed on the two first treatment cycles. RESULTS The study was conducted in 43 patients. The population pharmacokinetic model (a one-compartment model per compound) was able to capture the very complex absorption process of capecitabine. Statistically significant covariates were cytidine deaminase, alkaline phosphatase and dihydrouracilemia (UH2)/uracilemia (U) ratio. UH2/U ratio was the most significant covariate on 5-FU elimination and CDA on the transformation of 5'-DFCR in 5'-DFUR. A trend was observed between 5-FU AUC and thrombopenia toxicity grades, but not with other toxicities. Best clinical response was not linked to systemic exposure of capecitabine metabolites. CONCLUSION In our study, we propose a model able to describe, meanwhile, and its main metabolites, with a complex absorption process and inclusion of enzyme activity covariates such as CDA and UH2/U ratio. Trial registration Eudract 2008-004136-20, 2008/11/26.
Collapse
Affiliation(s)
- Nastja Lunar
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr Marion, 21079, Dijon Cedex, France
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | - Marie-Christine Etienne-Grimaldi
- Centre Antoine-Lacassagne, 33, avenue de Valombrose, 06189, Nice cedex 2, France
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France
| | - Pauline Macaire
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr Marion, 21079, Dijon Cedex, France
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | - Fabienne Thomas
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France
- ICR, IUCT-Oncopole, Toulouse, France
- Université de Toulouse, CRCT, Inserm UMR1037, 31000, Toulouse, France
| | - Florence Dalenc
- ICR, IUCT-Oncopole, Toulouse, France
- Université de Toulouse, CRCT, Inserm UMR1037, 31000, Toulouse, France
| | - Jean-Marc Ferrero
- Centre Antoine-Lacassagne, 33, avenue de Valombrose, 06189, Nice cedex 2, France
| | - Xavier Pivot
- Service Oncologie Médicale, CHU Jean-Minjoz, 3, boulevard Alexandre-Fleming, 25030, Besançon, France
| | - Gérard Milano
- Centre Antoine-Lacassagne, 33, avenue de Valombrose, 06189, Nice cedex 2, France
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France
| | - Bernard Royer
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France
- Laboratoire de Pharmacologie Clinique, CHU Jean-Minjoz, 3, boulevard Alexandre-Fleming, 25030, Besançon, France
- INSERM, EFS BFC, UMR1098, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire Et Génique, Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr Marion, 21079, Dijon Cedex, France.
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France.
- Groupe de Pharmacologie Clinique & Oncologique (GPCO)-Unicancer, 101 rue de Tolbiac, 75013, Paris, France.
| |
Collapse
|
4
|
Simões AR, Fernández-Rozadilla C, Maroñas O, Carracedo Á. The Road so Far in Colorectal Cancer Pharmacogenomics: Are We Closer to Individualised Treatment? J Pers Med 2020; 10:E237. [PMID: 33228198 PMCID: PMC7711884 DOI: 10.3390/jpm10040237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent decades, survival rates in colorectal cancer have improved greatly due to pharmacological treatment. However, many patients end up developing adverse drug reactions that can be severe or even life threatening, and that affect their quality of life. These remain a limitation, as they may force dose reduction or treatment discontinuation, diminishing treatment efficacy. From candidate gene approaches to genome-wide analysis, pharmacogenomic knowledge has advanced greatly, yet there is still huge and unexploited potential in the use of novel technologies such as next-generation sequencing strategies. This review summarises the road of colorectal cancer pharmacogenomics so far, presents considerations and directions to be taken for further works and discusses the path towards implementation into clinical practice.
Collapse
Affiliation(s)
- Ana Rita Simões
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Ceres Fernández-Rozadilla
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Olalla Maroñas
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (A.R.S.); (O.M.); (Á.C.)
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica; SERGAS, 15706 Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Raras—CIBERER, 28029 Madrid, Spain
| |
Collapse
|
5
|
Lewis LD. Medicamenta ad sentinam, et defectum vitae: Drugs and failure of the pump of life-cardiotoxicity of oncotherapeutics. Br J Clin Pharmacol 2020; 87:735-737. [PMID: 33073394 DOI: 10.1111/bcp.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/29/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lionel D Lewis
- Section of Clinical Pharmacology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|