1
|
Dos Santos C, Castera S, Fernandez J, Rosales JS, Crescitelli F, Boughen S, Iastrebner M, Guerrero O, Amell Menco C, Gomez M, Gonzalez J, Alberto MF, Sanchez-Luceros A. Thrombocytopenic thrombotic purpura related to COVID-19 vaccine: apropos of 4 cases. Hematol Transfus Cell Ther 2024; 46:511-515. [PMID: 38233303 PMCID: PMC11451339 DOI: 10.1016/j.htct.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024] Open
Affiliation(s)
- Célia Dos Santos
- Laboratorio de Hemostasia y Trombosis, Instituto de Medicina Experimental, CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | - Santiago Castera
- Departamento de Hemostasia y Trombosis, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - José Fernandez
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Julieta Soledad Rosales
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | | | | | | | | | | | - Mariela Gomez
- Hospital de Clínicas José de San Martin, Buenos Aires, Argentina
| | | | - Maria Fabiana Alberto
- Departamento de Hemostasia y Trombosis, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Analía Sanchez-Luceros
- Laboratorio de Hemostasia y Trombosis, Instituto de Medicina Experimental, CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina; Departamento de Hemostasia y Trombosis, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
2
|
Bolesławska I, Kowalówka M, Bolesławska-Król N, Przysławski J. Ketogenic Diet and Ketone Bodies as Clinical Support for the Treatment of SARS-CoV-2-Review of the Evidence. Viruses 2023; 15:1262. [PMID: 37376562 PMCID: PMC10326824 DOI: 10.3390/v15061262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
One of the proposed nutritional therapies to support drug therapy in COVID-19 is the use of a ketogenic diet (KD) or ketone bodies. In this review, we summarized the evidence from tissue, animal, and human models and looked at the mechanisms of action of KD/ketone bodies against COVID-19. KD/ketone bodies were shown to be effective at the stage of virus entry into the host cell. The use of β-hydroxybutyrate (BHB), by preventing the metabolic reprogramming associated with COVID-19 infection and improving mitochondrial function, reduced glycolysis in CD4+ lymphocytes and improved respiratory chain function, and could provide an alternative carbon source for oxidative phosphorylation (OXPHOS). Through multiple mechanisms, the use of KD/ketone bodies supported the host immune response. In animal models, KD resulted in protection against weight loss and hypoxemia, faster recovery, reduced lung injury, and resulted in better survival of young mice. In humans, KD increased survival, reduced the need for hospitalization for COVID-19, and showed a protective role against metabolic abnormalities after COVID-19. It appears that the use of KD and ketone bodies may be considered as a clinical nutritional intervention to assist in the treatment of COVID-19, despite the fact that numerous studies indicate that SARS-CoV-2 infection alone may induce ketoacidosis. However, the use of such an intervention requires strong scientific validation.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Magdalena Kowalówka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, Zyta 28, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| |
Collapse
|
3
|
Soriano JB, Infante A. Aiming for the end of the COVID-19 pandemic: the what, how, who, where, and when. Chin Med J (Engl) 2023; 136:1-3. [PMID: 36752803 PMCID: PMC10106164 DOI: 10.1097/cm9.0000000000002149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 02/09/2023] Open
Affiliation(s)
- Joan B Soriano
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alberto Infante
- National School of Public Health, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Deng S, Liang H, Chen P, Li Y, Li Z, Fan S, Wu K, Li X, Chen W, Qin Y, Yi L, Chen J. Viral Vector Vaccine Development and Application during the COVID-19 Pandemic. Microorganisms 2022; 10:microorganisms10071450. [PMID: 35889169 PMCID: PMC9317404 DOI: 10.3390/microorganisms10071450] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
Abstract
With the accumulation of mutations in SARS-CoV-2 and the continuous emergence of new variants, the importance of developing safer and effective vaccines has become more prominent in combating the COVID-19 pandemic. Both traditional and genetically engineered vaccines have contributed to the prevention and control of the pandemic. However, in recent years, the trend of vaccination research has gradually transitioned from traditional to genetically engineered vaccines, with the development of viral vector vaccines attracting increasing attention. Viral vector vaccines have several unique advantages compared to other vaccine platforms. The spread of Omicron has also made the development of intranasal viral vector vaccines more urgent, as the infection site of Omicron is more prominent in the upper respiratory tract. Therefore, the present review focuses on the development of viral vector vaccines and their application during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shaofeng Deng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hui Liang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
| | - Pin Chen
- Oriental Fortune Capital Post-Doctoral Innovation Center, Shenzhen 518055, China;
- Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (J.C.)
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (H.L.); (Y.L.); (Z.L.); (S.F.); (K.W.); (X.L.); (W.C.); (Y.Q.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (L.Y.); (J.C.)
| |
Collapse
|
5
|
Translating a Thin-Film Rehydration Method to Microfluidics for the Preparation of a SARS-CoV-2 DNA Vaccine: When Manufacturing Method Matters. Pharmaceutics 2022; 14:pharmaceutics14071427. [PMID: 35890321 PMCID: PMC9316859 DOI: 10.3390/pharmaceutics14071427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023] Open
Abstract
Previous investigations conducted on a liposomal formulation for a SARS-CoV-2 DNA vaccine manufactured using the thin-film layer rehydration method showed promising immunogenicity results in mice. The adaptation of the liposomal formulation to a scalable and reproducible method of manufacture is necessary to continue the investigation of this vaccine candidate. Microfluidics manufacture shows high potential in method translation. The physicochemical characterization of the blank liposomes produced by thin-film layer rehydration or microfluidics were shown to be comparable. However, a difference in lipid nanostructure in the bilayer resulted in a significant difference in the hydration of the thin-film liposomes, ultimately altering their complexation behavior. A study on the complexation of liposomes with the DNA vaccine at various N/P ratios showed different sizes and Zeta-potential values between the two formulations. This difference in the complexation behavior resulted in distinct immunogenicity profiles in mice. The thin-film layer rehydration-manufactured liposomes induced a significantly higher response compared to the microfluidics-manufactured samples. The nanostructural analysis of the two samples revealed the critical importance of understanding the differences between the two formulations that resulted in the different immunogenicity in mice.
Collapse
|
6
|
Liu S, Li G, Ding L, Ding J, Zhang Q, Li D, Hou X, Kong X, Zou J, Zhang S, Han H, Wan Y, Yang Z, Zhu H. Evaluation of SARS-CoV-2-Neutralizing Nanobody Using Virus Receptor Binding Domain-Administered Model Mice. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9864089. [PMID: 35958110 PMCID: PMC9343077 DOI: 10.34133/2022/9864089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an urgent requirement for the development of additional diagnostic tools for further analysis of the disease. The isolated nanobody Nb11-59 binds to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) with high affinity to neutralize the virus and block the angiotensin-converting enzyme 2- (ACE2-) RBD interaction. Here, we introduce a novel nanobody-based radiotracer named 68Ga-Nb1159. The radiotracer retained high affinity for the RBD and showed reliable radiochemical characteristics both in vitro and in vivo. Preclinical positron emission tomography (PET) studies of 68Ga-Nb1159 in mice revealed its rapid clearance from circulation and robust uptake into the renal and urinary systems. Fortunately, 68Ga-Nb1159 could specifically reveal the distribution of the RBD in mice. This study also helped to evaluate the pharmacodynamic effects of the neutralizing nanobody. Moreover, 68Ga-Nb1159 may be a promising tool to explore the distribution of the RBD and improve the understanding of the virus. In particular, this study identified a novel molecular radioagent and established a reliable evaluation method for specifically investigating the RBD through noninvasive and visual PET technology.
Collapse
Affiliation(s)
- Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Lei Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Anesthesiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Zou
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing 100191, China
| | - Shiming Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing 100191, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing 100191, China
- Department of Radiology, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
7
|
Huang L, Jiang Z, Zhou J, Chen Y, Huang H. The Effect of Inactivated SARS-CoV-2 Vaccines on TRAB in Graves' Disease. Front Endocrinol (Lausanne) 2022; 13:835880. [PMID: 35651979 PMCID: PMC9150502 DOI: 10.3389/fendo.2022.835880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ongoing coronavirus disease 2019 (COVID-19) pandemic has forced the development of vaccines. Reports have suggested that vaccines play a role in inducing autoimmune diseases (AIDs). Scattered cases have reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may promote thyroid disease, including Graves' disease (GD). However, the effect of inactivated SARS-CoV-2 vaccine on GD remains unclear. The aim of the present study was to investigate the response of thyrotropin receptor antibody (TRAB) to inactivated SARS-COV-2 vaccines. METHODS We conducted a retrospective study to observe the differences in thyroid function and TRAB trends between pre-vaccination (n=412) and post-vaccination (n=231) groups at an interval of 2 months. We then retrospectively observed the differences in serum thyroid function and TRAB levels at 3 months before (n=280), 1 month before (n=294), 1 month after (n=306), and 3 months after (n=250) vaccination. Subsequently, 173 GD patients who were not vaccinated with inactivated SARS-COV-2 vaccines were selected for a prospective study. Thyroid function and TRAB assessment were performed before 3 and 1 months and 1 and 3 months after the first dose of vaccination and were then compared by repeated measures ANOVA to explore their dynamic changes. RESULTS A retrospective study preliminarily observed that the trend of TRAB post-vaccination was opposite of that pre-vaccination (p=0.000), serum TRAB levels decreased before vaccination and increased after vaccination. In this prospective study, repeated measures ANOVA indicated significant differences in serum FT3 (p=0.000), FT4 (p=0.000), TSH (p=0.000), and TRAB (p=0.000) levels at different time points before and after vaccination. Serum TRAB levels showed dynamic changes that decreased significantly at 1 month before vaccination (p=0.000), no significant differences at 1 month after vaccination (p=0.583), and reflected an upward trend at 3 months after vaccination (p=0.034). Serum FT3 and FT4 levels showed similar trends to serum TRAB levels before and after vaccination. Instead, the serum TSH levels showed a continuous upward trend over time. CONCLUSION Based on the results obtained in both retrospective and prospective studies, we concluded that serum TRAB levels decreased less after inactivated SARS-CoV-2 vaccination and showed an upward trend, which may be related to humoral immunity induced by vaccination.
Collapse
Affiliation(s)
- LingHong Huang
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - ZhengRong Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - JingXiong Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuPing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: HuiBin Huang,
| |
Collapse
|
8
|
Wright DFB, Kirkpatrick CMJ. Science fiction has become reality: Best practice for future viral pandemics. Br J Clin Pharmacol 2021; 87:3385-3387. [PMID: 34296460 PMCID: PMC8444651 DOI: 10.1111/bcp.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
|
9
|
Loo KY, Letchumanan V, Ser HL, Teoh SL, Law JWF, Tan LTH, Ab Mutalib NS, Chan KG, Lee LH. COVID-19: Insights into Potential Vaccines. Microorganisms 2021; 9:605. [PMID: 33804162 PMCID: PMC8001762 DOI: 10.3390/microorganisms9030605] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
People around the world ushered in the new year 2021 with a fear of COVID-19, as family members have lost their loved ones to the disease. Millions of people have been infected, and the livelihood of many has been jeopardized due to the pandemic. Pharmaceutical companies are racing against time to develop an effective vaccine to protect against COVID-19. Researchers have developed various types of candidate vaccines with the release of the genetic sequence of the SARS-CoV-2 virus in January. These include inactivated viral vaccines, protein subunit vaccines, mRNA vaccines, and recombinant viral vector vaccines. To date, several vaccines have been authorized for emergency use and they have been administered in countries across the globe. Meanwhile, there are also vaccine candidates in Phase III clinical trials awaiting results and approval from authorities. These candidates have shown positive results in the previous stages of the trials, whereby they could induce an immune response with minimal side effects in the participants. This review aims to discuss the different vaccine platforms and the clinical trials of the candidate vaccines.
Collapse
Affiliation(s)
- Ke-Yan Loo
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (K.-Y.L.); (V.L.); (H.-L.S.); (J.W.-F.L.); (L.T.-H.T.)
| |
Collapse
|