1
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
2
|
Nielsen VG. Ruthenium, Not Carbon Monoxide, Inhibits the Procoagulant Activity of Atheris, Echis, and Pseudonaja Venoms. Int J Mol Sci 2020; 21:ijms21082970. [PMID: 32340168 PMCID: PMC7216138 DOI: 10.3390/ijms21082970] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
The demonstration that carbon monoxide releasing molecules (CORMs) affect experimental systems by the release of carbon monoxide, and not via the interaction of the inactivated CORM, has been an accepted paradigm for decades. However, it has recently been documented that a radical intermediate formed during carbon monoxide release from ruthenium (Ru)-based CORM (CORM-2) interacts with histidine and can inactivate bee phospholipase A2 activity. Using a thrombelastographic based paradigm to assess procoagulant activity in human plasma, this study tested the hypothesis that a Ru-based radical and not carbon monoxide was responsible for CORM-2 mediated inhibition of Atheris,Echis, and Pseudonaja species snake venoms. Assessment of the inhibitory effects of ruthenium chloride (RuCl3) on snake venom activity was also determined. CORM-2 mediated inhibition of the three venoms was found to be independent of carbon monoxide release, as the presence of histidine-rich albumin abrogated CORM-2 inhibition. Exposure to RuCl3 had little effect on Atheris venom activity, but Echis and Pseudonaja venom had procoagulant activity significantly reduced. In conclusion, a Ru-based radical and ion inhibited procoagulant snake venoms, not carbon monoxide. These data continue to add to our mechanistic understanding of how Ru-based molecules can modulate hemotoxic venoms, and these results can serve as a rationale to focus on perhaps other, complementary compounds containing Ru as antivenom agents in vitro and, ultimately, in vivo.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ 85719, USA
| |
Collapse
|
3
|
Nielsen VG, Wagner MT, Frank N. Mechanisms Responsible for the Anticoagulant Properties of Neurotoxic Dendroaspis Venoms: A Viscoelastic Analysis. Int J Mol Sci 2020; 21:ijms21062082. [PMID: 32197368 PMCID: PMC7139654 DOI: 10.3390/ijms21062082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Using thrombelastography to gain mechanistic insights, recent investigations have identified enzymes and compounds in Naja and Crotalus species' neurotoxic venoms that are anticoagulant in nature. The neurotoxic venoms of the four extant species of Dendroaspis (the Black and green mambas) were noted to be anticoagulant in nature in human blood, but the mechanisms underlying these observations have never been explored. The venom proteomes of these venoms are unique, primarily composed of three finger toxins (3-FTx), Kunitz-type serine protease inhibitors (Kunitz-type SPI) and <7% metalloproteinases. The anticoagulant potency of the four mamba venoms available were determined in human plasma via thrombelastography; vulnerability to inhibition of anticoagulant activity to ethylenediaminetetraacetic acid (EDTA) was assessed, and inhibition of anticoagulant activity after exposure to a ruthenium (Ru)-based carbon monoxide releasing molecule (CORM-2) was quantified. Black mamba venom was the least potent by more than two orders of magnitude compared to the green mamba venoms tested; further, Black Mamba venom anticoagulant activity was not inhibited by either EDTA or CORM-2. In contrast, the anticoagulant activities of the green mamba venoms were all inhibited by EDTA to a greater or lesser extent, and all had anticoagulation inhibited with CORM-2. Critically, CORM-2-mediated inhibition was independent of carbon monoxide release, but was dependent on a putative Ru-based species formed from CORM-2. In conclusion, there was great species-specific variation in potency and mechanism(s) responsible for the anticoagulant activity of Dendroaspis venom, with perhaps all three protein classes-3-FTx, Kunitz-type SPI and metalloproteinases-playing a role in the venoms characterized.
Collapse
Affiliation(s)
- Vance G. Nielsen
- Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ 85719, USA;
- Correspondence:
| | - Michael T. Wagner
- Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ 85719, USA;
| | - Nathaniel Frank
- MToxins Venom lab LLC, 717 Oregon Street, Oshkosh, WI 54902, USA;
| |
Collapse
|
4
|
Nielsen VG, Frank N. The kallikrein-like activity of Heloderma venom is inhibited by carbon monoxide. J Thromb Thrombolysis 2019; 47:533-539. [PMID: 30955141 DOI: 10.1007/s11239-019-01853-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lizards in the genus Heloderma are the most ancient venomous reptiles, with a traceable lineage nearly 100 million years old. The proteome of the venom of three of the remaining species (Heloderma suspectum, H. exasperatum, H. horridum) are very conserved, with kallikrein-like activity present to cause critical hypotension to immobilize and outright kill prey. Kallikrein-like activity would be expected to activate the contact protein pathway of coagulation, which would be detectable with thrombelastography in human plasma. Thus, it was proposed to determine if kallikrein-like activity could be detected with thrombelastography, and if this activity could be inhibited by carbon monoxide (CO) via a putative heme-based mechanism. Procoagulant activity of each venom was assessed via thrombelastography with normal plasma, and kallikrein-like activity confirmed with FX-depleted plasma. Venom was then exposed to carbon monoxide releasing molecule-2 (CORM-2) or its inactive releasing molecule to assess CO inhibition. All three venoms demonstrated kallikrein-like activity with the same potency and inhibition of activity by CO. In conclusion, the present work documented that procoagulant, kallikrein-like activity containing venoms of the oldest species of venomous reptiles was inhibited by CO, potentially via heme modulation. This is also the first identification and characterization of a kallikrein-like enzyme utilizing coagulation factor-depleted plasma to assess venom that inflicts hypotension. Future investigations will continue to define the vulnerability of venom enzymatic activities to CO.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, 1501 North Campbell Avenue, P.O. Box 245114, Tucson, AZ, 85724-5114, USA.
| | | |
Collapse
|
5
|
Johnson TE, Wells RJ, Bell A, Nielsen VG, Olver CS. Carbon monoxide releasing molecule enhances coagulation and decreases fibrinolysis in canine plasma exposed to Crotalus viridis venom in vitro and in vivo. Basic Clin Pharmacol Toxicol 2019; 125:328-336. [PMID: 31059181 DOI: 10.1111/bcpt.13242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/24/2019] [Indexed: 11/30/2022]
Abstract
Carbon monoxide releasing molecule-2 (CORM-2), an emerging therapeutic in human medicine, enhances plasmatic coagulation and attenuates fibrinolysis in vitro in human, rabbit and horse plasma and ameliorates hypocoagulation and hyperfibrinolysis secondary to venom exposure in human plasma in vitro. Fibrinogenases in rattlesnake venom cause decreased clot strength, and in the presence of tissue plasminogen activator (tPA) in vitro, a markedly increased rate of clot lysis. CO interacts with a haem group on fibrinogen, changing its configuration so that the fibrin clot is strengthened and more resistant to fibrinolysis. We hypothesized that CORM-2 enhances coagulation and attenuates fibrinolysis in canine plasma exposed to C viridis venom. We measured the effects of C viridis venom on clot strength, rates of coagulation and fibrinolysis in both pooled canine plasma and plasma from individual naturally envenomed dogs, with and without CORM-2, using thromboelastography (TEG). We tested venom effects on coagulation using tissue factor (TF) activated TEG and on both coagulation and fibrinolysis using TF-activated TEG with added tPA. We found that 17.9 µg/mL of venom causes a mean 26.4% decrease in clot strength, a 61.8% decrease in maximum rate of thrombus generation, 75% faster clot lysis, a 226% increase in maximum rate of lysis and a 92% decrease in total clot life span (CLS). CORM-2 ameliorated these effects, increasing CLS in the presence of venom by 603%. Additionally, we showed that CORM-2 has similar effects in vitro on plasma from naturally envenomed dogs, showing promise as an adjunct therapy for snake envenomation.
Collapse
Affiliation(s)
- Tyler E Johnson
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Raegan J Wells
- Phoenix Veterinary Referral and Emergency, Phoenix, Arizona
| | - Amy Bell
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - Vance G Nielsen
- Department of Anesthesia, University of Arizona College of Medicine, Tucson, Arizona
| | - Christine S Olver
- Department of Microbiology, Immunology and Pathology, Clinical Pathology Section, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
6
|
De Novo Assessment and Review of Pan-American Pit Viper Anticoagulant and Procoagulant Venom Activities via Kinetomic Analyses. Toxins (Basel) 2019; 11:toxins11020094. [PMID: 30736322 PMCID: PMC6409967 DOI: 10.3390/toxins11020094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. Further, the exposure of venoms to carbon monoxide (CO) or O-phenylhydroxylamine (PHA) modulate putative heme groups attached to key enzymes has also provided mechanistic insight into the multiple different activities contained in one venom. The present investigation used these techniques to characterize fourteen different venoms obtained from snakes from North, Central, and South America. Further, we review and present previous thrombelastographic-based analyses of eighteen other species from the Americas. Venoms were found to be anticoagulant and procoagulant (thrombin-like activity, thrombin-generating activity). All prospectively assessed venom activities were determined to be heme-modulated except two, wherein both CO and its carrier molecule were found to inhibit activity, while PHA did not affect activity (Bothriechis schlegelii and Crotalus organus abyssus). When divided by continent, North and Central America contained venoms with mostly anticoagulant activities, several thrombin-like activities, with only two thrombin-generating activity containing venoms. In contrast, most venoms with thrombin-generating activity were located in South America, derived from Bothrops species. In conclusion, the kinetomic profiles of venoms obtained from thirty-two Pan-American Pit Viper species are presented. It is anticipated that this approach will be utilized to identify clinically relevant hemotoxic venom enzymatic activity and assess the efficacy of locally delivered CO or systemically administered antivenoms.
Collapse
|
7
|
Effects of Heme Modulation on Ovophis and Trimeresurus Venom Activity in Human Plasma. Toxins (Basel) 2018; 10:toxins10080322. [PMID: 30096756 PMCID: PMC6116019 DOI: 10.3390/toxins10080322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Geographic isolation and other factors result in evolution-driven diversity of the enzymatic composition of venom of pit vipers in the same genus. The present investigation sought to characterize venoms obtained from such genetically diverse Ovophis and Trimeresurus pit vipers utilizing thrombelastographic coagulation kinetic analyses. The coagulation kinetics of human plasma were assessed after exposure to venom obtained from two Ovophis and three Trimeresurus species. The potency of each venom was defined (µg/mL required to equivalently change coagulation); additionally, venoms were exposed to carbon monoxide (CO) or a metheme-inducing agent to modulate any enzyme-associated heme. All venoms had fibrinogenolytic activity, with four being CO-inhibitable. While Ovophis venoms had similar potency, one demonstrated the presence of a thrombin-like activity, whereas the other demonstrated a thrombin-generating activity. There was a 10-fold difference in potency and 10-fold different vulnerability to CO inhibition between the Trimeresurus species. Metheme formation enhanced fibrinogenolytic-like activity in both Ovophis species venoms, whereas the three Trimeresurus species venoms had fibrinogenolytic-like activity enhanced, inhibited, or not changed. This novel “venom kinetomic” approach has potential to identify clinically relevant enzymatic activity and assess efficacy of antivenoms between genetically and geographically diverse species.
Collapse
|
8
|
Nielsen VG, Frank N. Role of heme modulation in inhibition of Atheris, Atractaspis, Causus, Cerastes, Echis, and Macrovipera hemotoxic venom activity. Hum Exp Toxicol 2018; 38:216-226. [PMID: 30086669 DOI: 10.1177/0960327118793186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Venomous snake bite and subsequent coagulopathy is a significant source of morbidity and mortality worldwide. The gold standard to treat coagulopathy caused by these venoms is the administration of antivenom; however, despite this therapy, coagulopathy still occurs and recurs. Of interest, our laboratory has demonstrated in vitro and in vivo that coagulopathy-inducing venom exposed to carbon monoxide (CO) is inhibited, potentially by an attached heme. The present investigation sought to determine if venoms derived from snakes of the African genera Atheris, Atractaspis, Causus, Cerastes, Echis, and Macrovipera that have no or limited antivenoms available could be inhibited with CO or with the metheme-inducing agent, O-phenylhydroxylamine (PHA). Assessing changes in coagulation kinetics of human plasma with thrombelastography, venoms were exposed in isolation to CO or PHA. Eight species were found to have procoagulant activity consistent with the generation of human thrombin, while one was likely fibrinogenolytic. All venoms were significantly inhibited by CO/PHA with species-specific variation noted. These data demonstrate indirectly that the heme is likely bound to these disparate venoms as an intermediary modulatory molecule. In conclusion, future investigation is warranted to determine if heme could serve as a potential therapeutic target to be modulated during treatment of envenomation by hemotoxic enzymes.
Collapse
Affiliation(s)
- V G Nielsen
- 1 The Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | |
Collapse
|
9
|
Suntravat M, Langlais PR, Sánchez EE, Nielsen VG. CatroxMP-II: a heme-modulated fibrinogenolytic metalloproteinase isolated from Crotalus atrox venom. Biometals 2018; 31:585-593. [PMID: 29761254 DOI: 10.1007/s10534-018-0107-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
It has been recently demonstrated that the hemotoxic venom activity of several species of snakes can be inhibited by carbon monoxide (CO) or a metheme forming agent. These and other data suggest that the biometal, heme, may be attached to venom enzymes and may be modulated by CO. A novel fibrinogenolytic metalloproteinase, named CatroxMP-II, was isolated and purified from the venom of a Crotalus atrox viper, and subjected to proteolysis and mass spectroscopy. An ion similar to the predicted singly charged m/z of heme at 617.18 was identified. Lastly, CORM-2 (tricarbonyldichlororuthenium (II) dimer, a CO releasing molecule) inhibited the fibrinogenolytic effects of CatroxMP-II on coagulation kinetics in human plasma. In conclusion, we present the first example of a snake venom metalloproteinase that is heme-bound and CO-inhibited.
Collapse
Affiliation(s)
- Montamas Suntravat
- Department of Chemistry, National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Paul R Langlais
- The Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Elda E Sánchez
- Department of Chemistry, National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Vance G Nielsen
- The Department of Anesthesiology, University of Arizona College of Medicine, P.O. Box 245114, 1501 North Campbell Avenue, Tucson, AZ, 85724-5114, USA.
| |
Collapse
|
10
|
Nielsen VG, Frank N, Matika RW. Carbon monoxide inhibits hemotoxic activity of Elapidae venoms: potential role of heme. Biometals 2017; 31:51-59. [PMID: 29170850 DOI: 10.1007/s10534-017-0066-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 12/30/2022]
Abstract
Envenomation by hemotoxic enzymes continues to be a major cause of morbidity and mortality throughout the world. With regard to treatment, the gold standard to abrogate coagulopathy caused by these venoms is still the administration of antivenom; however, despite antivenom therapy, coagulopathy still occurs and recurs. Of interest, this laboratory has demonstrated in vitro and in vivo that coagulopathy inducing venom derived from snakes of the family Viperidae exposed to carbon monoxide (CO) is inhibited, potentially by an attached heme. The present investigation sought to determine if venoms derived from snakes of the Elapidae family (taipans and cobras) could also be inhibited with CO or with the metheme inducing agent, O-phenylhydroxylamine (PHA). Assessing changes in coagulation kinetics of human plasma with thrombelastography, venoms from Elapidae snakes were exposed in isolation to CO (five species) or PHA (one specie) and placed in human plasma to assess changes in procoagulant or anticoagulant activity. The procoagulant activity of two taipan venoms and anticoagulant activity of three cobra venoms were significantly inhibited by CO. The venom of the inland taipan was also inhibited by PHA. In sum, these data demonstrate indirectly that the biometal heme is likely bound to these disparate venoms as an intermediary modulatory molecule. In conclusion, CO may not just be a potential therapeutic agent to treat envenomation but also may be a potential modulator of heme as a protective mechanism for venomous snakes against injury from their own proteolytic venoms.
Collapse
Affiliation(s)
- Vance G Nielsen
- The Department of Anesthesiology, University of Arizona College of Medicine, 1501 North Campbell Avenue, P.O. Box 245114, Tucson, AZ, 85724-5114, USA.
| | | | - Ryan W Matika
- The Department of Anesthesiology, University of Arizona College of Medicine, 1501 North Campbell Avenue, P.O. Box 245114, Tucson, AZ, 85724-5114, USA
| |
Collapse
|
11
|
Nielsen VG. Crotalus atrox
Venom Exposed to Carbon Monoxide Has Decreased Fibrinogenolytic Activity In Vivo
in Rabbits. Basic Clin Pharmacol Toxicol 2017; 122:82-86. [DOI: 10.1111/bcpt.12846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vance G. Nielsen
- Department of Anesthesiology; University of Arizona College of Medicine; Tucson AZ USA
| |
Collapse
|
12
|
Nielsen VG, Sánchez EE, Redford DT. Characterization of the Rabbit as an In Vitro and In Vivo Model to Assess the Effects of Fibrinogenolytic Activity of Snake Venom on Coagulation. Basic Clin Pharmacol Toxicol 2017; 122:157-164. [PMID: 28696521 DOI: 10.1111/bcpt.12848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
Several in vitro investigations have demonstrated that anticoagulant effects of fibrinogenolytic snake venom metalloproteinases have been abrogated in human plasma by modifying fibrinogen with iron (Fe) and carbon monoxide (CO) to prevent catalysis or by directly inhibiting these enzymes with CO. To translate these findings, we chose to assess the rabbit as a model of envenomation with Crotalus atrox venom. It was determined with thrombelastography that 15 times the concentration of venom noted to compromise coagulation in plasma in vitro was required to cause coagulopathy in vivo, likely secondary to venom binding to blood cells and being cleared from the circulation rapidly. Unlike human plasma, rabbit plasma pre-treated with Fe/CO was not protected from fibrinogenolysis by venom. Consequently, the administration of purified human fibrinogen (with or without Fe/CO) would be required before venom administration to rabbits. Of greater interest, venom exposed to CO had complete loss of fibrinogenolytic effect in rabbit plasma and partial loss of activity in whole blood, indicative of unbinding of CO from venom and binding to haemoglobin. Thus, venom exposed to CO could remain partially or completely inhibited in whole blood long enough for clearance from the circulation, allowing rabbits to be a useful model to test the efficacy of regional CO administration to the bite site. Future investigations are planned to test these novel approaches to attenuate venom-mediated coagulopathy in the rabbit.
Collapse
Affiliation(s)
- Vance G Nielsen
- The Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center and the Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Daniel T Redford
- The Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
13
|
The effect of physiological levels of South African puff adder (Bitis arietans) snake venom on blood cells: an in vitro model. Sci Rep 2016; 6:35988. [PMID: 27775063 PMCID: PMC5075924 DOI: 10.1038/srep35988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
A significant burden of illness is caused globally by snakebites particularly by the puff adder, Bitis arietans. Presently there is no reliable and rapid method to confirm envenomation on blood chemistry; although coagulation parameters like prothrombin time, partial thromboplastin time, international normalized ratio and also serum electrolytes are tested. Here, we found that direct in vitro exposure of physiological relevant whole venom levels to human healthy blood (N = 32), caused significant physiological changes to platelet activity using a hematology analyzer, and measuring occlusion time, as well as lyses time, with the global thrombosis test (GTT). Disintegrated platelets were confirmed by scanning electron microscopy (SEM). We also confirmed the pathologic effects on erythrocytes (RBCs) (visible as eryptotic RBCs), by looking at both light microscopy and SEM. Thromboelastography showed that no clot formation in whole blood could be induced after addition of whole venom. We propose further clinical studies to investigate the use of light microscopy smears and hematology analyzer results immediately after envenomation, as a possible first-stage of clinical confirmation of envenomation.
Collapse
|