1
|
Zippo AG, Rodriguez‐Menendez V, Pozzi E, Canta A, Chiorazzi A, Ballarini E, Monza L, Alberti P, Meregalli C, Bravin A, Coan P, Longo E, Saccomano G, Paiva K, Tromba G, Cavaletti G, Carozzi VA. Paclitaxel alters the microvascular network in the central and peripheral nervous system of rats with chemotherapy-induced painful peripheral neuropathy. J Peripher Nerv Syst 2024; 29:537-554. [PMID: 39434652 PMCID: PMC11625995 DOI: 10.1111/jns.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND AND AIMS Chemotherapy-induced peripheral neurotoxicity (CIPN), with paraesthesia, numbness, dysesthesia and neuropathic pain ranks among the most common dose-limiting toxicity of several widely used anticancer drugs. Recent studies revealed the microvascular angiogenesis as a new important actor, beside peripheral neurons, in the neurotoxicity and neuropathic pain development and chronicisation. The aim of this work is to elucidate the role of vascular alterations in CIPN. METHODS We evaluated the severity of CIPN with neurophysiological, behavioural and neuropathological analysis together with the microvascular network in central and peripheral nervous systems of rats in order to correlate the features of the CIPN and the vascular abnormalities. The vascular network was quantitatively evaluated through synchrotron radiation-based X-ray phase-contrast micro-tomography imaging, measuring four specific parameters: vascular density, vessel diameter, vessel tortuosity and branching. RESULTS Rats exposed to paclitaxel and affected by a severe painful sensory axonopathy showed an increased vascular density (putative sprouting angiogenesis) in the crucial districts of the central (somatosensory cortex and lumbar spinal cord) and peripheral nervous system (lumbar dorsal root ganglia). In addition, the complexity of the vascular network and the size of neo-formed vessels were significantly decreased in specific regions. On the other hand, less significant changes were observed in rats exposed to cisplatin, affected by a painless peripheral neuropathy, suggesting a specific involvement of neo-angiogenesis in the development of severe neurotoxicity and neuropathic pain. INTERPRETATIONS These new ground-breaking results can shed light on new pathogenetic mechanisms and potential novel therapeutic approaches for painful-CIPN.
Collapse
Affiliation(s)
| | - Virginia Rodriguez‐Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
- Fondazione IRCCS San Gerardo dei TintoriMonzaItaly
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| | - Alberto Bravin
- Physics DepartmentUniversity of Milano‐BicoccaMilanItaly
| | - Paola Coan
- Faculty of PhysicsLudwig‐Maximillian UniversityMunichGermany
| | - Elena Longo
- Elettra‐Sincrotrone Trieste S.C.p.ATriesteItaly
| | - Giulia Saccomano
- Elettra‐Sincrotrone Trieste S.C.p.ATriesteItaly
- Department of Architecture and EngineeringUniversity of TriesteTriesteItaly
| | - Katrine Paiva
- Laboratory of Applied Physics to Biomedical Science, Physics InstituteRio de Janeiro State UniversityRio de JaneiroBrazil
| | | | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
- Fondazione IRCCS San Gerardo dei TintoriMonzaItaly
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano‐BicoccaMilanItaly
- NeuroMI (Milan Center for Neuroscience)MilanItaly
| |
Collapse
|
2
|
Sun Y, Cheng Y, Hertz DL. Using maximum plasma concentration (C max) to personalize taxane treatment and reduce toxicity. Cancer Chemother Pharmacol 2024; 93:525-539. [PMID: 38734836 DOI: 10.1007/s00280-024-04677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Taxanes are a widely used class of anticancer agents that play a vital role in the treatment of a variety of cancers. However, toxicity remains a major concern of using taxane drugs as some toxicities are highly prevalent, they can not only adversely affect patient prognosis but also compromise the overall treatment plan. Among all kinds of factors that associated with taxane toxicity, taxane exposure has been extensively studied, with different pharmacokinetic (PK) parameters being used as toxicity predictors. Compared to other widely used predictors such as the area under the drug plasma concentration curve versus time (AUC) and time above threshold plasma drug concentration, maximum plasma concentration (Cmax) is easier to collect and shows promise for use in clinical practice. In this article, we review the previous research on using Cmax to predict taxane treatment outcomes. While Cmax and toxicity have been extensively studied, research on the relationship between Cmax and efficacy is lacking. Most of the articles find a positive relationship between Cmax and toxicity but several articles have contradictory findings. Future clinical trials are needed to validate the relationship between Cmax and treatment outcome and determine whether Cmax can serve as a useful surrogate endpoint of taxane treatment efficacy.
Collapse
Affiliation(s)
- Yuchen Sun
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Yue Cheng
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Antoniazzi CTDD, Ruviaro NA, Peres DS, Rodrigues P, Viero FT, Trevisan G. Targeting TRPV4 Channels for Cancer Pain Relief. Cancers (Basel) 2024; 16:1703. [PMID: 38730655 PMCID: PMC11083562 DOI: 10.3390/cancers16091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This channel is activated by multiple stimuli to mediate pain perception associated with inflammatory and neuropathic pain. Here, we focused on summarizing the role of TRPV4 in cancer etiology and cancer-induced pain mechanisms. Many studies revealed that the administration of a TRPV4 antagonist and TRPV4 knockdown diminishes nociception in chemotherapy-induced peripheral neuropathy (CIPN). Although the evidence on TRPV4 channels' involvement in cancer pain is scarce, the expression of these receptors was reportedly enhanced in cancer-induced bone pain (CIBP), perineural, and orofacial cancer models following the inoculation of tumor cells to the bone marrow cavity, sciatic nerve, and tongue, respectively. Effective pain management is a continuous problem for patients diagnosed with cancer, and current guidelines fail to address a mechanism-based treatment. Therefore, examining new molecules with potential antinociceptive properties targeting TRPV4 modulation would be interesting. Identifying such agents could lead to the development of treatment strategies with improved pain-relieving effects and fewer adverse effects than the currently available analgesics.
Collapse
Affiliation(s)
- Caren Tatiane de David Antoniazzi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Náthaly Andrighetto Ruviaro
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| | - Diulle Spat Peres
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| |
Collapse
|
4
|
Devoogdt N, De Groef A. Physiotherapy management of breast cancer treatment-related sequelae. J Physiother 2024; 70:90-105. [PMID: 38519340 DOI: 10.1016/j.jphys.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024] Open
Affiliation(s)
- Nele Devoogdt
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium; Department of Vascular Surgery, Center for Lymphedema, University Hospitals Leuven, Leuven, Belgium.
| | - An De Groef
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium; Department of Rehabilitation Sciences, MOVANT Research Group, Antwerp University, Antwerp, Belgium
| |
Collapse
|
5
|
Haenen V, Dams L, Meeus M, De Groef A. Altered somatosensory functioning and mechanism-based classification in breast cancer patients with persistent pain. Anat Rec (Hoboken) 2024; 307:273-284. [PMID: 36398947 DOI: 10.1002/ar.25121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022]
Abstract
Pain is one of the most frequent and persistent side effects of breast cancer treatment. Besides pain, breast cancer survivors (BCS) are prone to experience a myriad of other signs and symptoms related to altered somatosensory function, including for example, hypoesthesia, allodynia, and hyperalgesia, both at the local site of cancer and in remote body parts. Different breast cancer treatments can have a direct effect on somatosensory functioning, resulting in a wide range of these signs and symptoms. To our knowledge, currently no comprehensive overview exists on altered somatosensory functioning and resulting signs and symptoms in BCS with persistent pain. Investigating altered somatosensory functioning in this population could provide more insights in the underpinning pathophysiological mechanisms and consequently improve prevention and treatment in the future. Therefore, in this paper, first, normal somatosensory functioning is described. Second, quantitative sensory testing is presented as the recommend method to evaluate somatosensory functioning. Third, existing evidence on altered somatosensory functioning in BCS with persistent pain is summarized. Altered somatosensory functioning related to the most common cancer treatment modalities, including surgery and radiotherapy, hormone therapy, and chemotherapy are discussed. In addition, evidence on the presence of nociplastic pain as pain resulting from altered somatosensory functioning without evidence for nociception and/or neuropathy in BCS is summarized. At last, a discussion on this available evidence, limitations, and perspectives for clinical practice and for research are made.
Collapse
Affiliation(s)
- Vincent Haenen
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| | - Lore Dams
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| | - Mira Meeus
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
| | - An De Groef
- Department of Rehabilitation Sciences and Physiotherapy, MOVANT, University of Antwerp, Antwerp, Belgium
- Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
| |
Collapse
|
6
|
Basu A, Yang JY, Tsirukis VE, Loiacono A, Koch G, Khwaja IA, Krishnamurthy M, Fazio N, White E, Jha A, Shah S, Takmil C, Bagdas D, Demirer A, Master A, Natke E, Honkanen R, Huang L, Rigas B. Phosphosulindac (OXT-328) prevents and reverses chemotherapy induced peripheral neuropathy in mice. Front Neurosci 2024; 17:1240372. [PMID: 38347876 PMCID: PMC10860339 DOI: 10.3389/fnins.2023.1240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/19/2023] [Indexed: 02/15/2024] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN), a side effect of chemotherapy, is particularly difficult to treat. We explored whether phosphosulindac (PS), a modified NSAID, could treat CIPN. Methods CIPN was induced in male C57BL/6 J mice by paclitaxel, vincristine or oxaliplatin. Mechanical allodynia was measured with the von Frey test and cold allodynia with the acetone test. To determine the preventive effect of PS, it was administered 2 days before the induction of CIPN. Mouse Lewis lung carcinoma xenografts were used to determine if PS altered the chemotherapeutic efficacy of paclitaxel. Cultured cell lines were used to evaluate the effect of PS on neuroinflammation. Results Treatment with each of the three chemotherapeutic agents used to induce CIPN lowered the mechanical allodynia scores by 56 to 85% depending on the specific agent. PS gel was applied topically 3x/day for 16-22 days to the hind paws of mice with CIPN. This effect was dose-dependent. Unlike vehicle, PS returned mechanical allodynia scores back to pre-CIPN levels. PS had a similar effect on paclitaxel-induced CIPN cold allodynia. Sulindac, a metabolite of PS, had no effect on CIPN. PS significantly prevented CIPN compared to vehicle. Given concomitantly with paclitaxel to mice with lung cancer xenografts, PS relieved CIPN without affecting the anticancer effect of paclitaxel. The enantiomers of PS were equally efficacious against CIPN, suggesting the therapeutic suitability of the racemate PS. There were no apparent side effects of PS. PS suppressed the levels of IL-6, IL-10, CXCL1, and CXCL2 induced by paclitaxel in a neuroblastoma cell line, and macrophage activation to the M1 proinflammatory phenotype. Conclusion Topically applied PS demonstrated broad therapeutic and preventive efficacy against CIPN, preserved the anticancer effect of paclitaxel, and was safe. Its anti-CIPN effect appears to be mediated, in part, by suppression of neuroinflammation. These data support further evaluation of topical PS for the control of CIPN.
Collapse
Affiliation(s)
- Aryah Basu
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jennifer Y. Yang
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Vasiliki E. Tsirukis
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Andrew Loiacono
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Gina Koch
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ishan A. Khwaja
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Mahila Krishnamurthy
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Nicholas Fazio
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Emily White
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Aayushi Jha
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shrila Shah
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Cameron Takmil
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Aylin Demirer
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Adam Master
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Ernest Natke
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Robert Honkanen
- Departments of Ophthalmology, Stony Brook University, Stony Brook, NY, United States
| | - Liqun Huang
- Medicon Pharmaceuticals, Inc, Setauket, NY, United States
| | - Basil Rigas
- Departments of Preventive Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
7
|
Fu Z, Gao C, Wu T, Wang L, Li S, Zhang Y, Shi C. Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates. iScience 2023; 26:107778. [PMID: 37727735 PMCID: PMC10505985 DOI: 10.1016/j.isci.2023.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Since the successful approval of gemtuzumab ozogamicin, antibody-drug conjugates (ADCs) have emerged as a pivotal category of targeted therapies for cancer. Among these ADCs, the use of monomethyl auristatin E (MMAE) as a payload is prevalent in the development of ADC drugs, which has significantly improved overall therapeutic efficacy against various malignancies. However, increasing clinical observations have raised concerns regarding the potential nervous system toxicity associated with MMAE-based ADCs. Specifically, a higher incidence of peripheral neuropathy has been reported in ADCs incorporating MMAE as payloads. Considering the increasing global use of MMAE-based ADCs, it is imperative to provide an inclusive overview of diagnostic and management strategies for this adverse event. In this review, we examine current information and what future research directions are required to better understand and manage this type of clinical challenge.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430000, China
| |
Collapse
|
8
|
Frachet S, Danigo A, Duchesne M, Richard L, Sturtz F, Magy L, Demiot C. A mouse model of sensory neuropathy induced by a long course of monomethyl-auristatin E treatment. Toxicol Appl Pharmacol 2023; 474:116624. [PMID: 37419214 DOI: 10.1016/j.taap.2023.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Antibody-drug conjugates (ADCs) are anticancer drugs consisting of a monoclonal antibody, targeting selective tumor antigens, to which has been frequently associated a highly potent cytotoxic agent, the monomethyl auristatin E (MMAE) using a chemical linker. MMAE is a tubulin polymerization inhibitor derived from dolastin-10. These MMAE-ADCs are responsible for peripheral nerve toxicities. Our objective was to develop and characterize a mouse model of MMAE-induced peripheral neuropathy induced by free MMAE injections. MMAE was injected in Swiss mice at 50 μg/kg i.p. every other day for 7 weeks. Assessments of motor and sensory nerve functions were performed once a week on MMAE and Vehicle-treated mice. Sciatic nerve and paw skin were removed at the end of experiment for subsequent immunofluorescence and morphological analysis. MMAE did not affect motor coordination, muscular strength and heat nociception, but significantly induced tactile allodynia in MMAE-treated mice compared with Vehicle-treated mice from day 35 to day 49. MMAE significantly reduced myelinated and unmyelinated axon densities in sciatic nerves and led to a loss of intraepidermal nerve fiber in paw skin. In summary, long course of low dose of MMAE induced a peripheral sensory neuropathy associated with nerve degeneration, without general state alteration. This model may represent a ready accessible tool to screen neuroprotective strategies in the context of peripheral neuropathies induced by MMAE-ADCs.
Collapse
Affiliation(s)
- Simon Frachet
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Aurore Danigo
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Mathilde Duchesne
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Laurence Richard
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France; Department of Pathology, University Hospital of Limoges, Limoges 87042, France.
| | - Franck Sturtz
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| | - Laurent Magy
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France; Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, Limoges 87042, France.
| | - Claire Demiot
- NeurIT (Neuropathies et Innovations Thérapeutiques) UR 20218, Faculties of Medicine and Pharmacy, University of Limoges, Limoges 87025, France.
| |
Collapse
|
9
|
Hooshmand K, Goldstein D, Timmins HC, Li T, Harrison M, Friedlander ML, Lewis CR, Lees JG, Moalem-Taylor G, Guennewig B, Park SB, Kwok JB. Polygenic risk of paclitaxel-induced peripheral neuropathy: a genome-wide association study. J Transl Med 2022; 20:564. [PMID: 36474270 PMCID: PMC9724416 DOI: 10.1186/s12967-022-03754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic risk factors for chemotherapy-induced peripheral neuropathy (CIPN), a major dose-limiting side-effect of paclitaxel, are not well understood. METHODS We performed a genome-wide association study (GWAS) in 183 paclitaxel-treated patients to identify genetic loci associated with CIPN assessed via comprehensive neuropathy phenotyping tools (patient-reported, clinical and neurological grading scales). Bioinformatic analyses including pathway enrichment and polygenic risk score analysis were used to identify mechanistic pathways of interest. RESULTS In total, 77% of the cohort were classified with CIPN (n = 139), with moderate/severe neuropathy in 36%. GWAS was undertaken separately for the three measures of CIPN. GWAS of patient-reported CIPN identified 4 chromosomal regions that exceeded genome-wide significance (rs9846958, chromosome 3; rs117158921, chromosome 18; rs4560447, chromosome 4; rs200091415, chromosome 10). rs4560447 is located within a protein-coding gene, LIMCH1, associated with actin and neural development and expressed in the dorsal root ganglia (DRG). There were additional risk loci that exceeded the statistical threshold for suggestive genome-wide association (P < 1 × 10-5) for all measures. A polygenic risk score calculated from the top 46 ranked SNPs was highly correlated with patient-reported CIPN (r2 = 0.53; P = 1.54 × 10-35). Overlap analysis was performed to identify 3338 genes which were in common between the patient-reported CIPN, neurological grading scale and clinical grading scale GWAS. The common gene set was subsequently analysed for enrichment of gene ontology (GO) and Reactome pathways, identifying a number of pathways, including the axon development pathway (GO:0061564; P = 1.78 × 10-6) and neuronal system (R-HSA-112316; adjusted P = 3.33 × 10-7). CONCLUSIONS Our findings highlight the potential role of axon development and regeneration pathways in paclitaxel-induced CIPN.
Collapse
Affiliation(s)
- Kosar Hooshmand
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - David Goldstein
- grid.1005.40000 0004 4902 0432Prince of Wales Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Hannah C. Timmins
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - Tiffany Li
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | | | - Michael L. Friedlander
- grid.1005.40000 0004 4902 0432Prince of Wales Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Craig R. Lewis
- grid.1005.40000 0004 4902 0432Prince of Wales Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Justin G. Lees
- grid.1005.40000 0004 4902 0432School of Biomedical Sciences, University of New South Wales, UNSW Sydney, Sydney, NSW Australia
| | - Gila Moalem-Taylor
- grid.1005.40000 0004 4902 0432School of Biomedical Sciences, University of New South Wales, UNSW Sydney, Sydney, NSW Australia
| | - Boris Guennewig
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - Susanna B. Park
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| | - John B. Kwok
- grid.1013.30000 0004 1936 834XSchool of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XBrain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW Australia
| |
Collapse
|
10
|
Richter MN, Fattahi F. Stem Cell-Based Models for Studying the Effects of Cancer and Cancer Therapies on the Peripheral Nervous System. Adv Biol (Weinh) 2022; 6:e2200009. [PMID: 35666079 DOI: 10.1002/adbi.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/06/2022] [Indexed: 01/28/2023]
Abstract
In recent years, the complexity of cancer and cancer therapies and their interactions with the peripheral nervous system have come into focus, but limitations in experimental models have remained a significant challenge in the field. As evidence, there are currently no therapies approved that target cancer-peripheral nervous system or cancer therapy-peripheral nervous system interactions as an anti-neoplastic or anti-neurotoxic agent, respectively. Human pluripotent stem cells offer an appealing model system that, unlike rodent models, is compatible with high throughput, high content applications; techniques that reflect modern drug discovery methodologies. Thus, utilizing the key advantages of stem cell-based models in tandem with the strengths of traditional animal models offers a complementary and interdisciplinary strategy to advance cancer and cancer therapy-peripheral nervous system research and drug discovery. In this review, the current status of the cancer-peripheral nervous system and cancer therapy-peripheral nervous system research is discussed, examples where stem cell-based models have been implemented are described, and avenues where stem cell-based models may further advance the field are proposed.
Collapse
Affiliation(s)
- Mikayla N Richter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, CA, 94110, USA
| |
Collapse
|
11
|
Kim SH, Kim KH, Hyun JW, Kim JH, Seo SS, Kim HJ, Park SY, Lim MC. Blood neurofilament light chain as a biomarker for monitoring and predicting paclitaxel-induced peripheral neuropathy in patients with gynecological cancers. Front Oncol 2022; 12:942960. [PMID: 36059704 PMCID: PMC9428708 DOI: 10.3389/fonc.2022.942960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Objective We aimed to evaluate the potential of serum neurofilament light chain (sNfL) and serum brain-derived neurotrophic factor (sBDNF) as reliable biomarkers for paclitaxel-induced peripheral neuropathy (PIPN). Methods Forty-eight patients with gynecologic cancer scheduled to undergo six cycles of paclitaxel-based chemotherapy at the National Cancer Center of Korea between September 2020 and January 2022 were prospectively assessed during and after chemotherapy. Results At the end of the chemotherapy, 12 (25%) patients were classified as having grade 3 PIPN according to the National Cancer Institute-Common Toxicity Criteria. The sNfL levels increased during paclitaxel treatment in all patients. After two, four, and six cycles, patients with grade 3 PIPN exhibited higher mean sNfL levels than those in the 0-2 grade range (p = 0.004, p = 001, and p < 0.001, respectively). For sNfL levels ≥ 124 pg/mL, after two cycles of chemotherapy, the sensitivity and specificity for predicting grade 3 PIPN at the end of treatment were 80% and 79%, respectively. Over the course of paclitaxel-based treatment, sBDNF levels continued to decrease regardless of the severity of PIPN. At the end of treatment and six months after chemotherapy, patients with grade 3 PIPN had lower sBDNF levels than those within the 0-2 grade range (p =0.037 and 0.02, respectively), and the patients in the latter group had better clinical symptoms six months after the end of treatment. Conclusions The sNfL levels during paclitaxel-based chemotherapy reflect ongoing neuroaxonal injury and serve as reliable biomarkers of PIPN severity. The sNfL levels during early treatment with paclitaxel might be prognostic indicators for PIPN progression. Low sBDNF levels 6 months after chemotherapy might adversely affect PIPN recovery.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Ki Hoon Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Ji Hyun Kim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | - Sang-Soo Seo
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
- Center for Clinical Trial, Hospital, National Cancer Center, Goyang, South Korea
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- Rare and Pediatric Cancer Branch and Immuno-oncology Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang, South Korea
- Department of Cancer Control and Policy, National Cancer Center, Goyang, South Korea
| |
Collapse
|
12
|
Al-Warhi T, Abualnaja M, Abu Ali OA, Althobaiti F, Alharthi F, Elsaid FG, Shati AA, Fayad E, Elghareeb D, Abu Almaaty AH, Zaki I. Synthesis and Biological Activity Screening of Newly Synthesized Trimethoxyphenyl-Based Analogues as Potential Anticancer Agents. Molecules 2022; 27:molecules27144621. [PMID: 35889493 PMCID: PMC9322052 DOI: 10.3390/molecules27144621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
A group of novel trimethoxyphenyl (TMP)-based analogues were synthesized by varying the azalactone ring of 2-(3,4-dimethoxyphenyl)-4-(3,4,5-trimethoxybenzylidene)oxazolone 1 and characterized using NMR spectral data as well as elemental microanalyses. All synthesized compounds were screened for their cytotoxic activity utilizing the hepatocellular carcinoma (HepG2) cell line. Compounds 9, 10 and 11 exhibited good cytotoxic potency with IC50 values ranging from 1.38 to 3.21 μM compared to podophyllotoxin (podo) as a reference compound. In addition, compounds 9, 10 and 11 exhibited potent inhibition of β-tubulin polymerization. DNA flow cytometry analysis of compound 9 shows cell cycle disturbance at the G2/M phase and a significant increase in Annexin-V-positive cells compared with the untreated control. Compound 9 was further studied regarding its apoptotic potential in HepG2 cells; it decreased the level of MMP and Bcl-2 as well as boosted the level of p53 and Bax compared with the control HepG2 cells.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Matokah Abualnaja
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Al Mukarrama 24381, Saudi Arabia;
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Fayez Althobaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (F.A.); (E.F.)
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Fahmy G. Elsaid
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia; (F.G.E.); (A.A.S.)
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. Shati
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia; (F.G.E.); (A.A.S.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (F.A.); (E.F.)
| | - Doaa Elghareeb
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Cairo 12619, Egypt
| | - Ali H. Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt;
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Correspondence:
| |
Collapse
|
13
|
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022; 14:pharmaceutics14071407. [PMID: 35890302 PMCID: PMC9319448 DOI: 10.3390/pharmaceutics14071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) often develops in patients with cancer treated with commonly used anti-cancer drugs. The symptoms of CIPN can occur acutely during chemotherapy or emerge after cessation, and often accompany long-lasting intractable pain. This adverse side effect not only affects the quality of life but also limits the use of chemotherapy, leading to a reduction in the survival rate of patients with cancer. Currently, effective treatments for CIPN are limited, and various interventions are being applied by clinicians and patients because of the unmet clinical need. Potential approaches to ameliorate CIPN include traditional Eastern medicine-based methods. Medicinal substances from traditional Eastern medicine have well-established analgesic effects and are generally safe. Furthermore, many substances can also improve other comorbid symptoms in patients. This article aims to provide information regarding traditional Eastern medicine-based plant extracts and natural compounds for CIPN. In this regard, we briefly summarized the development, mechanisms, and changes in the nervous system related to CIPN, and reviewed the substances of traditional Eastern medicine that have been exploited to treat CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
14
|
Pottegård A, Stage TB. Translational pharmacology: Closing the mechanistic gap. Basic Clin Pharmacol Toxicol 2021; 130 Suppl 1:3-4. [PMID: 34821053 DOI: 10.1111/bcpt.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Anton Pottegård
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Tore B Stage
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|