1
|
Neagu AN, Jayaweera T, Corrice L, Johnson K, Darie CC. Breast Cancer Exposomics. Life (Basel) 2024; 14:402. [PMID: 38541726 PMCID: PMC10971462 DOI: 10.3390/life14030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 12/15/2024] Open
Abstract
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Lilian Corrice
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Kaya Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| |
Collapse
|
2
|
Sindi S, Hamdi N, Hassan S, Ganash M, Alharbi M, Alburae N, Azhari S, Alkhayyat S, Linjawi A, Alkhatabi H, Elaimi A, Alrefaei G, Alsubhi N, Alrafiah A, Alhazmi S. Promoter Methylation-Regulated Differentially Expressed Genes in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:435-450. [PMID: 37434588 PMCID: PMC10332364 DOI: 10.2147/bctt.s408711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
Background Breast cancer is one of the most common malignancies among women. Recent studies revealed that differentially methylated regions (DMRs) are implicated in regulating gene expression. The goal of this research was to determine which genes and pathways are dysregulated in breast cancer when their promoters are methylated in an abnormal way, leading to differential expression. Whole-genome bisulfite sequencing was applied to analyze DMRs for eight peripheral blood samples collected from five Saudi females diagnosed with stages I and II of breast cancer aligned with three normal females. Three of those patients and three normal samples were used to determine differentially expressed genes (DEG) using Illumina platform NovaSeq PE150. Results Based on ontology (GO) and KEGG pathways, the analysis indicated that DMGs and DEG are closely related to associated processes, such as ubiquitin-protein transferase activity, ubiquitin-mediated proteolysis, and oxidative phosphorylation. The findings indicated a potentially significant association between global hypomethylation and breast cancer in Saudi patients. Our results revealed 81 differentially promoter-methylated and expressed genes. The most significant differentially methylated and expressed genes found in gene ontology (GO) are pumilio RNA binding family member 1 (PUM1) and zinc finger AN1-type containing 2B (ZFAND2B) also known as (AIRAPL). Conclusion The essential outcomes of this study suggested that aberrant hypermethylation at crucial genes that have significant parts in the molecular pathways of breast cancer could be used as a potential prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Samar Sindi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah Hamdi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, King Khalid University, Abha, Saudi Arabia
| | - Sabah Hassan
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdah Ganash
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Alburae
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sheren Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadi Alkhayyat
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Heba Alkhatabi
- Hematology Research Unit (HRU), King Fahad Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer Alrefaei
- Department of Biology, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf Alsubhi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Aziza Alrafiah
- Department of Medical Laboratory Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Sharma P, Bilkhiwal N, Chaturvedi P, Kumar S, Khetarpal P. Potential environmental toxicant exposure, metabolizing gene variants and risk of PCOS-A systematic review. Reprod Toxicol 2021; 103:124-132. [PMID: 34126208 DOI: 10.1016/j.reprotox.2021.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Exposure of environmental toxicants such as potentially toxic metals and pesticides have largely been attributed to produce adverse effects on general women's health and to be more precise on the reproductive system. In order to explore exposure of toxicants and metabolizing gene variants as risk factor for polycystic ovarian syndrome (PCOS), literature search was carried out using the databases PubMed, Central Cochrane Library, Google Scholar, Science Direct with appropriate keywords upto 6 December 2020. While most of the studies indicate higher serum Cu concentration and lower concentration of Mn as risk factor, studies also report presence of higher pesticide concentration in PCOS women. Genes such as MTHFR, CYPs participate in the metabolism of toxicants and may show different response due to underlying genetic variants. Thus, toxicant exposure are to some extent responsible for the pathogenesis of syndrome through oxidative stress and endocrine disruption, but the susceptibility may vary due to the underlying genetic polymorphism of the exposed population.
Collapse
Affiliation(s)
- Priya Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Nisha Bilkhiwal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sachin Kumar
- Department of Mathematics and Statistics, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Caini S, Fiorito G, Palli D, Bendinelli B, Polidoro S, Silvestri V, Ottini L, Ambrogetti D, Zanna I, Saieva C, Masala G. Pre-diagnostic DNA methylation patterns differ according to mammographic breast density amongst women who subsequently develop breast cancer: a case-only study in the EPIC-Florence cohort. Breast Cancer Res Treat 2021; 189:435-444. [PMID: 34101077 DOI: 10.1007/s10549-021-06273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Mammographic breast density (MBD) is a marker of increased breast cancer (BC) risk, yet much remains to be clarified about the underlying mechanisms. We investigated whether DNA methylation patterns differ between high- vs. low-MBD women who developed BC during an 8.9-year median follow-up in the Florence section of the European Prospective Investigation into Cancer and Nutrition. METHODS We analysed 96 pairs of women with BC arising on high- vs. low-MBD breasts (BI-RADS category III-IV vs. I). DNA methylation was determined on pre-diagnostic blood samples using the Illumina Infinium MethylationEPIC BeadChip assay. The statistical analysis was conducted by performing an epigenome-wide association study (EWAS), by searching differentially methylated regions (DMRs) in gene promoters (followed by functional enrichment and gene annotation analysis); and through a "candidate pathways" approach focusing on pre-defined inflammation-related pathways. RESULTS In EWAS, no single CpG site was differentially methylated between high- and low-MBD women after correction for multiple testing. A total of 140 DMRs were identified, of which 131 were hyper- and 9 hypo-methylated amongst high-MBD women. These DMRs encompassed an annotation cluster of 35 genes coding for proteins implicated in transcription regulation and DNA binding. The "apoptosis signalling" was the only inflammation-related candidate pathway differentially methylated between high- and low-MBD women. CONCLUSION Pre-diagnostic methylation patterns differ between high- vs. low-MBD women who subsequently develop BC, particularly, in genes involved in the regulation of DNA transcription and cell apoptosis. Our study provides novel clues about the mechanisms linking MBD and BC.
Collapse
Affiliation(s)
- Saverio Caini
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
| | - Giovanni Fiorito
- Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy.
| | - Benedetta Bendinelli
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
| | - Silvia Polidoro
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College, London, UK.,Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | | | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Ambrogetti
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
| | - Ines Zanna
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
| | - Calogero Saieva
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Via Cosimo il Vecchio 2, 50141, Florence, Italy
| |
Collapse
|
5
|
|
6
|
The regulation mechanisms and the Lamarckian inheritance property of DNA methylation in animals. Mamm Genome 2021; 32:135-152. [PMID: 33860357 DOI: 10.1007/s00335-021-09870-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/05/2021] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable and heritable epigenetic mechanism, of which the main functions are stabilizing the transcription of genes and promoting genetic conservation. In animals, the direct molecular inducers of DNA methylation mainly include histone covalent modification and non-coding RNA, whereas the fundamental regulators of DNA methylation are genetic and environmental factors. As is well known, competition is present everywhere in life systems, and will finally strike a balance that is optimal for the animal's survival and reproduction. The same goes for the regulation of DNA methylation. Genetic and environmental factors, respectively, are responsible for the programmed and plasticity changes of DNA methylation, and keen competition exists between genetically influenced procedural remodeling and environmentally influenced plastic alteration. In this process, genetic and environmental factors collaboratively decide the methylation patterns of corresponding loci. DNA methylation alterations induced by environmental factors can be transgenerationally inherited, and exhibit the characteristic of Lamarckian inheritance. Further research on regulatory mechanisms and the environmental plasticity of DNA methylation will provide strong support for understanding the biological function and evolutionary effects of DNA methylation.
Collapse
|
7
|
Huhn S, Escher BI, Krauss M, Scholz S, Hackermüller J, Altenburger R. Unravelling the chemical exposome in cohort studies: routes explored and steps to become comprehensive. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:17. [PMID: 33614387 PMCID: PMC7877320 DOI: 10.1186/s12302-020-00444-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
Environmental factors contribute to the risk for adverse health outcomes against a background of genetic predisposition. Among these factors, chemical exposures may substantially contribute to disease risk and adverse outcomes. In fact, epidemiological cohort studies have established associations between exposure against individual chemicals and adverse health effects. Yet, in daily life individuals are exposed to complex mixtures in varying compositions. To capture the totality of environmental exposures the concept of the exposome has been developed. Here, we undertake an overview of major exposome projects, which pioneered the field of exposomics and explored the links between chemical exposure and health outcomes using cohort studies. We seek to reflect their achievements with regard to (i) capturing a comprehensive picture of the environmental chemical exposome, (ii) aggregating internal exposures using chemical and bioanalytical means of detection, and (iii) identifying associations that provide novel options for risk assessment and intervention. Various complementary approaches can be distinguished in addressing relevant exposure routes and it emerges that individual exposure histories may not easily be grouped. The number of chemicals for which human exposure can be detected is substantial and highlights the reality of mixture exposures. Yet, to a large extent it depends on targeted chemical analysis with the specific challenges to capture all relevant exposure routes and assess the chemical concentrations occurring in humans. The currently used approaches imply prior knowledge or hypotheses about relevant exposures. Typically, the number of chemicals considered in exposome projects is counted in dozens-in contrast to the several thousands of chemicals for which occurrence have been reported in human serum and urine. Furthermore, health outcomes are often still compared to single chemicals only. Moreover, explicit consideration of mixture effects and the interrelations between different outcomes to support causal relationships and identify risk drivers in complex mixtures remain underdeveloped and call for specifically designed exposome-cohort studies.
Collapse
Affiliation(s)
- Sebastian Huhn
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Pediatric Epidemiology, Department of Pediatrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Beate I. Escher
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research GmbH – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department of Bioanalytical Ecotoxicology, RWTH-Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Varakina Y, Lahmanov D, Aksenov A, Trofimova A, Korobitsyna R, Belova N, Sobolev N, Kotsur D, Sorokina T, Grjibovski AM, Chashchin V, Thomassen Y. Concentrations of Persistent Organic Pollutants in Women's Serum in the European Arctic Russia. TOXICS 2021; 9:6. [PMID: 33430444 PMCID: PMC7828080 DOI: 10.3390/toxics9010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
Persistent organic pollutants (POPs) are heterogeneous carbon-based compounds that can seriously affect human health. The aim of this study was to measure serum concentrations of POPs in women residing in the Euro-Arctic Region of Russia. A total of 204 women from seven rural settlements of the Nenets Autonomous Okrug (NAO) took part in the study. We measured serum concentrations of 11 polychlorinated biphenyls (PCBs) and 17 organochlorine pesticides (OCPs) across the study sites and among Nenets and non-Nenets residents. Measurement of POPs was performed using an Agilent 7890A gas chromatograph equipped with an Agilent 7000 series MS/MS triple quadrupole system. The concentrations of all POPs were low and similar to findings from other Arctic countries. However, significant geographic differences between the settlements were observed with exceptionally high concentrations of PCBs in Varnek located on Vaygach Island. Both ΣDDT (p = 0.011) and ΣPCB (p = 0.038) concentrations were significantly lower in Nenets. Our main findings suggest that the serum concentrations of the legacy POPs in women in the Euro-Arctic Region of Russia are low and similar to those in other Arctic countries. Significant variations between settlements, and between Nenets and non-Nenets residents, were found. Arctic biomonitoring research in Russia should include studies on the associations between nutrition and concentrations of POPs.
Collapse
Affiliation(s)
- Yulia Varakina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Dmitry Lahmanov
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Andrey Aksenov
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Anna Trofimova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Rimma Korobitsyna
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Natalia Belova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- Central Scientific Research Laboratory, Northern State Medical University of the Ministry of Healthcare of the Russian Federation, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia;
| | - Nikita Sobolev
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Dmitry Kotsur
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences, Naberezhnaya Severnoy Dvini 23, 163000 Arkhangelsk, Russia
| | - Tatiana Sorokina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Andrej M. Grjibovski
- Central Scientific Research Laboratory, Northern State Medical University of the Ministry of Healthcare of the Russian Federation, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia;
- Department of Health Policy and Management, Al-Farabi Kazakh National University, Almay 050040, Kazakhstan
- Department of Epidemiology and Modern Vaccination Technologies, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- West Kazakhstan Marat Ospanov Medical University, Aktobe 0300190, Kazakhstan
| | - Valery Chashchin
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- North-Western State Medical University Named after I.I. Mechnikov, Kirochnaya ul. 41, 191015 Saint-Petersburg, Russia
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| | - Yngvar Thomassen
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
- National Institute of Occupational Health, Gydas vei 8, N-0304 Oslo, Norway
| |
Collapse
|
9
|
Wielsøe M, Tarantini L, Bollati V, Long M, Bonefeld‐Jørgensen EC. DNA methylation level in blood and relations to breast cancer, risk factors and environmental exposure in Greenlandic Inuit women. Basic Clin Pharmacol Toxicol 2020; 127:338-350. [PMID: 32352194 PMCID: PMC7540549 DOI: 10.1111/bcpt.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023]
Abstract
Several studies have found aberrant DNA methylation levels in breast cancer cases, but factors influencing DNA methylation patterns and the mechanisms are not well understood. This case-control study evaluated blood methylation level of two repetitive elements and selected breast cancer-related genes in relation to breast cancer risk, and the associations with serum level of persistent organic pollutants (POPs) and breast cancer risk factors in Greenlandic Inuit. DNA methylation was determined using bisulphite pyrosequencing in blood from 74 breast cancer cases and 80 controls. Using first tertile as reference, the following was observed. Positive associations for ATM in second tertile (OR: 2.33, 95% CI: 1.04; 5.23) and ESR2 in third tertile (OR: 2.22, 95% CI: 0.97; 5.05) suggest an increased breast cancer risk with high DNA methylation. LINE-1 methylation was lower in cases than controls. In third tertile (OR: 0.42, 95% CI: 0.18; 0.98), associations suggest in accordance with the literature an increased risk of breast cancer with LINE-1 hypomethylation. Among controls, significant associations between methylation levels and serum level of POPs and breast cancer risk factors (age, body mass index, cotinine level) were found. Thus, breast cancer risk factors and POPs may alter the risk through changes in methylation levels; further studies are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Maria Wielsøe
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Letizia Tarantini
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Manhai Long
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Eva Cecilie Bonefeld‐Jørgensen
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
- Greenland Center for Health ResearchUniversity of GreenlandNuukGreenland
| |
Collapse
|