1
|
El Kettani A, Ouair H, Marnissi F, El Bakkouri J, Chevalier R, Lorenzo L, Kholaiq H, Béziat V, Jouanguy E, Casanova JL, Bousfiha AA. Case Report of Two Independent Moroccan Families with Syndromic Epidermodysplasia Verruciformis and STK4 Deficiency. Viruses 2024; 16:1415. [PMID: 39339890 PMCID: PMC11437448 DOI: 10.3390/v16091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genodermatosis caused by β-human papillomaviruses (HPV) in immunodeficient patients. EV is characterized by flat warts and pityriasis-like lesions and might be isolated or syndromic, associated with some other infectious manifestations. We report here three patients from two independent families, with syndromic EV for both of them. By whole exome sequencing, we found that the patients carry new homozygous variants in STK4, both leading to a premature stop codon. STK4 deficiency causes a combined immunodeficiency characterized by a broad infectious susceptibility to bacteria, viruses, and fungi. Auto-immune manifestations were also reported. Deep immunophenotyping revealed multiple cytopenia in the three affected patients, in particular deep CD4+ T cells deficiency. We report here the fourth and the fifth cases of the syndromic EV due to STK4 deficiency.
Collapse
Affiliation(s)
- Assiya El Kettani
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca 20250, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco;
| | - Hind Ouair
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco;
| | - Farida Marnissi
- Laboratory of Pathological Anatomy, Ibn Rochd University Hospital, Hassan II University, Casablanca 20250, Morocco;
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca 20250, Morocco
| | - Rémi Chevalier
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
| | - Halima Kholaiq
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France; (R.C.); (L.L.); (V.B.); (E.J.); (J.-L.C.)
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology-Inflammation and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca 20250, Morocco; (J.E.B.); (H.K.); (A.A.B.)
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital-Ibn Rochd University Hospital, Casablanca 20250, Morocco
| |
Collapse
|
2
|
Transcription Properties of Beta-HPV8 and HPV38 Genomes in Human Keratinocytes. J Virol 2022; 96:e0149822. [PMID: 36394329 PMCID: PMC9749460 DOI: 10.1128/jvi.01498-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Persistent infections with high-risk human papillomaviruses (HR-HPV) from the genus alpha are established risk factors for the development of anogenital and oropharyngeal cancers. In contrast, HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Keratinocytes are the in vivo target cells for HPV, but keratinocyte models to investigate the replication and oncogenic activities of beta-HPV genomes have not been established. A recent study revealed, that beta-HPV49 immortalizes normal human keratinocytes (NHK) only, when the viral E8^E2 repressor (E8-) is inactivated (T. M. Rehm, E. Straub, T. Iftner, and F. Stubenrauch, Proc Natl Acad Sci U S A 119:e2118930119, 2022, https://doi.org/10.1073/pnas.2118930119). We now demonstrate that beta-HPV8 and HPV38 wild-type or E8- genomes are unable to immortalize NHK. Nevertheless, HPV8 and HPV38 express E6 and E7 oncogenes and other transcripts in transfected NHK. Inactivation of the conserved E1 and E2 replication genes reduces viral transcription, whereas E8- genomes display enhanced viral transcription, suggesting that beta-HPV genomes replicate in NHK. Furthermore, growth of HPV8- or HPV38-transfected NHK in organotypic cultures, which are routinely used to analyze the productive replication cycle of HR-HPV, induces transcripts encoding the L1 capsid gene, suggesting that the productive cycle is initiated. In addition, transcription patterns in HPV8 organotypic cultures and in an HPV8-positive lesion from an EV patient show similarities. Taken together, these data indicate that NHK are a suitable system to analyze beta-HPV8 and HPV38 replication. IMPORTANCE High-risk HPV, from the genus alpha, can cause anogenital or oropharyngeal malignancies. The oncogenic properties of high-risk HPV are important for their differentiation-dependent replication in human keratinocytes, the natural target cell for HPV. HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Currently, the replication cycle of beta-HPV has not been studied in human keratinocytes. We now provide evidence that beta-HPV8 and 38 are transcriptionally active in human keratinocytes. Inactivation of the viral E8^E2 repressor protein greatly increases genome replication and transcription of the E6 and E7 oncogenes, but surprisingly, this does not result in immortalization of keratinocytes. Differentiation of HPV8- or HPV38-transfected keratinocytes in organotypic cultures induces transcripts encoding the L1 capsid gene, suggesting that productive replication is initiated. This indicates that human keratinocytes are suited as a model to investigate beta-HPV replication.
Collapse
|
3
|
Borgogna C, Martuscelli L, Olivero C, Lo Cigno I, De Andrea M, Caneparo V, Boldorini R, Patel G, Gariglio M. Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice. J Invest Dermatol 2022; 143:740-750.e4. [PMID: 36481357 DOI: 10.1016/j.jid.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Valeria Caneparo
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy.
| |
Collapse
|
4
|
Restriction of viral gene expression and replication prevents immortalization of human keratinocytes by a beta-human papillomavirus. Proc Natl Acad Sci U S A 2022; 119:e2118930119. [PMID: 35254896 PMCID: PMC8931373 DOI: 10.1073/pnas.2118930119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
High-risk (HR) human papillomaviruses (HPV) from the genus alpha cause anogenital and oropharyngeal cancers, whereas the contribution of HPV from the genus beta to the development of cutaneous squamous cell cancer is still under debate. HR-HPV genomes display potent immortalizing activity in human keratinocytes, the natural target cell for HPV. This paper shows that immortalization of keratinocytes by the beta-HPV49 genome requires the inactivation of the viral E8^E2 repressor protein and the presence of the E6 and E7 oncoproteins but also of the E1 and E2 replication proteins. This reveals important differences in the carcinogenic properties of HR-HPV and beta-HPV but also warrants further investigations on the distribution and mutation frequencies of beta-HPV in human cancers. Beta-human papillomaviruses (HPV) have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. In contrast to high-risk (HR) HPV, which cause anogenital and oropharyngeal cancers, immortalizing activity of complete beta-HPV genomes in normal human keratinocytes (NHK), the natural target cells for HPV, has not been reported. We now demonstrate that the beta-HPV49 wild-type genome is transcriptionally active in NHK but lacks immortalizing activity unless the E8 gene, which encodes the E8^E2 repressor, is inactivated. HPV49 E8− immortalized keratinocytes maintain high levels of viral gene expression and very high copy numbers of extrachromosomal viral genomes during long-term cultivation. Not only disruption of the viral E6 and E7 oncogenes but also of the E1 or E2 replication genes renders E8− genomes incapable of immortalization. E8−/E1− and E8−/E2− genomes display greatly reduced E6 and E7 RNA levels in short-term assays. This strongly suggests that high-level expression of E6 and E7 from extrachromosomal templates is necessary for immortalization. The requirement for an inactivation of E8 while maintaining E1 and E2 expression highlights important differences in the carcinogenic properties of HR-HPV and beta-HPV. These findings strengthen the notion that beta-HPV have carcinogenic potential that warrants further investigations into the distribution of beta-HPV in human cancers.
Collapse
|
5
|
Nanes BA, Laknezhad S, Chamseddin B, Doorbar J, Mir A, Hosler GA, Wang RC. Verrucous pilar cysts infected with beta human papillomavirus. J Cutan Pathol 2020; 47:381-386. [PMID: 31626329 PMCID: PMC7386817 DOI: 10.1111/cup.13599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022]
Abstract
Epidermoid cysts with histopathologic features of human papillomavirus (HPV) infection have been previously reported and are commonly termed verrucous cysts. We report a series of eight histopathologically distinct verrucous pilar cysts, distinguished from traditional verrucous epidermoid cysts by trichilemmal keratinization, as well as two verrucous hybrid pilar-epidermoid cysts. These lesions contain characteristic stratified epithelial linings with abrupt transitions to compact eosinophilic keratin, as well as areas of papillomatosis, coarse intracytoplasmic keratohyalin granules, and vacuolar structures suggestive of HPV-induced cytopathic change. HPV-24, a β genus HPV species, was identified by degenerate polymerase chain reaction in DNA extracted from two of the lesions, and the presence of β-HPV E4 protein was confirmed by immunohistochemistry. HPV-60, the HPV species most commonly reported in verrucous epidermoid cysts, was not detected. Verrucous pilar cysts represent histopathologically and potentially etiologically distinct lesions which may be underrecognized.
Collapse
Affiliation(s)
- Benjamin A. Nanes
- Department of Dermatology, UT Southwestern Medical Center,
Dallas, Texas
| | - Soolmaz Laknezhad
- Department of Dermatology, UT Southwestern Medical Center,
Dallas, Texas
| | - Bahir Chamseddin
- Department of Dermatology, UT Southwestern Medical Center,
Dallas, Texas
| | - John Doorbar
- Department of Pathology, University of Cambridge, United
Kingdom
| | - Adnan Mir
- Dermpath Diagnostics, Port Chester, New York
- New York Medical College, New York, New York
| | - Gregory A. Hosler
- Department of Dermatology, UT Southwestern Medical Center,
Dallas, Texas
- ProPath, Dallas, Texas
| | - Richard C. Wang
- Department of Dermatology, UT Southwestern Medical Center,
Dallas, Texas
| |
Collapse
|
6
|
Fernandes RA, Perez-Andres M, Blanco E, Jara-Acevedo M, Criado I, Almeida J, Botafogo V, Coutinho I, Paiva A, van Dongen JJM, Orfao A, Faria E. Complete Multilineage CD4 Expression Defect Associated With Warts Due to an Inherited Homozygous CD4 Gene Mutation. Front Immunol 2019; 10:2502. [PMID: 31781092 PMCID: PMC6856949 DOI: 10.3389/fimmu.2019.02502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Idiopathic T-CD4 lymphocytopenia (ICL) is a rare and heterogeneous syndrome characterized by opportunistic infections due to reduced CD4 T-lymphocytes (<300 cells/μl or <20% T-cells) in the absence of HIV infection and other primary causes of lymphopenia. Molecular testing of ICL has revealed defects in genes not specific to CD4 T-cells, with pleiotropic effects on other cell types. Here we report for the first time an absolute CD4 lymphocytopenia (<0.01 CD4+ T-cells/μl) due to an autosomal recessive CD4 gene mutation that completely abrogates CD4 protein expression on the surface membrane of T-cells, monocytes, and dendritic cells. A 45-year-old female born to consanguineous parents consulted because of exuberant, relapsing, and treatment-refractory warts on her hands and feet since the age of 10 years, in the absence of other recurrent infections or symptoms. Serological studies were negative for severe infections, including HIV 1/2, HTLV-1, and syphilis, but positive for CMV and EBV. Blood analysis showed the absence of CD4+ T-cells (<0.01%) with repeatedly increased counts of B-cells, naïve CD8+ T-lymphocytes, and particularly, CD4/CD8 double-negative (DN) TCRαβ+ TCRγδ- T-cells (30% of T-cells; 400 cells/μl). Flow cytometric staining of CD4 using monoclonal antibodies directed against five different epitopes, located in two different domains of the protein, confirmed no cell surface membrane or intracytoplasmic expression of CD4 on T-cells, monocytes, and dendritic cells but normal soluble CD4 plasma levels. DN T-cells showed a phenotypic and functional profile similar to normal CD4+ T-cells as regards expression of maturation markers, T-helper and T-regulatory chemokine receptors, TCRvβ repertoire, and in vitro cytokine production against polyclonal and antigen-specific stimuli. Sequencing of the CD4 gene revealed a homozygous (splicing) mutation affecting the last bp on intron 7-8, leading to deletion of the juxtamembrane and intracellular domains of the protein and complete abrogation of CD4 expression on the cell membrane. These findings support previous studies in CD4 KO mice suggesting that surrogate DN helper and regulatory T-cells capable of supporting antigen-specific immune responses are produced in the absence of CD4 signaling and point out the need for better understanding the role of CD4 on thymic selection and the immune response.
Collapse
Affiliation(s)
- Rosa Anita Fernandes
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Maria Jara-Acevedo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain.,Sequencing DNA Service, NUCLEUS, University of Salamanca, Salamanca, Spain
| | - Ignacio Criado
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Julia Almeida
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Vitor Botafogo
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Ines Coutinho
- Dermatology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit-Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Ciências Biomédicas Laboratoriais, ESTESC-Coimbra Health School, Instituto Politécnico de Coimbra, Coimbra, Portugal.,Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre on Cancer-CIBER-CIBERONC (CB16/12/00400), Institute of Health Carlos III, Madrid, Spain
| | - Emilia Faria
- Allergy and Clinical Immunology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Abstract
Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients. Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts. IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.
Collapse
|
8
|
de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, Lorenzo L, Jabot-Hanin F, Imahorn E, Arias AA, Vahidnezhad H, Youssefian L, Markle JG, Patin E, D'Amico A, Wang CQF, Full F, Ensser A, Leisner TM, Parise LV, Bouaziz M, Maya NP, Cadena XR, Saka B, Saeidian AH, Aghazadeh N, Zeinali S, Itin P, Krueger JG, Laimins L, Abel L, Fuchs E, Uitto J, Franco JL, Burger B, Orth G, Jouanguy E, Casanova JL. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 2018; 215:2289-2310. [PMID: 30068544 PMCID: PMC6122964 DOI: 10.1084/jem.20170308] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Collapse
Affiliation(s)
- Sarah Jill de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Amandine Créquer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elias Imahorn
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andres A Arias
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Etienne Patin
- Human Evolutionary Genetics, Pasteur Institute, Paris, France
- National Center for Scientific Research, URA 3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Aurelia D'Amico
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Claire Q F Wang
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Florian Full
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Ensser
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tina M Leisner
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Leslie V Parise
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | | | - Xavier Rueda Cadena
- Dermatology/Oncology - Skin Cancer Unit, National Cancer Institute, Bogota, Colombia
| | - Bayaki Saka
- Department of Dermatology, Sylvanus Olympio Hospital, University of Lomé, Togo
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Nessa Aghazadeh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Kawsar Human Genetics Research Center, Tehran, Iran
| | - Peter Itin
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Dermatology, University Hospital Basel, Basel, Switzerland
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Lou Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Bettina Burger
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Gérard Orth
- Department of Virology, Pasteur Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
9
|
de Jong SJ, Imahorn E, Itin P, Uitto J, Orth G, Jouanguy E, Casanova JL, Burger B. Epidermodysplasia Verruciformis: Inborn Errors of Immunity to Human Beta-Papillomaviruses. Front Microbiol 2018; 9:1222. [PMID: 29946305 PMCID: PMC6005841 DOI: 10.3389/fmicb.2018.01222] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is an autosomal recessive skin disorder with a phenotype conditional on human beta-papillomavirus (beta-HPV) infection. Such infections are common and asymptomatic in the general population, but in individuals with EV, they lead to the development of plane wart-like and red or brownish papules or pityriasis versicolor-like skin lesions, from childhood onwards. Most patients develop non-melanoma skin cancer (NMSC), mostly on areas of UV-exposed skin, from the twenties or thirties onwards. At least half of the cases of typical EV are caused by biallelic loss-of-function mutations of TMC6/EVER1 or TMC8/EVER2. The cellular and molecular basis of disease in TMC/EVER-deficient patients is unknown, but a defect of keratinocyte-intrinsic immunity to beta-HPV is suspected. Indeed, these patients are not susceptible to other infectious diseases and have apparently normal leukocyte development. In contrast, patients with an atypical form of EV due to inborn errors of T-cell immunity invariably develop clinical symptoms of EV in the context of other infectious diseases. The features of the typical and atypical forms of EV thus suggest that the control of beta-HPV infections requires both EVER1/EVER2-dependent keratinocyte-intrinsic immunity and T cell-dependent adaptive immunity.
Collapse
Affiliation(s)
- Sarah J de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States
| | - Elias Imahorn
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Peter Itin
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia PA, United States
| | | | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States.,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York NY, United States.,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York NY, United States
| | - Bettina Burger
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Lanfredini S, Olivero C, Borgogna C, Calati F, Powell K, Davies KJ, De Andrea M, Harries S, Tang HKC, Pfister H, Gariglio M, Patel GK. HPV8 Field Cancerization in a Transgenic Mouse Model Is due to Lrig1+ Keratinocyte Stem Cell Expansion. J Invest Dermatol 2017; 137:2208-2216. [PMID: 28595997 PMCID: PMC5613749 DOI: 10.1016/j.jid.2017.04.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 11/23/2022]
Abstract
β-Human papillomaviruses (HPVs) cause near ubiquitous latent skin infection within long-lived hair follicle (HF) keratinocyte stem cells. In patients with epidermodysplasia verruciformis, β-HPV viral replication is associated with skin keratosis and cutaneous squamous cell carcinoma. To determine the role of HF keratinocyte stem cells in β-HPV-induced skin carcinogenesis, we utilized a transgenic mouse model in which the keratin 14 promoter drives expression of the entire HPV8 early region (HPV8tg). HPV8tg mice developed thicker skin in comparison with wild-type littermates consistent with a hyperproliferative epidermis. HF keratinocyte proliferation was evident within the Lrig1+ keratinocyte stem cell population (69 vs. 55%, P < 0.01, n = 7), and not in the CD34+, LGR5+, and LGR6+ keratinocyte stem cell populations. This was associated with a 2.8-fold expansion in Lrig1+ keratinocytes and 3.8-fold increased colony-forming efficiency. Consistent with this, we observed nuclear p63 expression throughout this population and the HF infundibulum and adjoining interfollicular epidermis, associated with a switch from p63 transcriptional activation isoforms to ΔNp63 isoforms in HPV8tg skin. Epidermodysplasia verruciformis keratosis and in some cases actinic keratoses demonstrated similar histology associated with β-HPV reactivation and nuclear p63 expression within the HF infundibulum and perifollicular epidermis. These findings would suggest that β-HPV field cancerization arises from the HF junctional zone and predispose to squamous cell carcinoma.
Collapse
Affiliation(s)
- Simone Lanfredini
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Kathryn Powell
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Kelli-Jo Davies
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Marco De Andrea
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy
| | - Sarah Harries
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Hiu Kwan Carolyn Tang
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Abstract
Human papillomaviruses (HPVs) represent a large collection of viral types associated with significant clinical disease of cutaneous and mucosal epithelium. HPV-associated cancers are found in anogenital and oral mucosa, and at various cutaneous sites. Papillomaviruses are highly species and tissue restricted, and these viruses display both mucosotropic, cutaneotropic or dual tropism for epithelial tissues. A subset of HPV types, predominantly mucosal, are also oncogenic and cancers with these HPV types account for more than 200,000 deaths world-wide. Host control of HPV infections requires both innate and adaptive immunity, but the viruses have developed strategies to escape immune detection. Viral proteins can disrupt both innate pathogen-sensing pathways and T-cell based recognition and subsequent destruction of infected tissues. Current treatments to manage HPV infections include mostly ablative strategies in which recurrences are common and only active disease is treated. Although much is known about the papillomavirus life cycle, viral protein functions, and immune responsiveness, we still lack knowledge in a number of key areas of PV biology including tissue tropism, site-specific cancer progression, codon usage profiles, and what are the best strategies to mount an effective immune response to the carcinogenic stages of PV disease. In this review, disease transmission, protection and control are discussed together with questions related to areas in PV biology that will continue to provide productive opportunities of discovery and to further our understanding of this diverse set of human viral pathogens.
Collapse
Affiliation(s)
- Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Li SL, Duo LN, Wang HJ, Dai W, Zhou EYH, Xu YN, Zhao T, Xiao YY, Xia L, Yang ZH, Zheng LT, Hu YY, Lin ZM, Wang HN, Gao TW, Ma CL, Yang Y, Li CY. Identification of LCK mutation in a family with atypical epidermodysplasia verruciformis with T-cell defects and virus-induced squamous cell carcinoma. Br J Dermatol 2016; 175:1204-1209. [PMID: 27087313 DOI: 10.1111/bjd.14679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inherited epidermodysplasia verruciformis (EV) is a rare skin disorder characterized by susceptibility to specific types of human papilloma virus (HPV) and is strongly associated with skin carcinomas. Inactivating mutations in EVER1/EVER2 account for most cases of EV. However, more phenotypes related to but distinct from EV have been reported with an immunodeficiency state but without EVER1/EVER2 mutation, and the genetic basis for these atypical EV cases is poorly understood. OBJECTIVES To identify the causative gene responsible for three siblings affected by atypical EV but without EVER1/EVER2 mutation. METHODS Whole-exome sequencing followed by Sanger sequencing was performed to identify the gene responsible for the patients with atypical EV enrolled in our study. RESULTS A homozygous splicing mutation was detected in LCK (c.188-2A>G). This mutation resulted in an exon 3 deletion T lymphocyte-specific protein tyrosine kinase isoform, which further led to frameshift mutation and subsequent mRNA decay. CONCLUSIONS We demonstrate a novel mutation in LCK in a family affected by atypical EV with T-cell defects, HPV infection and virus-induced malignancy, providing new clues in the understanding of host defences against HPV and better genetic counselling of patients with the EV phenotype.
Collapse
Affiliation(s)
- S-L Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L-N Duo
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - H-J Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - W Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - E-Y H Zhou
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Y-N Xu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - T Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y-Y Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Xia
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Z-H Yang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - L-T Zheng
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Y-Y Hu
- Novogene Bioinformatics Technology Co., Ltd, Beijing, China
| | - Z-M Lin
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - H-N Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - T-W Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - C-L Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y Yang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - C-Y Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Doorbar J. Model systems of human papillomavirus-associated disease. J Pathol 2015; 238:166-79. [DOI: 10.1002/path.4656] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Affiliation(s)
- John Doorbar
- Department of Pathology; University of Cambridge; Tennis Court Road Cambridge UK
| |
Collapse
|
14
|
Quint KD, Genders RE, de Koning MNC, Borgogna C, Gariglio M, Bouwes Bavinck JN, Doorbar J, Feltkamp MC. Human Beta-papillomavirus infection and keratinocyte carcinomas. J Pathol 2015; 235:342-54. [PMID: 25131163 DOI: 10.1002/path.4425] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
Abstract
Although the role of oncogenic human Alpha-papillomaviruses (HPVs) in the development of mucosal carcinomas at different body sites (eg cervix, anus, oropharynx) is fully recognized, a role for HPV in keratinocyte carcinomas (KCs; basal and squamous cell carcinomas) of the skin is not yet clear. KCs are the most common cancers in Caucasians, with the major risk factor being ultraviolet (UV) light exposure. A possible role for Beta-HPV types (BetaPV) in the development of KC was suggested several decades ago, supported by a number of epidemiological studies. Our current review summarizes the recent molecular and histopathological evidence in support of a causal association between BetaPV and the development of KC, and outlines the suspected synergistic effect of viral gene expression with UV radiation and immune suppression. Further insights into the molecular pathways and protein interactions used by BetaPV and the host cell is likely to extend our understanding of the role of BetaPV in KC.
Collapse
Affiliation(s)
- Koen D Quint
- Department of Dermatology, Leiden University Medical Centre, The Netherlands; DDL Diagnostic Laboratory, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|