1
|
Bertolini M, Ramot Y, Gherardini J, Heinen G, Chéret J, Welss T, Giesen M, Funk W, Paus R. Theophylline exerts complex anti-ageing and anti-cytotoxicity effects in human skin ex vivo. Int J Cosmet Sci 2019; 42:79-88. [PMID: 31633195 DOI: 10.1111/ics.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Theophylline is a phosphodiesterase inhibitor that is being used clinically for asthma therapy. In addition, it is recognized as a cosmetic agent with possible anti-ageing and anti-oxidative properties. Nevertheless, how it affects human skin is still poorly examined. METHODS Theophylline (10 or 100 µM) was administered to the culture medium of full-thickness human skin ex vivo for 24 or 72 h. RESULTS Theophylline stimulated protein expression of the anti-oxidant metallothionein-1 and mRNA levels of collagen I and III. Assessment of fibrillin-1 immunohistology revealed enhanced structural stability of dermal microfibrils. Theophylline also exerted extracellular matrix-protective effects by decreasing MMP-2 and MMP-9 mRNA levels, partially antagonizing the effects of menadione, the potent, toxic ROS donor. In addition, it decreased menadione-stimulated epidermal keratinocytes apoptosis. Interestingly, theophylline also increased the level of intracutaneously produced melatonin, that is the most potent ROS-protective and DNA damage repair neuromediator, and tendentially increased protein expression of MT1, the melatonin receptor. Theophylline also increased the expression of keratin 15, the stem cell marker, in the epidermal basal layer but did not change mitochondrial activity or epidermal pigmentation. CONCLUSION This ex vivo pilot study in human skin shows that theophylline possesses several interesting complex skin-protective properties. It encourages further examination of theophylline as a topical candidate for anti-ageing treatment.
Collapse
Affiliation(s)
- M Bertolini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - Y Ramot
- Department of Dermatology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, 9112001 , Jerusalem, Israel
| | - J Gherardini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - G Heinen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - J Chéret
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA
| | - T Welss
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - M Giesen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - W Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, 81739, Munich, Germany
| | - R Paus
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|
2
|
Alam M, Below DA, Chéret J, Langan EA, Bertolini M, Jimenez F, Paus R. Growth Hormone Operates as a Neuroendocrine Regulator of Human Hair Growth Ex Vivo. J Invest Dermatol 2019; 139:1593-1596. [DOI: 10.1016/j.jid.2018.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
|
5
|
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 2014; 20:559-70. [DOI: 10.1016/j.molmed.2014.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
6
|
Ramot Y, Paus R. Harnessing neuroendocrine controls of keratin expression: A new therapeutic strategy for skin diseases? Bioessays 2014; 36:672-86. [DOI: 10.1002/bies.201400006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuval Ramot
- Department of Dermatology; Hadassah - Hebrew University Medical Center; Jerusalem Israel
| | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Laboratory for Hair Research and Regenerative Medicine, Department of Dermatology; University of Münster; Münster Germany
| |
Collapse
|
7
|
Haslam IS, Roubos EW, Mangoni ML, Yoshizato K, Vaudry H, Kloepper JE, Pattwell DM, Maderson PFA, Paus R. From frog integument to human skin: dermatological perspectives from frog skin biology. Biol Rev Camb Philos Soc 2013; 89:618-55. [DOI: 10.1111/brv.12072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/03/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Iain S. Haslam
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
| | - Eric W. Roubos
- Department of Anatomy; Radboud University Medical Centre; Geert Grooteplein Noord 2, 6525 EZ, Nijmegen P.O. Box 9101, 6500 HB Nijmegen The Netherlands
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti; La Sapienza University of Rome, Piazzale Aldo Moro, 5-00185; Rome Italy
| | - Katsutoshi Yoshizato
- Academic Advisors Office, Synthetic Biology Research Center; Osaka City University Graduate School of Medicine; Osaka Japan
- Phoenixbio Co. Ltd; 3-4-1, Kagamiyama; Higashihiroshima Hiroshima 739-0046 Japan
| | - Hubert Vaudry
- European Institute for Peptide Research; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
- INSERM U-982, CNRS; University of Rouen; Mont-Saint-Aignan Place Emile Blondel 76821 France
| | - Jennifer E. Kloepper
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| | - David M. Pattwell
- Leahurst Campus, Institute of Learning & Teaching; School of Veterinary Science, University of Liverpool; Neston CH64 7TE U.K
| | | | - Ralf Paus
- The Dermatology Centre, Salford Royal NHS Foundation Trust, Institute of Inflammation and Repair; University of Manchester; Oxford Road Manchester M13 9PT U.K
- Klinik für Dermatologie, Allergologie und Venerologie; Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160; 23538 Lübeck Germany
| |
Collapse
|
8
|
Antonini D, Sibilio A, Dentice M, Missero C. An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression. Front Endocrinol (Lausanne) 2013; 4:104. [PMID: 23986743 PMCID: PMC3749490 DOI: 10.3389/fendo.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body and plays a key role in protecting the individual from external insults. The barrier function of the skin is performed primarily by the epidermis, a self-renewing stratified squamous epithelium composed of cells that undergo a well-characterized and finely tuned process of terminal differentiation. By binding to their receptors thyroid hormones (TH) regulate epidermal cell proliferation, differentiation, and homeostasis. Thyroid dysfunction has multiple classical manifestations at skin level. Several TH-responsive genes, as well as genes critical for TH metabolism and action, are expressed at epidermal level. The role of TH in skin is still controversial, although it is generally recognized that TH signaling is central for skin physiology and homeostasis. Here we review the data on the epidermis and its function in relation to TH metabolism and regulation of gene expression. An understanding of the cellular and molecular basis of TH action in epidermal cells may lead to the identification of putative therapeutical targets for treatment of skin disorders.
Collapse
Affiliation(s)
| | - Annarita Sibilio
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Monica Dentice
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Fondazione IRCCS SDN, Napoli, Italy
- *Correspondence: Caterina Missero, CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 486, Napoli 80145, Italy e-mail:
| |
Collapse
|