1
|
Yalcin N, van den Anker J, Samiee-Zafarghandy S, Allegaert K. Drug related adverse event assessment in neonates in clinical trials and clinical care. Expert Rev Clin Pharmacol 2024; 17:803-816. [PMID: 39129478 DOI: 10.1080/17512433.2024.2390927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Assessment of drug-related adverse events is essential to fully understand the benefit-risk balance of any drug exposure, weighing efficacy versus safety. This is needed for both drug labeling and clinical decision-making. Assessment is based on seriousness, severity and causality, be it more difficult to apply in neonates. Adverse event detection or prevention in the neonatal clinical setting is also more complicated because of polypharmacy, and off-label or unlicensed pharmacotherapy. AREAS COVERED Tools became available to assess severity and causality of adverse events in neonates recruited in clinical trials. The first version of the Neonatal Adverse Event severity score (NAESS) reduced the inter-observer variability. Causality tools like the Naranjo score were also tailored to neonates. These tools are also instrumental to support proactive pharmacovigilance in clinical care, while multidisciplinary care teams and computerized pharmacovigilance using advanced data analysis, like machine learning are emerging approaches to develop effective decision strategies. EXPERT OPINION All stakeholders involved in development of medicines or its clinical use should be aware of the limitations of the currently available assessment tools. Extension and optimization of these tools, advanced data analysis approaches, and capturing the variability in time-dependent physiology are warranted to improve pharmacovigilance in neonates.
Collapse
Affiliation(s)
- Nadir Yalcin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
| | | | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
- Department of Development and Regeneration, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Zhang W, Chang LX, Zhao BB, Zheng Y, Shan DD, Tang BH, Yang F, Zhou Y, Hao GX, Zhang YH, van den Anker J, Zhu XF, Zhang L, Zhao W. Efficacy, Safety, and Population Pharmacokinetics of Eltrombopag in Children with Different Severities of Aplastic Anemia. J Clin Pharmacol 2024; 64:932-943. [PMID: 38497347 DOI: 10.1002/jcph.2430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
Eltrombopag was approved as a first-line treatment for patients older than 2 years old with severe aplastic anemia (SAA). However, data on eltrombopag in children with different types of aplastic anemia (AA), especially non-severe AA (NSAA), are limited. We performed a prospective, single-arm, and observational study to investigate eltrombopag's efficacy, safety, and pharmacokinetics in children with NSAA, SAA, and very severe AA (VSAA). The efficacy and safety were assessed every 3 months. The population pharmacokinetic (PPK) model was used to depict the pharmacokinetic profile of eltrombopag. Twenty-three AA children with an average age of 7.9 (range of 3.0-14.0) years were enrolled. The response (complete and partial response) rate was 12.5%, 50.0%, and 100.0% after 3, 6, and 12 months in patients with NSAA. For patients with SAA and VSAA, these response rates were 46.7%, 61.5%, and 87.5%. Hepatotoxicity occurred in one patient. Fifty-three blood samples were used to build the PPK model. Body weight was the only covariate for apparent clearance (CL/F) and volume of distribution. The allele-T carrier of adenosine triphosphate-binding cassette transporter G2 was found to increase eltrombopag's clearance. However, when normalized by weight, the clearance between the wild-type and variant showed no statistical difference. In patients with response, children with NSAA exhibited lower area under the curve from time zero to infinity, higher CL/F, and higher weight-adjusted CL/F than those with SAA or VSAA. However, the differences were not statistically significant. The results may support further individualized treatment of eltrombopag in children with AA.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li-Xian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Bei-Bei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dan-Dan Shan
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo-Hao Tang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Hui Zhang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Xiao-Fan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
3
|
Romantsik O, Bank M, Menon JML, Malhotra A, Bruschettini M. Value of preclinical systematic reviews and meta-analyses in pediatric research. Pediatr Res 2024; 96:643-653. [PMID: 38615075 PMCID: PMC11499280 DOI: 10.1038/s41390-024-03197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024]
Abstract
Similar to systematic reviews (SRs) in clinical fields, preclinical SRs address a specific research area, furnishing information on current knowledge, possible gaps, and potential methodological flaws of study design, conduct, and report. One of the main goals of preclinical SRs is to identify aspiring treatment strategies and evaluate if currently available data is solid enough to translate to clinical trials or highlight the gaps, thus justifying the need for new studies. It is imperative to rigorously follow the methodological standards that are widely available. These include registration of the protocol and adherence to guidelines for assessing the risk of bias, study quality, and certainty of evidence. A special consideration should be made for pediatric SRs, clinical and preclinical, due to the unique characteristics of this age group. These include rationale for intervention and comparison of primary and secondary outcomes. Outcomes measured should acknowledge age-related physiological changes and maturational processes of different organ systems. It is crucial to choose the age of the animals appropriately and its possible correspondence for specific pediatric age groups. The findings of well-conducted SRs of preclinical studies have the potential to provide a reliable evidence synthesis to guide the design of future preclinical and clinical studies. IMPACT: This narrative review highlights the importance of rigorous design, conduct and reporting of preclinical primary studies and systematic reviews. A special consideration should be made for pediatric systematic reviews of preclinical studies, due to the unique characteristics of this age group.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, Lund, 21185, Sweden.
| | - Matthias Bank
- Library and ICT, Faculty of Medicine, Lund University, Lund, Sweden
| | - Julia M L Menon
- Preclinicaltrials.eu, Netherlands Heart Institute, Utrecht, The Netherlands
| | - Atul Malhotra
- Department of Pediatrics, Monash University, Melbourne, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, Lund, 21185, Sweden
| |
Collapse
|
4
|
Meesters K, Balbas-Martinez V, Allegaert K, Downes KJ, Michelet R. Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians. Paediatr Drugs 2024; 26:365-379. [PMID: 38755515 DOI: 10.1007/s40272-024-00633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
The widespread use of drugs for unapproved purposes remains common in children, primarily attributable to practical, ethical, and financial constraints associated with pediatric drug research. Pharmacometrics, the scientific discipline that involves the application of mathematical models to understand and quantify drug effects, holds promise in advancing pediatric pharmacotherapy by expediting drug development, extending applications, and personalizing dosing. In this review, we delineate the principles of pharmacometrics, and explore its clinical applications and prospects. The fundamental aspect of any pharmacometric analysis lies in the selection of appropriate methods for quantifying pharmacokinetics and pharmacodynamics. Population pharmacokinetic modeling is a data-driven method ('top-down' approach) to approximate population-level pharmacokinetic parameters, while identifying factors contributing to inter-individual variability. Model-informed precision dosing is increasingly used to leverage population pharmacokinetic models and patient data, to formulate individualized dosing recommendations. Physiologically based pharmacokinetic models integrate physicochemical drug properties with biological parameters ('bottom-up approach'), and is particularly valuable in situations with limited clinical data, such as early drug development, assessing drug-drug interactions, or adapting dosing for patients with specific comorbidities. The effective implementation of these complex models hinges on strong collaboration between clinicians and pharmacometricians, given the pivotal role of data availability. Promising advancements aimed at improving data availability encompass innovative techniques such as opportunistic sampling, minimally invasive sampling approaches, microdialysis, and in vitro investigations. Additionally, ongoing research efforts to enhance measurement instruments for evaluating pharmacodynamics responses, including biomarkers and clinical scoring systems, are expected to significantly bolster our capacity to understand drug effects in children.
Collapse
Affiliation(s)
- Kevin Meesters
- Department of Pediatrics, University of British Columbia, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada.
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
- qPharmetra LLC, Berlin, Germany
| |
Collapse
|
5
|
Tang BH, Li QY, Liu HX, Zheng Y, Wu YE, van den Anker J, Hao GX, Zhao W. Machine Learning: A Potential Therapeutic Tool to Facilitate Neonatal Therapeutic Decision Making. Paediatr Drugs 2024; 26:355-363. [PMID: 38880837 DOI: 10.1007/s40272-024-00638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2024] [Indexed: 06/18/2024]
Abstract
Bacterial infection is one of the major causes of neonatal morbidity and mortality worldwide. Finding rapid and reliable methods for early recognition and diagnosis of bacterial infections and early individualization of antibacterial drug administration are essential to eradicate these infections and prevent serious complications. However, this is often difficult to perform due to non-specific clinical presentations, low accuracy of current diagnostic methods, and limited knowledge of neonatal pharmacokinetics. Although neonatal medicine has been relatively late to embrace the benefits of machine learning (ML), there have been some initial applications of ML for the early prediction of neonatal sepsis and individualization of antibiotics. This article provides a brief introduction to ML and discusses the current state of the art in diagnosing and treating neonatal bacterial infections, gaps, potential uses of ML, and future directions to address the limitations of current studies. Neonatal bacterial infections involve a combination of physiologic development, disease expression, and treatment response outcomes. To address this complex relationship, future models could consider appropriate ML algorithms to capture time series features while integrating influences from the host, microbes, and drugs to optimize antimicrobial drug use in neonates. All models require prospective clinical trials to validate their clinical utility before clinical use.
Collapse
Affiliation(s)
- Bo-Hao Tang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiu-Yue Li
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui-Xin Liu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Departments of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Lehrnbecher T, Groll AH. Infectious complications in the paediatric immunocompromised host: a narrative review. Clin Microbiol Infect 2024:S1198-743X(24)00279-9. [PMID: 38851426 DOI: 10.1016/j.cmi.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Infections are a major cause of morbidity in children with primary or secondary immunodeficiency, and have a negative impact on overall outcome. OBJECTIVES This narrative review presents select paediatric-specific aspects regarding the clinical impact, diagnosis, management, and follow-up of infectious complications in patients with primary and secondary immunodeficiencies. SOURCES PubMed until January 2024 and searched references in identified articles including the search terms: infection, immunodeficiency or cancer, diagnostics, antimicrobial agents, bacteria or fungus or virus, and follow-up. CONTENT Major advances have been made in the early detection and management of patients with primary immunodeficiency, and multiple analyses report in children with cancer on risk groups and periods of risk for infectious complications. Although many diagnostic tools are comparable between children and adults, specific considerations have to be applied, such as minimizing the use of radiation. Antimicrobial drug development remains a major challenge in the paediatric setting, which includes the establishment of appropriate dosing and paediatric approval. Last, long-term follow-up and the impact of late effects are extremely important to be considered in the management of immunocompromised paediatric patients. IMPLICATIONS Although infectious disease supportive care of immunocompromised children and adolescents has considerably improved over the last three decades, close international collaboration is needed to target the specific challenges in this special population.
Collapse
Affiliation(s)
- Thomas Lehrnbecher
- Department of Paediatrics, Division of Haematology, Oncology and Hemostaseology, Goethe University Frankfurt, Frankfurt Am Main, Germany.
| | - Andreas H Groll
- Infectious Disease Research Program, Centre for Bone Marrow Transplantation and Department of Paediatric Haematology/Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
7
|
Al-Sallami H, Diniz A, Sinha J, Karatza E, Allegaert K. Editorial: Advanced approaches in pediatric clinical pharmacology. Front Pharmacol 2024; 15:1372290. [PMID: 38357308 PMCID: PMC10866026 DOI: 10.3389/fphar.2024.1372290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
| | - Andrea Diniz
- Laboratory of Pharmacokinetics and Biopharmacy, Department of Phamacy, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Jaydeep Sinha
- Department of Pediatrics, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eleni Karatza
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
8
|
Yeung CHT, Verstegen RHJ, Greenberg R, Lewis TR. Pharmacokinetic and pharmacodynamic principles: unique considerations for optimal design of neonatal clinical trials. Front Pediatr 2024; 11:1345969. [PMID: 38283405 PMCID: PMC10811156 DOI: 10.3389/fped.2023.1345969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Core clinical pharmacology principles must be considered when designing and executing neonatal clinical trials. In this review, the authors discuss important aspects of drug dose selection, pharmacokinetics, pharmacogenetics and pharmacodynamics that stakeholders may consider when undertaking a neonatal or infant clinical trial.
Collapse
Affiliation(s)
- Cindy Hoi Ting Yeung
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ruud H. J. Verstegen
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Rachel Greenberg
- Duke Clinical Research Institute, Durham, NC, United States
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Tamorah Rae Lewis
- Division of Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Mahoney L, Raffaeli G, Beken S, Ünal S, Kotidis C, Cavallaro G, Garrido F, Bhatt A, Dempsey EM, Allegaert K, Simons SHP, Flint RB, Smits A. Grading the level of evidence of neonatal pharmacotherapy: midazolam and phenobarbital as examples. Pediatr Res 2024; 95:75-83. [PMID: 37752246 DOI: 10.1038/s41390-023-02779-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Many drugs are used off-label or unlicensed in neonates. This does not mean they are used without evidence or knowledge. We aimed to apply and evaluate the Grading and Assessment of Pharmacokinetic-Pharmacodynamic Studies (GAPPS) scoring system for the level of evidence of two commonly used anti-epileptic drugs. METHODS Midazolam and phenobarbital as anti-epileptics were evaluated with a systematic literature search on neonatal pharmacokinetic (PK) and/or pharmacodynamic [PD, (amplitude-integrated) electroencephalography effect] studies. With the GAPPS system, two evaluators graded the current level of evidence. Inter-rater agreement was assessed for dosing evidence score (DES), quality of evidence (QoE), and strength of recommendation (REC). RESULTS Seventy-two studies were included. DES scores 4 and 9 were most frequently used for PK, and scores 0 and 1 for PD. Inter-rater agreements on DES, QoE, and REC ranged from moderate to very good. A final REC was provided for all PK studies, but only for 25% (midazolam) and 33% (phenobarbital) of PD studies. CONCLUSIONS There is a reasonable level of evidence concerning midazolam and phenobarbital PK in neonates, although using a predefined target without integrated PK/PD evaluation. Further research is needed on midazolam use in term neonates with therapeutic hypothermia, and phenobarbital treatment in preterms. IMPACT There is a reasonable level of evidence concerning pharmacotherapy of midazolam and phenobarbital in neonates. Most evidence is however based on PK studies, using a predefined target level or concentration range without integrated, combined PK/PD evaluation. Using the GAPPS system, final strength of recommendation could be provided for all PK studies, but only for 25% (midazolam) to 33% (phenobarbital) of PD studies. Due to the limited PK observations of midazolam in term neonates with therapeutic hypothermia, and of phenobarbital in preterm neonates these subgroups can be identified for further research.
Collapse
Affiliation(s)
- Liam Mahoney
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Genny Raffaeli
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serdar Beken
- Section of Neonatology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sezin Ünal
- Department of Neonatology, Ankara Etlik City Hospital, University of Health Sciences, Ankara, Turkey
| | - Charalampos Kotidis
- Department of Women's and Children's Health, University of Liverpool, Liverpool Health Partners, Liverpool, UK
- University of Liverpool, Liverpool Womens Hospital, Liverpool, UK
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Aomesh Bhatt
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Eugene M Dempsey
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sinno H P Simons
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Robert B Flint
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands
- Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
de Hoop-Sommen MA, van der Heijden JEM, Freriksen JJM, Greupink R, de Wildt SN. Pragmatic physiologically-based pharmacokinetic modeling to support clinical implementation of optimized gentamicin dosing in term neonates and infants: proof-of-concept. Front Pediatr 2023; 11:1288376. [PMID: 38078320 PMCID: PMC10702772 DOI: 10.3389/fped.2023.1288376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Modeling and simulation can support dosing recommendations for clinical practice, but a simple framework is missing. In this proof-of-concept study, we aimed to develop neonatal and infant gentamicin dosing guidelines, supported by a pragmatic physiologically-based pharmacokinetic (PBPK) modeling approach and a decision framework for implementation. Methods An already existing PBPK model was verified with data of 87 adults, 485 children and 912 neonates, based on visual predictive checks and predicted-to-observed pharmacokinetic (PK) parameter ratios. After acceptance of the model, dosages now recommended by the Dutch Pediatric Formulary (DPF) were simulated, along with several alternative dosing scenarios, aiming for recommended peak (i.e., 8-12 mg/L for neonates and 15-20 mg/L for infants) and trough (i.e., <1 mg/L) levels. We then used a decision framework to weigh benefits and risks for implementation. Results The PBPK model adequately described gentamicin PK. Simulations of current DPF dosages showed that the dosing interval for term neonates up to 6 weeks of age should be extended to 36-48 h to reach trough levels <1 mg/L. For infants, a 7.5 mg/kg/24 h dose will reach adequate peak levels. The benefits of these dose adaptations outweigh remaining uncertainties which can be minimized by routine drug monitoring. Conclusion We used a PBPK model to show that current DPF dosages for gentamicin in term neonates and infants needed to be optimized. In the context of potential uncertainties, the risk-benefit analysis proved positive; the model-informed dose is ready for clinical implementation.
Collapse
Affiliation(s)
- Marika A. de Hoop-Sommen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joyce E. M. van der Heijden
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolien J. M. Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia N. de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Intensive Care, Radboud University Medical Center, Nijmegen, Netherlands
- Intensive Care and Pediatric Surgery, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
11
|
Dhaenens BAE, Mahler F, Batchelor H, Dicks P, Gaillard S, Nafria B, Kopp‐Schneider A, Ribeiro M, Schwab M, Sparber‐Sauer M, Leubner J, de Wildt SN, Oostenbrink R. Optimizing expert and patient input in pediatric trial design: Lessons learned and recommendations from a collaboration between conect4children and European Patient-CEntric ClinicAl TRial PLatforms. Clin Transl Sci 2023; 16:1458-1468. [PMID: 37391924 PMCID: PMC10432863 DOI: 10.1111/cts.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 07/02/2023] Open
Abstract
Advice from multiple stakeholders is required to design the optimal pediatric clinical trial. We present recommendations for acquiring advice from trial experts and patients/caregivers, derived from advice meetings that were performed through a collaboration of the Collaborative Network for European Clinical Trials for Children (c4c) and the European Patient-CEntric ClinicAl TRial PLatforms (EU-PEARL). Three advice meetings were performed: (1) an advice meeting for clinical and methodology experts, (2) an advice meeting for patients/caregivers, and (3) a combined meeting with both experts and patients/caregivers. Trial experts were recruited from c4c database. Patients/caregivers were recruited through a patient organization. Participants were asked to provide input on a trial protocol, including endpoints, outcomes, and the assessment schedule. Ten experts, 10 patients, and 13 caregivers participated. The advice meetings resulted in modification of eligibility criteria and outcome measures. We have provided recommendations for the most effective meeting type per protocol topic. Topics with limited options for patient input were most efficiently discussed in expert advice meetings. Other topics benefit from patient/caregiver input, either through a combined meeting with experts or a patients/caregivers-only advice meeting. Some topics, such as endpoints and outcome measures, are suitable for all meeting types. Combined sessions profit from synergy between experts and patients/caregivers, balancing input on protocol scientific feasibility and acceptability. Both experts and patients/caregivers provided critical input on the presented protocol. The combined meeting was the most effective methodology for most protocol topics. The presented methodology can be used effectively to acquire expert and patient feedback.
Collapse
Affiliation(s)
- Britt A. E. Dhaenens
- Department of General PediatricsErasmus MC‐Sophia's Children's HospitalRotterdamThe Netherlands
- The ENCORE Expertise Center for Neurodevelopmental DisordersRotterdamThe Netherlands
| | - Fenna Mahler
- Division of Pharmacology and Toxicology, Department of PharmacyRadboud University Medical CenterNijmegenThe Netherlands
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| | - Pamela Dicks
- NHS‐NRS Children, NHS Grampian, Royal Aberdeen Children's HospitalAberdeenUK
| | | | - Begonya Nafria
- Division of Pharmacology and Toxicology, Department of PharmacyRadboud University Medical CenterNijmegenThe Netherlands
- Patient Engagement in Research Coordinator, Sant Joan de Déu Research InstituteBarcelonaSpain
| | | | - Maria Alexandra Ribeiro
- NOVA Medical SchoolNOVA University of LisbonLisbonPortugal
- European Network of Research Ethics Committees (EUREC)BonnGermany
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- Departments of Clinical Pharmacology, Pharmacy and BiochemistryUniversity of TuebingenTübingenGermany
| | - Monika Sparber‐Sauer
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer CenterZentrum für Kinder‐, Jugend‐ und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie)StuttgartGermany
- University Tübingen, Medical FacultyTübingenGermany
| | - Jonas Leubner
- Department of Pediatric NeurologyCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Saskia N. de Wildt
- Division of Pharmacology and Toxicology, Department of PharmacyRadboud University Medical CenterNijmegenThe Netherlands
- Intensive Care and Department of Pediatric SurgeryErasmus MC Sophia Children's HospitalRotterdamThe Netherlands
| | - Rianne Oostenbrink
- Department of General PediatricsErasmus MC‐Sophia's Children's HospitalRotterdamThe Netherlands
- The ENCORE Expertise Center for Neurodevelopmental DisordersRotterdamThe Netherlands
- Full Member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS)
| |
Collapse
|
12
|
Bentley S, Cheong J, Gudka N, Makhecha S, Hadjisymeou-Andreou S, Standing JF. Therapeutic drug monitoring-guided dosing for pediatric cystic fibrosis patients: recent advances and future outlooks. Expert Rev Clin Pharmacol 2023; 16:715-726. [PMID: 37470695 DOI: 10.1080/17512433.2023.2238597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Medicine use in children with cystic fibrosis (CF) is complicated by inconsistent pharmacokinetics at variance with the general population, a lack of research into this and its effects on clinical outcomes. In the absence of established dose regimens, therapeutic drug monitoring (TDM) is a clinically relevant tool to optimize drug exposure and maximize therapeutic effect by the bedside. In clinical practice though, use of this is variable and limited by a lack of expert recommendations. AREAS COVERED We aimed to review the use of TDM in children with CF to summarize recent developments, current recommendations, and opportunities for future directions. We searched PubMed for relevant publications using the broad search terms "cystic fibrosis" in combination with the specific terms "therapeutic drug monitoring (TDM)" and "children." Further searches were undertaken using the name of identified drugs combined with the term "TDM." EXPERT OPINION Further research into the use of Bayesian forecasting and the relationship between exposure and response is required to personalize dosing, with the opportunity for the development of expert recommendations in children with CF. Use of noninvasive methods of TDM has the potential to improve accessibility to TDM in this cohort.
Collapse
Affiliation(s)
- Siân Bentley
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Jamie Cheong
- Pharmacy Department, Royal Brompton Hospital, London, UK
| | - Nikesh Gudka
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | - Joseph F Standing
- Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation,great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
13
|
Kontou A, Kourti M, Iosifidis E, Sarafidis K, Roilides E. Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics (Basel) 2023; 12:1072. [PMID: 37370391 DOI: 10.3390/antibiotics12061072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial resistance has become a significant public health problem globally with multidrug resistant Gram negative (MDR-GN) bacteria being the main representatives. The emergence of these pathogens in neonatal settings threatens the well-being of the vulnerable neonatal population given the dearth of safe and effective therapeutic options. Evidence from studies mainly in adults is now available for several novel antimicrobial compounds, such as new β-lactam/β-lactamase inhibitors (e.g., ceftazidime-avibactam, meropenem-vaborbactam, imipenem/cilastatin-relebactam), although old antibiotics such as colistin, tigecycline, and fosfomycin are also encompassed in the fight against MDR-GN infections that remain challenging. Data in the neonatal population are scarce, with few clinical trials enrolling neonates for the evaluation of the efficacy, safety, and dosing of new antibiotics, while the majority of old antibiotics are used off-label. In this article we review data about some novel and old antibiotics that are active against MDR-GN bacteria causing sepsis and are of interest to be used in the neonatal population.
Collapse
Affiliation(s)
- Angeliki Kontou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Maria Kourti
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Kosmas Sarafidis
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
14
|
Cheng K, Mahler F, Lutsar I, Nafria Escalera B, Breitenstein S, Vassal G, Claverol J, Noel Palacio N, Portman R, Pope G, Bakker M, van der Geest T, Turner MA, de Wildt SN. Clinical, methodology, and patient/carer expert advice in pediatric drug development by conect4children. Clin Transl Sci 2023; 16:478-488. [PMID: 36510699 PMCID: PMC10014692 DOI: 10.1111/cts.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Many medicines are used "off-label" in children outside the terms of the license. Feasible pediatric clinical trials are a challenge to design. Conect4children (c4c) is an Innovative Medicines Initiative project to set up a pan-European pediatric clinical trial network aiming to facilitate the development of new medicines for children. To optimize pediatric trial development by promoting innovative trial design, c4c set up a European multidisciplinary advice service, including the voice of young patients and families, tailored to industry and academia. A network of experts was established to provide multidisciplinary advice to trial sponsors. Experts were selected to join clinical and innovative methodology expert groups. A patient and public involvement (PPI) database, to include the expert opinion of patients and parents/carers was formed. A stepwise process was developed: (1) sponsors contact c4c, (2) scoping interview takes place, (3) ad hoc advice group formed, (5) advice meeting held, and (6) advice report provided. Feedback on the process was collected. Twenty-four clinical and innovative methodology expert groups (>400 experts) and a PPI database of 135 registrants were established. As of September 30, 2022, 36 advice requests were received, with 25 requests completed. Clinical and methodology experts and PPI representatives participated in several advice requests. Sponsors appreciated the advice quality and the multidisciplinary experts from different countries, including experts not known before. Experts and PPI participants were generally satisfied with the process. The c4c project has shown successful proof of concept for a service that presents a new framework to plan innovative and feasible pediatric trials.
Collapse
Affiliation(s)
- Katharine Cheng
- Child Health Innovation Leadership Department (CHILD), Johnson and Johnson, High Wycombe, UK
| | - Fenna Mahler
- Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irja Lutsar
- Institute of Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Gilles Vassal
- Department of Paediatric Oncology, Gustave Roussy, University Paris Saclay, Villejuif, France
| | - Joana Claverol
- Institut de Recerca Sant Joan de Deu, Fundació Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Nuria Noel Palacio
- Institut de Recerca Sant Joan de Deu, Fundació Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Ron Portman
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Martijn Bakker
- Technology Transfer Office, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tessa van der Geest
- Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark A Turner
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
15
|
Bachhav SS, Taylor M, Martin A, Green JA, Duparc S, Rolfe K, Sharma H, Tan LK, Goyal N. A pharmacometrics approach to assess the feasibility of capillary microsampling to replace venous sampling in clinical studies: Tafenoquine case study. Br J Clin Pharmacol 2023; 89:1187-1197. [PMID: 36199201 DOI: 10.1111/bcp.15554] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Microsampling has the advantage of smaller blood sampling volume and suitability in vulnerable populations compared to venous sampling in clinical pharmacokinetics studies. Current regulatory guidance requires correlative studies to enable microsampling as a technique. A post hoc population pharmacokinetic (POPPK) approach was utilized to investigate blood capillary microsampling as an alternative to venous sampling. METHODS Pharmacokinetic data from microsampling and venous sampling techniques during a paediatric study evaluating tafenoquine, a single-dose antimalarial for P. vivax, were used. Separate POPPK models were developed and validated based on goodness of fit and visual predictive checks, with pharmacokinetic data obtained via each sampling technique. RESULTS Each POPPK model adequately described tafenoquine pharmacokinetics using a two-compartment model with body weight based on allometric scaling of clearance and volume of distribution. Tafenoquine pharmacokinetic parameter estimates including clearance (3.4 vs 3.7 L/h) were comparable across models with slightly higher interindividual variability (38.3% vs 27%) in capillary microsampling-based data. A bioavailability/bioequivalence comparison demonstrated that the point estimate (90% CI) of capillary microsample versus venous sample model-based individual post hoc estimates for area under the concentration-time curve from time zero to infinity (AUC0-inf ) (100.7%, 98.0-103.5%) and Cmax (79.7%, 76.9-82.5%) met the 80-125% and 70-143% criteria, respectively. Overall, both POPPK models led to the same dose regimen recommendations across weight bins based on achieving target AUC. CONCLUSIONS This analysis demonstrated that a POPPK approach can be employed to assess the performance of alternative pharmacokinetic sampling techniques. This approach provides a robust solution in scenarios where variability in pharmacokinetic data collected via venous sampling and microsampling may not result in a strong linear relationship. The findings also established that microsampling techniques may replace conventional venous sampling methods.
Collapse
Affiliation(s)
- Sagar S Bachhav
- Clinical Pharmacology Modeling and Simulation, GSK, Collegeville, PA, USA
| | - Maxine Taylor
- Drug Metabolism and Pharmacokinetics, In Vitro/In Vivo Translation, R&D GSK, Ware, Herts, UK
| | | | | | | | | | | | | | - Navin Goyal
- Clinical Pharmacology Modeling and Simulation, GSK, Collegeville, PA, USA
| |
Collapse
|
16
|
Gade C, Trolle S, Mørk M, Lewis A, Andersen P, Jacobsen T, Andersen J, Lausten‐Thomsen U. Massive presence of off-label medicines in Danish neonatal departments: A nationwide survey using national hospital purchase data. Pharmacol Res Perspect 2023; 11:e01037. [PMID: 36545691 PMCID: PMC9772727 DOI: 10.1002/prp2.1037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022] Open
Abstract
There is currently insufficient knowledge of gestational age dependent medicine disposition in neonates. Accordingly, the use of off-label medication, i.e., use of medicines outside its approved marketing authorization, is high in the neonatal departments. By using data from the Danish National Pharmaceutical Hospital Purchase Database, we identified the most commonly occurring medications and calculated the on/off-label ratios for premature and term neonates. Data was extracted on ATC level 5 and based on defined daily doses as per WHO. Data covered the 4 high-level NICUs and 10 of 13 of the intermediate/standard level Danish neonatal departments. Of the identified medication, 87% and 70% did not have approved marketing authorization for use in premature and full-term neonates, respectively. Furthermore, one-fifth of the top 100 medicines did not have a (Danish) marketing license. Overall, off-label medication was widespread covering virtually all ATC groups and no ATC group had an off-label level lower than 50% (range 50%-100%). Finally, in 21% of medications, additives from 8 different chemical groups with potential deleterious effects for neonates were identified. In conclusion, off-label medication in the Danish neonatal departments is widespread. The pharmaceutical industry is unlikely to solve this problem, and we may for a very long time be occasionally forced to use off-label medication. Practical solution must therefore come from multidisciplinary clinical and academic collaboration. Use of formulation list as guidance for prescriptions and NICU-friendly galenic formulations may mitigate the problem temporarily while waiting for definitive studies.
Collapse
Affiliation(s)
- Christina Gade
- Department of Clinical PharmacologyCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Stine Trolle
- The Hospital PharmacyCopenhagen University Hospital Capital region of DenmarkCopenhagenDenmark
| | - Mette‐Louise Mørk
- Department of Clinical PharmacologyCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Anna Lewis
- Department of NeonatologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Peter Fruergaard Andersen
- Department of Clinical PharmacologyCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
| | - Thorkild Jacobsen
- Department of NeonatologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Jon Andersen
- Department of Clinical PharmacologyCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ulrik Lausten‐Thomsen
- Department of NeonatologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| |
Collapse
|
17
|
Going the Extra Mile: Why Clinical Research in Cystic Fibrosis Must Include Children. CHILDREN 2022; 9:children9071080. [PMID: 35884064 PMCID: PMC9323167 DOI: 10.3390/children9071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
This is an exciting time for research and novel drug development in cystic fibrosis. However, rarely has the adage, “Children are not just little adults” been more relevant. This article is divided into two main sections. In the first, we explore why it is important to involve children in research. We discuss the potential benefits of understanding a disease and its treatment in children, and we highlight that children have the same legal and ethical right to evidence-based therapy as adults. Additionally, we discuss why extrapolation from adults may be inappropriate, for example, medication pharmacokinetics may be different in children, and there may be unpredictable adverse effects. In the second part, we discuss how to involve children and their families in research. We outline the importance and the complexities of selecting appropriate outcome measures, and we discuss the role co-design may have in improving the involvement of children. We highlight the importance of appropriate staffing and resourcing, and we outline some of the common challenges and possible solutions, including practical tips on obtaining consent/assent in children and adolescents. We conclude that it is unethical to simply rely on extrapolation from adult studies because research in young children is challenging and that research should be seen as a normal part of the paediatric therapeutic journey.
Collapse
|
18
|
Allegaert K, Abbasi MY, Annaert P, Olafuyi O. Current and future physiologically based pharmacokinetic (PBPK) modeling approaches to optimize pharmacotherapy in preterm neonates. Expert Opin Drug Metab Toxicol 2022; 18:301-312. [PMID: 35796504 DOI: 10.1080/17425255.2022.2099836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION There is a need for structured approaches to inform on pharmacotherapy in preterm neonates. With their proven track record up to regulatory acceptance, physiologically based pharmacokinetic (PBPK) modeling and simulation provide such a structured approach, and hold the promise to support drug development in preterm neonates. AREAS COVERED Compared to the general and pediatric use of PBPK modeling, its use to inform pharmacotherapy in preterms is limited. Using a systematic search (PBPK + preterm), we retained 25 records (20 research papers, 2 letters, 3 abstracts). We subsequently collated the published information on PBPK software packages (PK-Sim®, Simcyp®), and their applications and optimization efforts in preterm neonates. It is encouraging that these applications cover a broad range of scenarios (pharmacokinetic-dynamic analyses, drug-drug interactions, developmental pharmacogenetics, lactation related exposure) and compounds (small molecules, proteins). Furthermore, specific compartments (cerebrospinal fluid, tissue) or (patho)physiologic processes (cardiac output, biliary excretion, first pass metabolism) are considered. EXPERT OPINION Knowledge gaps exist, giving rise to various levels of model uncertainty in PBPK applications in preterm neonates. To improve this setting, we need cross talk between clinicians and modelers to generate and integrate knowledge (PK datasets, system knowledge, maturational physiology and pathophysiology) to further refine PBPK models.
Collapse
Affiliation(s)
- Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences.,Department of Development and Regeneration, and.,Leuven Child and Youth Institute, KU Leuven, Leuven Belgium.,Department of Clinical Pharmacy, Erasmus MC, Rotterdam, the Netherlands
| | - Mohammad Yaseen Abbasi
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences
| | - Olusola Olafuyi
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Hamimed M, Leblond P, Dumont A, Gattacceca F, Tresch-Bruneel E, Probst A, Chastagner P, Pagnier A, De Carli E, Entz-Werlé N, Grill J, Aerts I, Frappaz D, Bertozzi-Salamon AI, Solas C, André N, Ciccolini J. Impact of pharmacogenetics on variability in exposure to oral vinorelbine among pediatric patients: a model-based population pharmacokinetic analysis. Cancer Chemother Pharmacol 2022; 90:29-44. [PMID: 35751658 DOI: 10.1007/s00280-022-04446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Better understanding of pharmacokinetics of oral vinorelbine (VNR) in children would help predicting drug exposure and, beyond, clinical outcome. Here, we have characterized the population pharmacokinetics of oral VNR and studied the factors likely to explain the variability observed in VNR exposure among young patients. DESIGN/METHODS We collected blood samples from 36 patients (mean age 11.6 years) of the OVIMA multicentric phase II study in children with recurrent/progressive low-grade glioma. Patients received 60 mg/m2 of oral VNR on days 1, 8, and 15 during the first 28-day treatment cycle and 80 mg/m2, unless contraindicated, from cycle 2-12. Population pharmacokinetic analysis was performed using nonlinear mixed-effects modeling within the Monolix® software. Fifty SNPs of pharmacokinetic-related genes were genotyped. The influence of demographic, biological, and pharmacogenetic covariates on pharmacokinetic parameters was investigated using a stepwise multivariate procedure. RESULTS A three-compartment model, with a delayed double zero-order absorption and a first-order elimination, best described VNR pharmacokinetics in children. Typical population estimates for the apparent central volume of distribution (Vc/F) and elimination rate constant were 803 L and 0.60 h-1, respectively. Following covariate analysis, BSA, leukocytes count, and drug transport ABCB1-rs2032582 SNP showed a dramatic impact on Vc/F. Conversely, age and sex had no significant effect on VNR pharmacokinetics. CONCLUSION Beyond canonical BSA and leukocytes, ABCB1-rs2032582 polymorphism showed a meaningful impact on VNR systemic exposure. Simulations showed that the identified covariates could have an impact on both efficacy and toxicity outcomes. Thus, a personalized dosing strategy, using those covariates, could help to optimize the efficacy/toxicity balance of VNR in children.
Collapse
Affiliation(s)
- Mourad Hamimed
- SMARTc Unit, Cancer Research Center of Marseille, Inserm U1068-CNRS UMR 7258, Aix-Marseille University U105, 27 Boulevard Jean Moulin, 13385, Marseille, France. .,Inria-Inserm COMPO Team, Centre Inria Sophia Antipolis - Méditerranée, Inserm U1068-CNRS UMR 7258, Aix-Marseille University U105, Marseille, France.
| | - Pierre Leblond
- Institute of Pediatric Hematology and Oncology IHOPe, Léon Bérard Cancer Center, Lyon, France.,Department of Pediatric Oncology, Oscar Lambret Cancer Center, Lille, France
| | - Aurélie Dumont
- Unité d'Oncologie Moléculaire Humaine, Oscar Lambret Cancer Center, Lille, France
| | - Florence Gattacceca
- SMARTc Unit, Cancer Research Center of Marseille, Inserm U1068-CNRS UMR 7258, Aix-Marseille University U105, 27 Boulevard Jean Moulin, 13385, Marseille, France.,Inria-Inserm COMPO Team, Centre Inria Sophia Antipolis - Méditerranée, Inserm U1068-CNRS UMR 7258, Aix-Marseille University U105, Marseille, France
| | | | - Alicia Probst
- Département de la Recherche Clinique et Innovation, Oscar Lambret Cancer Center, Lille, France
| | - Pascal Chastagner
- Service d'Hémato-Oncologie Pédiatrique, Nancy University Hospital, Nancy, France
| | - Anne Pagnier
- Service d'Hémato-Oncologie Pédiatrique, Grenoble University Hospital, Grenoble, France
| | - Emilie De Carli
- Service d'Hémato-Oncologie Pédiatrique, Angers University Hospital, Angers, France
| | - Natacha Entz-Werlé
- Pédiatrie Onco-Hématologie Université de Strasbourg, CHRU Hautepierre, UMR CNRS 7021, Strasbourg, France
| | - Jacques Grill
- Département de Cancérologie de l'Enfant et de l'Adolescent et UMR CNRS 8203 Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Isabelle Aerts
- SIREDO Centre (Care, Innovation and Research in Paediatric, Adolescent and Young Adult Oncology), Institut Curie-Oncology Center, Paris, France
| | - Didier Frappaz
- Institute of Pediatric Hematology and Oncology IHOPe, Léon Bérard Cancer Center, Lyon, France
| | | | - Caroline Solas
- Unité des Virus Émergents (UVE), Aix-Marseille Univ-IRD 190-Inserm 1207, Marseille, France.,Clinical Pharmacokinetics and Toxicology Laboratory, La Timone University Hospital of Marseille, APHM, Marseille, France
| | - Nicolas André
- Department of Pediatric Oncology, La Timone University Hospital of Marseille, APHM, Marseille, France
| | - Joseph Ciccolini
- SMARTc Unit, Cancer Research Center of Marseille, Inserm U1068-CNRS UMR 7258, Aix-Marseille University U105, 27 Boulevard Jean Moulin, 13385, Marseille, France.,Inria-Inserm COMPO Team, Centre Inria Sophia Antipolis - Méditerranée, Inserm U1068-CNRS UMR 7258, Aix-Marseille University U105, Marseille, France.,Clinical Pharmacokinetics and Toxicology Laboratory, La Timone University Hospital of Marseille, APHM, Marseille, France
| |
Collapse
|
20
|
de Wildt SN, Wong ICK. Innovative methodologies in paediatric drug development: A conect4children (c4c) special issue. Br J Clin Pharmacol 2022; 88:4962-4964. [PMID: 35491737 DOI: 10.1111/bcp.15355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, the Netherlands.,Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Ian C K Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Research Department of Practice and Policy, UCL, School of Pharmacy, London, UK
| |
Collapse
|
21
|
Abstract
To truly attain effective and safe pharmacotherapy, the similarities and dissimilarities in physiology between micro-preemies and extreme preterm infants should be explored. The higher incidence of pulmonary hypertension and presence of adrenal insufficiency of prematurity in micro-preemies hereby serve as illustrations. The current limited data on pharmacokinetics, -dynamics and safety reflect the obvious need to collect such data, and to tailor modelling tools to their physiology and needs. Drug utilization hereby mirrors different needs and practices and may serve to guide prioritization decisions. Physiological data, combined with even limited observations on pharmacokinetics and -dynamics can be translated to effective modelling tools to attain effective and safe pharmacotherapy. We therefore discuss how valid research tools in pharmacology like physiology-based pharmacokinetic models can be developed, and how clinicians can contribute to such efforts, with the overarching aim to enable this shift from immature pharmacotherapy to pharmacotherapy for the immature.
Collapse
|
22
|
Mørk ML, Andersen JT, Lausten-Thomsen U, Gade C. The Blind Spot of Pharmacology: A Scoping Review of Drug Metabolism in Prematurely Born Children. Front Pharmacol 2022; 13:828010. [PMID: 35242037 PMCID: PMC8886150 DOI: 10.3389/fphar.2022.828010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022] Open
Abstract
The limit for possible survival after extremely preterm birth has steadily improved and consequently, more premature neonates with increasingly lower gestational age at birth now require care. This specialized care often include intensive pharmacological treatment, yet there is currently insufficient knowledge of gestational age dependent differences in drug metabolism. This potentially puts the preterm neonates at risk of receiving sub-optimal drug doses with a subsequent increased risk of adverse or insufficient drug effects, and often pediatricians are forced to prescribe medication as off-label or even off-science. In this review, we present some of the particularities of drug disposition and metabolism in preterm neonates. We highlight the challenges in pharmacometrics studies on hepatic drug metabolism in preterm and particularly extremely (less than 28 weeks of gestation) preterm neonates by conducting a scoping review of published literature. We find that >40% of included studies failed to report a clear distinction between term and preterm children in the presentation of results making direct interpretation for preterm neonates difficult. We present summarized findings of pharmacokinetic studies done on the major CYP sub-systems, but formal meta analyses were not possible due the overall heterogeneous approaches to measuring the phase I and II pathways metabolism in preterm neonates, often with use of opportunistic sampling. We find this to be a testament to the practical and ethical challenges in measuring pharmacokinetic activity in preterm neonates. The future calls for optimized designs in pharmacometrics studies, including PK/PD modeling-methods and other sample reducing techniques. Future studies should also preferably be a collaboration between neonatologists and clinical pharmacologists.
Collapse
Affiliation(s)
- Mette Louise Mørk
- Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jón Trærup Andersen
- Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ulrik Lausten-Thomsen
- Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christina Gade
- Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
23
|
Precision dosing in children; no small matter. Eur J Cancer 2021; 164:155-156. [PMID: 34876299 DOI: 10.1016/j.ejca.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
|
24
|
Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics (Basel) 2021; 10:antibiotics10101182. [PMID: 34680763 PMCID: PMC8532953 DOI: 10.3390/antibiotics10101182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Children show important developmental and maturational changes, which may contribute greatly to pharmacokinetic (PK) variability observed in pediatric patients. These PK alterations are further enhanced by disease-related, non-maturational factors. Specific to the intensive care setting, such factors include critical illness, inflammatory status, augmented renal clearance (ARC), as well as therapeutic interventions (e.g., extracorporeal organ support systems or whole-body hypothermia [WBH]). This narrative review illustrates the relevance of both maturational and non-maturational changes in absorption, distribution, metabolism, and excretion (ADME) applied to antibiotics. It hereby provides a focused assessment of the available literature on the impact of critical illness—in general, and in specific subpopulations (ARC, extracorporeal organ support systems, WBH)—on PK and potential underexposure in children and neonates. Overall, literature discussing antibiotic PK alterations in pediatric intensive care is scarce. Most studies describe antibiotics commonly monitored in clinical practice such as vancomycin and aminoglycosides. Because of the large PK variability, therapeutic drug monitoring, further extended to other antibiotics, and integration of model-informed precision dosing in clinical practice are suggested to optimise antibiotic dose and exposure in each newborn, infant, or child during intensive care.
Collapse
|