1
|
Seaman RW, Lamon K, Whitton N, Latimer B, Sulima A, Rice KC, Murnane KS, Collins GT. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague Dawley Rats: Comparisons with Methamphetamine and Cocaine. Brain Sci 2024; 14:258. [PMID: 38539646 PMCID: PMC10969043 DOI: 10.3390/brainsci14030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Recent data suggest that 3,4-methylenedioxypyrovalerone (MDPV) has neurotoxic effects; however, the cognitive and neurochemical consequences of MDPV self-administration remain largely unexplored. Furthermore, despite the fact that drug preparations that contain MDPV often also contain caffeine, little is known regarding the toxic effects produced by the co-use of these two stimulants. The current study investigated the degree to which self-administered MDPV or a mixture of MDPV+caffeine can produce deficits in recognition memory and alter neurochemistry relative to prototypical stimulants. Male Sprague Dawley rats were provided 90 min or 12 h access to MDPV, MDPV+caffeine, methamphetamine, cocaine, or saline for 6 weeks. Novel object recognition (NOR) memory was evaluated prior to any drug self-administration history and 3 weeks after the final self-administration session. Rats that had 12 h access to methamphetamine and those that had 90 min or 12 h access to MDPV+caffeine exhibited significant deficits in NOR, whereas no significant deficits were observed in rats that self-administered cocaine or MDPV. Striatal monoamine levels were not systematically affected. These data demonstrate synergism between MDPV and caffeine with regard to producing recognition memory deficits, highlighting the importance of recapitulating the manner in which drugs are used (e.g., in mixtures containing multiple stimulants, binge-like patterns of intake).
Collapse
Affiliation(s)
- Robert W. Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kariann Lamon
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Nicholas Whitton
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Gregory T. Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Zeinalabedini M, Mousavi Z, Amjadi A, Shapouri M, Aminnezhad Kavkani B, Masoumvand M, Mobarakeh KA, Gholamalizadeh M, Valisoltani N, Mohammadi S, Khoshdooz S, Doaei S, Kooshki A. Does dietary intake of caffeine have an effect on transient global amnesia? Neuropsychopharmacol Rep 2024; 44:143-148. [PMID: 38131259 PMCID: PMC10932796 DOI: 10.1002/npr2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
AIM Amnesia is a cognitive disorder that may lead to memory loss. Caffeine is a psychoactive substance which have an effect on memory and cognitive functions. This study aimed to assess the association of transient global amnesia (TGA) with dietary intake of caffeine. METHODS This cross-sectional study was conducted on the Sabzevar Persian cohort data of 258 patients with TGA and 520 healthy individuals in Sabzevar, Iran. The Nutritional data were gathered in face-to-face interviews using a valid Food Frequency Questionnaire. Different models of logistic regression were used to determine the association between TGA and dietary caffeine intake after adjusting the confounders including age, sex, education, job, marital status, physical activity, BMI, and calorie intake. RESULTS There was no significant difference in terms of dietary calorie intake of (2279.5 ± 757.9 vs. 2365.5 ± 799.5, p = 0.19), protein (70.79 ± 25.27 vs. 72.94 ± 24.83, p = 0.31), fat (59.97 ± 23.79 vs. 60.13 ± 26.38, p = 0.93), carbohydrate (376 ± 134 vs. 393.1 ± 137.8, p = 0.14), and caffeine (196.4 ± 127.9 vs. 186.3 ± 128.5, p = 0.36) between the groups. No significant association was found between TGA and dietary intake of caffeine (OR: 0.99, 95% CI: 0.99-1.01, p = 0.36). The results did not change after adjusting the confounders. CONCLUSIONS No significant association was found between TGA and dietary intake of caffeine. Further prospective studies are required to confirm this finding.
Collapse
Affiliation(s)
- Mobina Zeinalabedini
- Department of Community of Nutrition, School of Nutritional Sciences and DieteticTehran University of Medical SciencesTehranIran
| | - Zahra Mousavi
- School of Nursing and MidwiferyShahed UniversityTehranIran
| | - Arezoo Amjadi
- Department of Nutrition, School of Nutritional Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Mahsa Shapouri
- Shahid Beheshti University of Medical SciencesTehranIran
| | | | - Mohammad Masoumvand
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Khadijeh Abbasi Mobarakeh
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | | | - Neda Valisoltani
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Saeideh Mohammadi
- Department of NutritionZanjan University of Medical SciencesZanjanIran
| | - Sara Khoshdooz
- Faculty of MedicineGuilan University of Medical SciencesRashtIran
| | - Saeid Doaei
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Akram Kooshki
- Non‐Communicable Diseases Research Center, Department of Nutrition & Biochemistry, Faculty of MedicineSabzevar University of Medical SciencesSabzevarIran
| |
Collapse
|
3
|
Seaman RW, Lamon K, Whitton N, Latimer B, Sulima A, Rice KC, Murnane KS, Collins GT. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague-Dawley Rats: Comparisons with Methamphetamine and Cocaine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578247. [PMID: 38352595 PMCID: PMC10862826 DOI: 10.1101/2024.01.31.578247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Recent data suggest that 3,4-methylenedioxypyrovalerone (MDPV) has neurotoxic effects; however, the cognitive and neurochemical consequences of MDPV self-administration remain largely unexplored. Furthermore, despite the fact that drug preparations that contain MDPV often also contain caffeine, little is known regarding the toxic effects produced by the co-use of these two stimulants. The current study investigated the degree to which self-administered MDPV, or a mixture of MDPV+caffeine can produce deficits in recognition memory and alter neurochemistry relative to prototypical stimulants. Male Sprague-Dawley rats were provided 90-min or 12-h access to MDPV, MDPV+caffeine, methamphetamine, cocaine, or saline for 6 weeks. Novel object recognition (NOR) memory was evaluated prior to any drug self-administration history and 3 weeks after the final self-administration session. Rats that had 12-h access to methamphetamine and those that had 90-min or 12-h access to MDPV+caffeine exhibited significant deficits in NOR, whereas no significant deficits were observed in rats that self-administered cocaine or MDPV. Striatal mono-amine levels were not systematically affected. These data demonstrate synergism between MDPV and caffeine with regard to producing recognition memory deficits and lethality, highlighting the importance of recapitulating the manner in which drugs are used (e.g., in mixtures containing multiple stimulants, binge-like patterns of intake).
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kariann Lamon
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Nicholas Whitton
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kevin S Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
4
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Olopade F, Femi-Akinlosotu O, Ibitoye C, Shokunbi T. Probing Caffeine Administration as a Medical Management for Hydrocephalus: An Experimental Study. Pediatr Neurol 2022; 135:12-21. [PMID: 35970099 DOI: 10.1016/j.pediatrneurol.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Hydrocephalus is currently managed by cerebrospinal fluid diversion from the cerebral ventricles to other body sites, but this is complicated by obstruction and infection in young infants, thus adding to morbidity and mortality. Studies have reported caffeine to be a pleiotropic neuroprotective drug in the developing brain due to its antioxidant, anti-inflammatory, and antiapoptotic properties, with improved white matter microstructural development. In this study, we investigate the use of caffeine administration as a possible means of pharmacological management for hydrocephalus. METHODS A total of 76 three-day-old mice pups from 10 dams were divided into four groups: hydrocephalus was induced in the pups in two groups by intracisternal injection of kaolin suspension, and their dams were given either caffeine (50 mg/kg by gavage) or water daily for 21 days; the dams in the other 2 (non-hydrocephalic) groups similarly had either caffeine or water; the pups received caffeine administered via lactation. Developmental neurobehavioral tests were performed until day 21, when the pups were sacrificed. Their brains were removed and processed for Cresyl and Golgi staining; both quantitative and qualitative analyses were then carried out. RESULTS Improved developmental motor activities and reflexes were observed in the hydrocephalus + caffeine-treated pups. Caffeine administration was associated with reduced cell death and increased dendritic arborization of the neurons in the sensorimotor cortex and striatum of hydrocephalic mice pups. CONCLUSION Caffeine administration appears to have promise as an adjunct in hydrocephalus management, and its use needs to be further explored.
Collapse
Affiliation(s)
- Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Chloe Ibitoye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Shokunbi
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Hu J, Cheng Y, Chen P, Huang Z, Yang L. Caffeine Citrate Protects Against Sepsis-Associated Encephalopathy and Inhibits the UCP2/NLRP3 Axis in Astrocytes. J Interferon Cytokine Res 2022; 42:267-278. [PMID: 35420462 DOI: 10.1089/jir.2021.0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction without overt central nervous system infection. Caffeine citrate has therapeutic effect on different brain diseases, while its role in SAE remains unclear. The expression levels of interleukin (IL)-18 and IL-1β were upregulated in the cerebrospinal fluid of the subjects. In this study, a rat model of SAE was established by cecal ligation and puncture. Caffeine citrate inhibited SAE-induced neuronal apoptosis and astrocytic activation, decreased reactive oxygen species (ROS) generation, and elevated mitochondrial membrane potential (MMP) level in the cerebral cortex. In vitro, primary astrocytes were isolated from rat cerebral cortex and incubated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Caffeine citrate reduced ROS and MMP levels and mitochondrial complex enzyme activities in LPS plus IFN-γ-induced astrocytes. Moreover, caffeine citrate inhibited the activation of nucleotide-binding and oligomerization domain (NOD)-like receptor (NLRP3) inflammasome and decreased the production of IL-1β and IL-18 in vivo and in vitro. Notably, caffeine citrate promoted UCP2 expression in astrocytes. The neuroprotective role of UCP2 has been reported in several experimental brain diseases. These results suggest that caffeine citrate inhibits neuronal apoptosis, astrocytic activation, mitochondrial dysfunction in rat cerebral cortex, thereby alleviating SAE. The protection of caffeine citrate against SAE may be achieved by the UCP2-mediated NLRP3 pathway inhibition in astrocytes.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yan Cheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ping Chen
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhaoqi Huang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Liqi Yang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
7
|
Use of Organ Dysfunction as a Primary Outcome Variable Following Cecal Ligation and Puncture: Recommendations for Future Studies. Shock 2021; 54:168-182. [PMID: 31764625 DOI: 10.1097/shk.0000000000001485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Outcomes variables for research on sepsis have centered on mortality and changes in the host immune response. However, a recent task force (Sepsis-3) revised the definition of sepsis to "life-threatening organ dysfunction caused by a dysregulated host response to infection." This new definition suggests that human studies should focus on organ dysfunction. The appropriate criteria for organ dysfunction in either human sepsis or animal models are, however, poorly delineated, limiting the potential for translation. Further, in many systems, the difference between "dysfunction" and "injury" may not be clear. In this review, we identify criteria for organ dysfunction and/or injury in human sepsis and in rodents subjected to cecal ligation and puncture (CLP), the most commonly used animal model of sepsis. We further examine instances where overlap between human sepsis and CLP is sufficient to identify translational endpoints. Additional verification may demonstrate that these endpoints are applicable to other animals and to other sepsis models, for example, pneumonia. We believe that the use of these proposed measures of organ dysfunction will facilitate mechanistic studies on the pathobiology of sepsis and enhance our ability to develop animal model platforms to evaluate therapeutic approaches to human sepsis.
Collapse
|
8
|
Abstract
Objectives: Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data Sources: Original paper, search of the literature. Study Selection: By several members of the original task force with specific expertise in basic/translational science. Data Extraction: None. Data Synthesis: None. Conclusions: In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
|
9
|
Szopa A, Socała K, Serefko A, Doboszewska U, Wróbel A, Poleszak E, Wlaź P. Purinergic transmission in depressive disorders. Pharmacol Ther 2021; 224:107821. [PMID: 33607148 DOI: 10.1016/j.pharmthera.2021.107821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Purinergic signaling involves the actions of purine nucleotides and nucleosides (such as adenosine) at P1 (adenosine), P2X, and P2Y receptors. Here, we present recent data contributing to a comprehensive overview of the association between purinergic signaling and depression. We start with background information on adenosine production and metabolism, followed by a detailed characterization of P1 and P2 receptors, with an emphasis on their expression and function in the brain as well as on their ligands. We provide data suggestive of altered metabolism of adenosine in depressed patients, which might be regarded as a disease biomarker. We then turn to considerable amount of preclinical/behavioral data obtained with the aid of the forced swim test, tail suspension test, learned helplessness model, or unpredictable chronic mild stress model and genetic activation/inactivation of P1 or P2 receptors as well as nonselective or selective ligands of P1 or P2 receptors. We also aimed to discuss the reason underlying discrepancies observed in such studies.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Anna Serefko
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
10
|
Effects of sub-chronic caffeine ingestion on memory and the hippocampal Akt, GSK-3β and ERK signaling in mice. Brain Res Bull 2021; 170:137-145. [PMID: 33556562 DOI: 10.1016/j.brainresbull.2021.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022]
Abstract
Caffeine, one of the most widely consumed psychoactive substance in the world, has been shown to affect mood, memory, alertness, and cognitive performance. This study aimed to assess the effect of sub-chronic oral gavage of caffeine on memory and the phosphorylation levels of hippocampal Akt (protein kinase B), GSK-3β (Glycogen Synthase Kinase-3beta) and ERK (extracellular signal-regulated kinase) in mice. Adult male NMRI mice were administered with caffeine at the doses of 0.25, 0.5, 0.75 and 1.5 mg/kg/oral gavage for 10 days before behavioral assessments. Upon completion of the behavioral tasks, the hippocampi were isolated for western blot analysis to detect the phosphorylated and total levels of Akt, GSK-3β and ERK proteins. The results showed that sub-chronic caffeine ingestion at the dose of 0.5 mg/kg improves memory in mice both in passive avoidance and novel object recognition tasks. Furthermore, this memory enhancing dose of caffeine elevated the ratios of phosphorylated to total contents of hippocampal Akt, GSK-3β and ERK. This study suggests that sub-chronic low dose of caffeine improves memory and increases the phosphorylation of hippocampal Akt, GSK-3β and ERK proteins.
Collapse
|
11
|
Deutschman CS, Hellman J, Roca RF, De Backer D, Coopersmith CM. The surviving sepsis campaign: basic/translational science research priorities. Intensive Care Med Exp 2020; 8:31. [PMID: 32676795 PMCID: PMC7365694 DOI: 10.1186/s40635-020-00312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data sources Original paper, search of the literature. Study selection This study is selected by several members of the original task force with specific expertise in basic/translational science. Data extraction and data synthesis are not available. Conclusions In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Pediatrics, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Ricard Ferrer Roca
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Daniel De Backer
- Chirec Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
12
|
Van der Veeken L, Grönlund S, Gerdtsson E, Holmqvist B, Deprest J, Ley D, Bruschettini M. Long-term neurological effects of neonatal caffeine treatment in a rabbit model of preterm birth. Pediatr Res 2020; 87:1011-1018. [PMID: 31812154 DOI: 10.1038/s41390-019-0718-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neonatal caffeine treatment might affect brain development. Long-term studies show conflicting results on brain-related outcomes. Herein we aimed to investigate the long-term effects of neonatal caffeine administration in a rabbit model of preterm birth. METHODS Preterm (born day 29) and term (day 32) pups were raised by wet nurses and allocated to treatment with saline or caffeine for 7 or 17 days. At pre-puberty, neurobehavioral tests were performed and brains were harvested for immunostaining of neurons, synapses, myelin, and astrocytes. RESULTS Survival was lower in preterm saline pups than in controls, whereas caffeine-treated preterm pups did not differ from term control pups. Preterm saline pups covered less distance compared to controls and were more likely to stay in the peripheral zone of the open field. Corresponding differences were not seen in preterm caffeine pups. Preterm animals had lower neuron density compared to controls, which was not influenced by caffeine treatment. Synaptic density, astrocytes, and myelin were not different between groups. CONCLUSION Caffeine appeared to be safe. All preterm rabbits had lower neuron density but anxious behavior seen in preterm saline rabbits was not seen in caffeine-treated preterm pups.
Collapse
Affiliation(s)
- Lennart Van der Veeken
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
| | - Susanne Grönlund
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | | | | | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
13
|
Chen JA, Scheltens P, Groot C, Ossenkoppele R. Associations Between Caffeine Consumption, Cognitive Decline, and Dementia: A Systematic Review. J Alzheimers Dis 2020; 78:1519-1546. [PMID: 33185612 PMCID: PMC7836063 DOI: 10.3233/jad-201069] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiologic studies have provided inconclusive evidence for a protective effect of caffeine consumption on risk of dementia and cognitive decline. OBJECTIVE To summarize literature on the association between caffeine and 1) the risk of dementia and/or cognitive decline, and 2) cognitive performance in individuals with mild cognitive impairment (MCI) or dementia, and 3) to examine the effect of study characteristics by categorizing studies based on caffeine source, quantity and other possible confounders. METHODS We performed a systematic review of caffeine effects by assessing overall study outcomes; positive, negative or no effect. Our literature search identified 61 eligible studies performed between 1990 and 2020. RESULTS For studies analyzing the association between caffeine and the risk of dementia and/or cognitive decline, 16/57 (28%) studies including a total of 40,707/153,070 (27%) subjects reported positive study outcomes, and 30/57 (53%) studies including 71,219/153,070 (47%) subjects showed positive results that were dependent on study characteristics. Caffeine effects were more often positive when consumed in moderate quantities (100-400 mg/d), consumed in coffee or green tea, and in women. Furthermore, four studies evaluated the relationship between caffeine consumption and cognitive function in cognitively impaired individuals and the majority (3/4 [75% ]) of studies including 272/289 subjects (94%) reported positive outcomes. CONCLUSION This review suggests that caffeine consumption, especially moderate quantities consumed through coffee or green tea and in women, may reduce the risk of dementia and cognitive decline, and may ameliorate cognitive decline in cognitively impaired individuals.
Collapse
Affiliation(s)
- J.Q. Alida Chen
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Colin Groot
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Rajizadeh MA, Afarinesh MR, Zarif M, Mirasadi A, Esmaeilpour K. Does caffeine therapy improve cognitive impairments in valproic acid rat model of autism? TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1680563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Zarif
- Neuroscience Research Center, Institute of neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alaa Mirasadi
- Neuroscience Research Center, Institute of neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Effects of anisomycin infusions into the dorsal striatum on memory consolidation of intense training and neurotransmitter activity. Brain Res Bull 2019; 150:250-260. [DOI: 10.1016/j.brainresbull.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
|