1
|
Li Y, Yang Y, Wang X. Identification, annotation and toxicity estimation of organic pollutants in human serum via non-target analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125577. [PMID: 39719210 DOI: 10.1016/j.envpol.2024.125577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Environmental organic pollution causes a threat to the ecological environment, constrains social development and can also potentially harm human health. We applied non-target analysis to screen organic pollutants from the serum of 89 individuals, identifying 67 pollutants in the categories of industrial intermediates, plasticizers, surfactants, pharmaceuticals, pesticides, and exogenous pollutant metabolites. The detection rate of chemicals for industrial use (50.3%; 95% CI: 39.7, 60.8) was higher, reflecting the environmental exposure characteristics of the surrounding functional areas. In addition, 1168 potential pollutant features were annotated to 10 superclasses. Exposure levels of identified pollutants were semi-quantified by predicting response factors via machine learning model. Highly exposed pollutants involved various categories, especially pharmaceuticals due to their property of being easily absorbed by human body cross biological barriers. Toxicity of developmental toxicity, bioconcentration, mutagenicity and oral rat median lethal dose (LD50) were predicted with the occurrence rates of 62.7%, 10.4%, 11.9% and 11.9% of the identified pollutants respectively. 4-[3-(Trifluoromethyl)benzyl]piperidine (industrial intermediate), risperidone (pharmaceutical), and aminocarb (insecticide) were predicted to have multiple toxic effects, which deserved attention and further hazard assessment. This study provides a comprehensive pattern of human exposure to organic pollutants, contributing to evaluate the health risks caused by pollutants to the population, thus providing data support for the monitoring and management of pollutants.
Collapse
Affiliation(s)
- Yuqian Li
- School of Environment and Geography, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yajing Yang
- Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
2
|
Mahdy WYB, Yamamoto K, Ito T, Fujiwara N, Fujioka K, Horai T, Otsuka I, Imafuku H, Omura T, Iijima K, Yano I. Physiologically-based pharmacokinetic model to investigate the effect of pregnancy on risperidone and paliperidone pharmacokinetics: Application to a pregnant woman and her neonate. Clin Transl Sci 2023; 16:618-630. [PMID: 36655374 PMCID: PMC10087078 DOI: 10.1111/cts.13473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 01/20/2023] Open
Abstract
This study aimed to determine the effects of pregnancy and ontogeny on risperidone and paliperidone pharmacokinetics by assessing their serum concentrations in two subjects and constructing a customized physiologically-based pharmacokinetic (PBPK) model. Risperidone and paliperidone serum concentrations were determined in a pregnant woman and her newborn. PBPK models for risperidone and paliperidone in adults, pediatric, and pregnant populations were developed and verified using the Simcyp simulator. These models were then applied to our two subjects, generating their "virtual twins." Effects of pregnancy on both drugs were examined using models with fixed pharmacokinetic parameters. In the neonatal PBPK simulation, 10 different models for estimating the renal function of neonates were evaluated. Risperidone was not detected in the serum of both pregnant woman and her newborn. Maternal and neonatal serum paliperidone concentrations were between 2.05-3.80 and 0.82-1.03 ng/ml, respectively. Developed PBPK models accurately predicted paliperidone's pharmacokinetics, as shown by minimal bias and acceptable precision across populations. The individualized maternal model predicted all observed paliperidone concentrations within the 90% prediction interval. Fixed-parameter simulations showed that CYP2D6 activity largely affects risperidone and paliperidone pharmacokinetics during pregnancy. The Flanders metadata equation showed the lowest absolute bias (mean error: 22.3% ± 6.0%) and the greatest precision (root mean square error: 23.8%) in predicting paliperidone plasma concentration in the neonatal population. Our constructed PBPK model can predict risperidone and paliperidone pharmacokinetics in pregnant and neonatal populations, which could help with precision dosing using the PBPK model-informed approach in special populations.
Collapse
Affiliation(s)
- Walaa Y B Mahdy
- Department of Pharmaceutics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiro Yamamoto
- Department of Pharmaceutics, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| | - Takahiro Ito
- Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| | - Naoko Fujiwara
- Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hitomi Imafuku
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiro Omura
- Department of Pharmaceutics, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuko Yano
- Department of Pharmaceutics, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Pharmacy, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
3
|
Dynamic Changes in Plasma Metabolic Profiles Reveal a Potential Metabolite Panel for Interpretation of Fatal Intoxication by Chlorpromazine or Olanzapine in Mice. Metabolites 2022; 12:metabo12121184. [PMID: 36557223 PMCID: PMC9782175 DOI: 10.3390/metabo12121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Diagnosing the cause of fatal intoxication by antipsychotic agents is an important task in forensic practice. In the 2020 Annual Report of the American Association of Poison Control Centers, among 40 deaths caused by antipsychotics, 21 cases were diagnosed as "probably responsible", thereby indicating that more objective diagnostic tools are needed. We used liquid chromatography-mass spectrometry-based integrated metabolomics analysis to measure changes in metabolic profiles in the plasma of mice that died from fatal intoxication due to chlorpromazine (CPZ) or olanzapine (OLA). These results were used to construct a stable discriminative classification model (DCM) comprising L-acetylcarnitine, succinic acid, and propionylcarnitine between fatal intoxication caused by CPZ/OLA and cervical dislocation (control). Performance evaluation of the classification model in mice that suffered fatal intoxication showed relative specificity for different pharmacodynamic drugs and relative sensitivity in different life states (normal, intoxication, fatal intoxication). A stable level of L-acetylcarnitine and variable levels of succinic acid and propionylcarnitine between fatal-intoxication and intoxication groups revealed procedural perturbations in metabolic pathways related to fatal intoxication by CPZ/OLA. Additional stability studies revealed that decomposition of succinic acid in fatal-intoxication samples (especially in the OLA group) could weaken the prediction performance of the binary-classification model; however, levels of these three potential metabolites measured within 6 days in fresh samples kept at 4 °C revealed a good performance of our model. Our findings suggest that metabolomics analysis can be used to explore metabolic alterations during fatal intoxication due to use of antipsychotic agents and provide evidence for the cause of death.
Collapse
|
4
|
Novel report on congenital talipes equinovarus (CTEV) following olanzapine exposure during pregnancy: case report and short review. Arch Womens Ment Health 2022; 25:671-674. [PMID: 35286443 DOI: 10.1007/s00737-022-01221-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
Olanzapine is widely used during pregnancy to manage mood and psychotic disorders with overall beneficial effects. There have been past reports of olanzapine exposure during early pregnancy and clubfoot in two newborns from India and Israel. We report a woman in Nepal diagnosed with schizophrenia and treated with olanzapine throughout the pregnancy delivering a baby boy with congenital talipes equinovarus deformity. Like in many other low-income settings, pregnancy was unplanned, and pre-conception counselling was not done. Research in mice has revealed the negative effects of olanzapine on bone development. Further reports would strengthen this potential association between exposure to olanzapine in the first trimester and the occurrence of clubfoot in the baby.
Collapse
|
5
|
Mishra MK, Kukal S, Paul PR, Bora S, Singh A, Kukreti S, Saso L, Muthusamy K, Hasija Y, Kukreti R. Insights into Structural Modifications of Valproic Acid and Their Pharmacological Profile. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010104. [PMID: 35011339 PMCID: PMC8746633 DOI: 10.3390/molecules27010104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
Valproic acid (VPA) is a well-established anticonvulsant drug discovered serendipitously and marketed for the treatment of epilepsy, migraine, bipolar disorder and neuropathic pain. Apart from this, VPA has potential therapeutic applications in other central nervous system (CNS) disorders and in various cancer types. Since the discovery of its anticonvulsant activity, substantial efforts have been made to develop structural analogues and derivatives in an attempt to increase potency and decrease adverse side effects, the most significant being teratogenicity and hepatotoxicity. Most of these compounds have shown reduced toxicity with improved potency. The simple structure of VPA offers a great advantage to its modification. This review briefly discusses the pharmacology and molecular targets of VPA. The article then elaborates on the structural modifications in VPA including amide-derivatives, acid and cyclic analogues, urea derivatives and pro-drugs, and compares their pharmacological profile with that of the parent molecule. The current challenges for the clinical use of these derivatives are also discussed. The review is expected to provide necessary knowledgebase for the further development of VPA-derived compounds.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India; (A.S.); (S.K.)
- Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India; (A.S.); (S.K.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India;
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or ; Tel.: +91-11-27662202; Fax: +91-11-27667471
| |
Collapse
|
6
|
Sleem A, El-Mallakh RS. Advances in the psychopharmacotherapy of bipolar disorder type I. Expert Opin Pharmacother 2021; 22:1267-1290. [PMID: 33612040 DOI: 10.1080/14656566.2021.1893306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Research into the pharmacologic management of bipolar type I illness continues to progress. AREAS COVERED Randomized clinical trials performed with type I bipolar disorder in the years 2015 to August 2020 are reviewed. There are new indications for the use of cariprazine, for bipolar mania and depression, and a long-acting injectable formulation of aripiprazole has also been approved for relapse prevention in bipolar illness. Most of the randomized clinical trials are effectiveness studies. EXPERT OPINION Over the 20 years from 1997 through 2016, the use of lithium and other mood stabilizers has declined by 50%, while the use of both second-generation antipsychotics (SGAs) and antidepressants has increased considerably. Over the same time period (1990-2017), disability-adjusted life years (DALYs) increased by 54.4%, from 6.02 million in 1990 to 9.29 million in 2017 which is greater than the 47.74% increase in incidence of the disease, suggesting that the changes in prescribing patterns have not been helpful for our patients. Furthermore, recent effectiveness studies continue to confirm the superiority of lithium and other mood stabilizers in the management of bipolar illness for both psychiatric and medical outcomes, reaffirming their role as foundational treatments in the management of type I bipolar disorder. Clinicians need to reassess their prescribing habits.
Collapse
Affiliation(s)
- Ahmad Sleem
- Mood Disorders Research Program, Depression Center Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
7
|
Novel treatment approaches and pediatric research networks in status epilepticus. Epilepsy Behav 2019; 101:106564. [PMID: 31708430 DOI: 10.1016/j.yebeh.2019.106564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 11/22/2022]
Abstract
This paper contains five contributions which were presented as part of the novel therapies section of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures. These illustrate recent advances being made in the management and therapy of status epilepticus. The five contributions concern: genetic variations in Na + channel genes and their importance in status epilepticus; the European Reference Network for rare and complex epilepsies EpiCARE; the North American Pediatric Status Epilepticus Research Group (pSERG); Fenfluramine as a potential therapy for status epilepticus' and the valproate derivatives, valnoctamide and sec-butylpropylacetamide (SPD), as potential therapies for status epilepticus. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
|
8
|
Use of Prescribed Psychotropics during Pregnancy: A Systematic Review of Pregnancy, Neonatal, and Childhood Outcomes. Brain Sci 2019; 9:brainsci9090235. [PMID: 31540060 PMCID: PMC6770670 DOI: 10.3390/brainsci9090235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
This paper reviews the findings from preclinical animal and human clinical research investigating maternal/fetal, neonatal, and child neurodevelopmental outcomes following prenatal exposure to psychotropic drugs. Evidence for the risks associated with prenatal exposure was examined, including teratogenicity, neurodevelopmental effects, neonatal toxicity, and long-term neurobehavioral consequences (i.e., behavioral teratogenicity). We conducted a comprehensive review of the recent results and conclusions of original research and reviews, respectively, which have investigated the short- and long-term impact of drugs commonly prescribed to pregnant women for psychological disorders, including mood, anxiety, and sleep disorders. Because mental illness in the mother is not a benign event, and may itself pose significant risks to both mother and child, simply discontinuing or avoiding medication use during pregnancy may not be possible. Therefore, prenatal exposure to psychotropic drugs is a major public health concern. Decisions regarding drug choice, dose, and duration should be made carefully, by balancing severity, chronicity, and co-morbidity of the mental illness, disorder, or condition against the potential risk for adverse outcomes due to drug exposure. Globally, maternal mental health problems are considered as a major public health challenge, which requires a stronger focus on mental health services that will benefit both mother and child. More preclinical and clinical research is needed in order to make well-informed decisions, understanding the risks associated with the use of psychotropic medications during pregnancy.
Collapse
|
9
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). II. Drugs in more advanced clinical development. Epilepsia 2019; 59:1842-1866. [PMID: 30368788 DOI: 10.1111/epi.14555] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
The Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV) took place in Madrid, Spain, on May 13-16, 2018 and was attended by 168 delegates from 28 countries. The conference provided a forum for professionals involved in basic science, clinical research, regulatory affairs, and clinical care to meet and discuss the latest advances related to discovery and development of drugs and devices aimed at improving the management of people with epilepsy. This progress report provides a summary of findings on investigational compounds for which data from both preclinical studies and studies in patients were presented. The compounds reviewed include anakinra, cannabidiol, cannabidivarin, fenfluramine, ganaxolone, medium-chain fatty acids, padsevonil, and the valproic derivatives valnoctamide and sec-butylpropylacetamide. On June 25, 2018, the US Food and Drug Administration approved a standardized formulation of cannabidiol oral solution for the treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome in patients 2 years and older. The report shows that there continues to be a steady flow of potential antiepileptic drugs progressing to clinical development. Many of these compounds show innovative mechanisms of action, and some have already been tested in placebo-controlled randomized controlled trials, with promising efficacy and safety results.
Collapse
Affiliation(s)
- Meir Bialer
- Faculty of Medicine, School of Pharmacy and David R. Bloom Center for Pharmacy, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
10
|
Lin YL, Bialer M, Cabrera RM, Finnell RH, Wlodarczyk BJ. Teratogenicity of valproic acid and its constitutional isomer, amide derivative valnoctamide in mice. Birth Defects Res 2018; 111:1013-1023. [PMID: 30325584 DOI: 10.1002/bdr2.1406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The anticonvulsant valproic acid (VPA) has a known teratogenic effect capable of inducing major congenital malformations and developmental disorders. A comparative teratogenicity study of VPA and its analog valnoctamide (VCD), which is a new generation candidate antiepileptic drug, was carried out using Swiss Vancouver (SWV) mice. METHODS Pregnant SWV dams were treated with either a single intraperitoneal injection of VPA (1.8 and 2.7 mmol/kg), VCD (1.8 and 2.7 mmol/kg), or vehicle on E8:12 (gestational day:hour). The numbers of implantation and resorption, viable and dead fetuses, and the presence of gross fetal visceral and skeletal abnormalities were determined (E18). Real-time Polymerase chain reaction (RT-PCR) arrays were used to analyze the expression of 84 genes related to the processes of neurogenesis and neural stem cell differentiation. RESULTS Significant decreases in pregnancy weight gain and the number of live fetuses were observed when VPA was administered at the high dose, whereas the percentage of exencephalic fetuses was significantly increased in VPA treated compared with an equivalent VCD dosage group. There was a dose-related increase in visceral defects in the VPA-exposed fetuses. Missing skull bones and fused vertebrae in fetuses occurred at the high dose of VPA. Three genes (Mtap2, Bmp8b, and Stat3) were significantly upregulated and one (Heyl) was downregulated in samples from VPA-treated dams. CONCLUSIONS The study demonstrates that the teratogenicity of VPA was significantly greater than that of an equimolar dose of VCD. Four genes (Mtap2, Bmp8b, Stat3, and Heyl) represent candidate target genes for the underlying teratogenic mechanism responsible for VPA-induced malformations.
Collapse
Affiliation(s)
- Ying Linda Lin
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert M Cabrera
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Kudin AP, Mawasi H, Eisenkraft A, Elger CE, Bialer M, Kunz WS. Mitochondrial Liver Toxicity of Valproic Acid and Its Acid Derivatives Is Related to Inhibition of α-Lipoamide Dehydrogenase. Int J Mol Sci 2017; 18:ijms18091912. [PMID: 28878165 PMCID: PMC5618561 DOI: 10.3390/ijms18091912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/16/2022] Open
Abstract
The liver toxicity of valproic acid (VPA) is an established side effect of this widely used antiepileptic drug, which is extremely problematic for patients with metabolic epilepsy and particularly epilepsy due to mitochondrial dysfunction. In the present report, we investigated the reason for liver mitochondrial toxicity of VPA and several acid and amide VPA analogues. While the pyruvate and 2-oxoglutarate oxidation rates of rat brain mitochondria were nearly unaffected by VPA, rat liver mitochondrial pyruvate and 2-oxoglutarate oxidation was severely impaired by VPA concentrations above 100 µM. Among the reactions involved in pyruvate oxidation, pyruvate transport and dehydrogenation steps were not affected by VPA, while α-lipoamide dehydrogenase was strongly inhibited. Strong inhibition of α-lipoamide dehydrogenase was also noted for the VPA one-carbon homolog sec -butylpropylacetic acid (SPA) and to a lesser extent for the VPA constitutional isomer valnoctic acid (VCA), while the corresponding amides of the above three acids valpromide (VPD), sec -butylpropylacetamide (SPD) and valnoctamide (VCD) showed only small effects. We conclude that the active inhibitors of pyruvate and 2-oxoglutarate oxidation are the CoA conjugates of VPA and its acid analogues affecting selectively α-lipoamide dehydrogenase in liver. Amide analogues of VPA, like VCD, show low inhibitory effects on mitochondrial oxidative phosphorylation in the liver, which might be relevant for treatment of patients with mitochondrial epilepsy.
Collapse
Affiliation(s)
- Alexei P Kudin
- Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.
| | - Hafiz Mawasi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Arik Eisenkraft
- Institute for Research in Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Christian E Elger
- Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Wolfram S Kunz
- Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany.
| |
Collapse
|
12
|
Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder. Psychiatry Res 2017; 254:279-283. [PMID: 28500975 PMCID: PMC5524208 DOI: 10.1016/j.psychres.2017.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. HYPOTHESIS VCD like VPA will reduce brain AA turnover in unanaesthetized rats. METHODS A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1-14C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. RESULTS VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. CONCLUSIONS VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD.
Collapse
|
13
|
Valnoctamide Inhibits Cytomegalovirus Infection in Developing Brain and Attenuates Neurobehavioral Dysfunctions and Brain Abnormalities. J Neurosci 2017. [PMID: 28630251 DOI: 10.1523/jneurosci.0970-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) is the most common infectious cause of brain defects and neurological dysfunction in developing human babies. Due to the teratogenicity and toxicity of available CMV antiviral agents, treatment options during early development are markedly limited. Valnoctamide (VCD), a neuroactive mood stabilizer with no known teratogenic activity, was recently demonstrated to have anti-CMV potential. However, it is not known whether this can be translated into an efficacious therapeutic effect to improve CMV-induced adverse neurological outcomes. Using multiple models of CMV infection in the developing mouse brain, we show that subcutaneous low-dose VCD suppresses CMV by reducing the level of virus available for entry into the brain and by acting directly within the brain to block virus replication and dispersal. VCD during the first 3 weeks of life restored timely acquisition of neurological milestones in neonatal male and female mice and rescued long-term motor and behavioral outcomes in juvenile male mice. CMV-mediated brain defects, including decreased brain size, cerebellar hypoplasia, and neuronal loss, were substantially attenuated by VCD. No adverse side effects on neurodevelopment of uninfected control mice receiving VCD were detected. Treatment of CMV-infected human fetal astrocytes with VCD reduced both viral infectivity and replication by blocking viral particle attachment to the cell, a mechanism that differs from available anti-CMV drugs. These data suggest that VCD during critical periods of neurodevelopment can effectively suppress CMV replication in the brain and safely improve both immediate and long-term neurological outcomes.SIGNIFICANCE STATEMENT Cytomegalovirus (CMV) can irreversibly damage the developing brain. No anti-CMV drugs are available for use during fetal development, and treatment during the neonatal period has substantial limitations. We studied the anti-CMV actions of valnoctamide (VCD), a psychiatric sedative that appears to lack teratogenicity and toxicity, in the newborn mouse brain, a developmental period that parallels that of an early second-trimester human fetus. In infected mice, subcutaneous VCD reaches the brain and suppresses viral replication within the CNS, rescuing the animals from CMV-induced brain defects and neurological problems. Treatment of uninfected control animals exerts no detectable adverse effects. VCD also blocks CMV replication in human fetal brain cells.
Collapse
|
14
|
Weiser M, Levi L, Levine SZ, Bialer M, Shekh-Ahmad T, Matei V, Tiugan A, Cirjaliu D, Sava C, Sinita E, Zamora D, Davis JM. A randomized, double-blind, placebo- and risperidone-controlled study on valnoctamide for acute mania. Bipolar Disord 2017; 19:285-294. [PMID: 28605109 DOI: 10.1111/bdi.12506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Mood stabilizers administered for bipolar disorder during pregnancy, such as valproic acid, can increase the risk of congenital anomalies in offspring. Valnoctamide is a valproic acid derivative associated with a decreased risk for congenital abnormalities in animals. The present study evaluated the efficacy and safety of valnoctamide monotherapy, compared to placebo, in the treatment of patients in an acute manic episode. METHODS A 3-week, double-blind, randomized, placebo- and risperidone-controlled, parallel group trial was conducted on 173 patients in an acute manic episode. Patients were randomized to receive valnoctamide 1500 mg/d (n=71), risperidone 6 mg/d (n=32), or matching placebo (n=70). The primary outcome measure was the change in Young Mania Rating Scale (YMRS) scores. RESULTS Valnoctamide did not differ significantly from placebo on any of the study endpoints (YMRS, Positive and Negative Syndrome Scale, and the Clinical Global Impression Scale for Bipolar Disorder [CGI-BP] scales; all P>.60). Mixed models for repeated measures showed that risperidone produced significantly more improvement than placebo in the overall bipolar disorder CGI-BP severity scale (P=.036), and the CGI-BP severity scale for mania (P=.021). The Kaplan-Meier survival curve revealed higher all-cause discontinuation rates (mainly due to lack of efficacy) in the valnoctamide group compared to the other study groups (P=.026). Patients with higher valnoctamide plasma levels had a numerically higher YMRS response, but this was not statistically significant. CONCLUSIONS Valnoctamide was well tolerated at 1500 mg/d but lacked efficacy in the treatment of symptoms in patients with acute mania. Possible differences between the biological mechanisms of action of valproic acid and valnoctamide are discussed.
Collapse
Affiliation(s)
- Mark Weiser
- Division of Psychiatry, Chaim Sheba Medical Center, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Linda Levi
- Division of Psychiatry, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Stephen Z Levine
- Department of Community Mental Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Meir Bialer
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tawfeeq Shekh-Ahmad
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Valentin Matei
- Spitalul Clinic de Psihiatrie Obregia, Bucarest, Romania
| | - Alexandru Tiugan
- Sp. Clinic de Urgenta Militar "Dr. Stefan Odoblegea", Craiova, Romania
| | - Diana Cirjaliu
- Spitalul Judetean Constanta, Clinica de Psihiatrie Palazu Mare, Costanta, Romania
| | - Cristinel Sava
- Spitalul Judetean de Urgente, Piatra Neamt, Neamt, Romania
| | - Eugenia Sinita
- Spitalul Clinic de Psihiatrie Chisinau, Republica Moldova, Chisinau, Moldova
| | - Daisy Zamora
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - John M Davis
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| |
Collapse
|
15
|
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 2017; 58:181-221. [PMID: 28111749 DOI: 10.1111/epi.13634] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 01/05/2023]
Abstract
The Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII) took place in Madrid, Spain, on June 26-29, 2016, and was attended by >200 delegates from 31 countries. The present Progress Report provides an update on experimental and clinical results for drugs presented at the Conference. Compounds for which summary data are presented include an AED approved in 2016 (brivaracetam), 12 drugs in phase I-III clinical development (adenosine, allopregnanolone, bumetanide, cannabidiol, cannabidivarin, 2-deoxy-d-glucose, everolimus, fenfluramine, huperzine A, minocycline, SAGE-217, and valnoctamide) and 6 compounds or classes of compounds for which only preclinical data are available (bumetanide derivatives, sec-butylpropylacetamide, FV-082, 1OP-2198, NAX 810-2, and SAGE-689). Overall, the results presented at the Conference show that considerable efforts are ongoing into discovery and development of AEDs with potentially improved therapeutic profiles compared with existing agents. Many of the drugs discussed in this report show innovative mechanisms of action and many have shown promising results in patients with pharmacoresistant epilepsies, including previously neglected rare and severe epilepsy syndromes.
Collapse
Affiliation(s)
- Meir Bialer
- Faculty of Medicine, School of Pharmacy and David R. Bloom Center for Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- The National Center for Epilepsy, Sandvika, Norway.,Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - René H Levy
- Department of Pharmaceutics and Neurological Surgery, University of Washington, Seattle, Washington, U.S.A
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,C. Mondino National Neurological Institute, Pavia, Italy
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, U.S.A
| |
Collapse
|
16
|
Ornaghi S, Davis JN, Gorres KL, Miller G, Paidas MJ, van den Pol AN. Mood stabilizers inhibit cytomegalovirus infection. Virology 2016; 499:121-135. [PMID: 27657833 DOI: 10.1016/j.virol.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/14/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Cytomegalovirus (CMV) infection can generate debilitating disease in immunocompromised individuals and neonates. It is also the most common infectious cause of congenital birth defects in infected fetuses. Available anti-CMV drugs are partially effective but are limited by some toxicity, potential viral resistance, and are not recommended for fetal exposure. Valproate, valpromide, and valnoctamide have been used for many years to treat epilepsy and mood disorders. We report for the first time that, in contrast to the virus-enhancing actions of valproate, structurally related valpromide and valnoctamide evoke a substantial and specific inhibition of mouse and human CMV in vitro. In vivo, both drugs safely attenuate mouse CMV, improving survival, body weight, and developmental maturation of infected newborns. The compounds appear to act by a novel mechanism that interferes with CMV attachment to the cell. Our work provides a novel potential direction for CMV therapeutics through repositioning of agents already approved for use in psychiatric disorders.
Collapse
Affiliation(s)
- Sara Ornaghi
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, 333 Cedar Street, 06510 New Haven, CT, USA; School of Medicine and Surgery, Ph.D. Program in Neuroscience, University of Milan-Bicocca, via Cadore 48, 20900 Monza, Italy; Department of Obstetrics and Gynecology, Foundation MBBM, University of Milan-Bicocca, via Pergolesi 33, 20900 Monza, Italy
| | - John N Davis
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA
| | - Kelly L Gorres
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA
| | - George Miller
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, Yale Women and Children's Center for Blood Disorders and Preeclampsia Advancement, 333 Cedar Street, 06510 New Haven, CT, USA
| | - Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, 06510 New Haven, CT, USA.
| |
Collapse
|