1
|
Chen Z, Li Y, Tan X, Nie S, Chen B, Mei X, Wu Z. Dysregulated tryptophan metabolism and AhR pathway contributed to CXCL10 upregulation in stable non-segmental vitiligo. J Dermatol Sci 2024; 115:33-41. [PMID: 38955622 DOI: 10.1016/j.jdermsci.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tryptophan metabolism dysregulation has been observed in vitiligo. However, drawing a mechanistic linkage between this metabolic disturbance and vitiligo pathogenesis remains challenging. OBJECTIVE Aim to reveal the characterization of tryptophan metabolism in vitiligo and investigate the role of tryptophan metabolites in vitiligo pathophysiology. METHODS LC-MS/MS, dual-luciferase reporter assay, ELISA, qRT-PCR, small interfering RNA, western blotting, and immunohistochemistry were employed. RESULTS Kynurenine pathway activation and KYAT enzyme-associated deviation to kynurenic acid (KYNA) in the plasma of stable non-segmental vitiligo were determined. Using a public microarray dataset, we next validated the activation of kynurenine pathway was related with inflammatory-related genes expression in skin of vitiligo patients. Furthermore, we found that KYNA induced CXCL10 upregulation in keratinocytes via AhR activation. Moreover, the total activity of AhR agonist was increased while the AhR concentration per se was decreased in the plasma of vitiligo patients. Finally, higher KYAT, CXCL10, CYP1A1 and lower AhR expression in vitiligo lesional skin were observed by immunohistochemistry staining. CONCLUSION This study depicts the metabolic and genetic characterizations of tryptophan metabolism in vitiligo and proposes that KYNA, a tryptophan-derived AhR ligand, can enhance CXCL10 expression in keratinocytes.
Collapse
Affiliation(s)
- Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Nie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wu D, Chen M, Chen S, Zhang S, Chen Y, Zhao Q, Xue K, Xue F, Chen X, Zhou M, Li H, Zheng J, Le Y, Cao H. Enhanced tryptophan-kynurenine metabolism via indoleamine 2,3-dioxygenase 1 induction in dermatomyositis. Clin Rheumatol 2022; 41:3107-3117. [PMID: 35778590 PMCID: PMC9485101 DOI: 10.1007/s10067-022-06263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
Objectives Extrahepatic tryptophan (Trp)-kynurenine (Kyn) metabolism via indoleamine 2,3-dioxygenase 1 (IDO1) induction was found to be associated with intrinsic immune regulation. However, the Trp-Kyn metabolism–associated immune regulation in dermatomyositis (DM) remains unknown. Therefore, we aimed to investigate the clinical relevance of the Trp-Kyn metabolism via IDO1 induction in DM. Methods Liquid chromatography-mass spectrometry (HPLC–MS) was used to examine the serum Kyn and Trp concentrations in DM. In addition, we used X-tile software to determine the optimal cutoff value of the Kyn/Trp ratio, a surrogate marker for Trp-Kyn metabolism. Spearman analysis was performed to evaluate the association of Trp-Kyn metabolism with muscle enzymes and inflammatory markers. Results DM patients had significantly higher serum Kyn/Trp ratio (× 10−3) when compared with the healthy controls. The serum Kyn/Trp ratio was positively correlated with the levels of muscle enzymes and inflammatory markers. In addition, the serum Kyn/Trp ratio significantly decreased (36.89 (26.00–54.00) vs. 25.00 (18.00–37.00), P = 0.0006) after treatment. DM patients with high serum Kyn/Trp ratio had a significantly higher percentage of muscle weakness symptoms (62.5% vs. 20.0%, P = 0.019) and higher levels of LDH (316.0 (236.0–467.0) vs. 198.0 (144.0–256.0), P = 0.004) and AST (56.5 (35.0–92.2) vs. 23.0 (20.0–36.0), P = 0.002)) than those with low serum Kyn/Trp ratio. Multiple Cox regression analyses identified ln(Kyn/Trp) (HR 4.874, 95% CI 1.105–21.499, P = 0.036) as an independent prognostic predictor of mortality in DM. Conclusions DM patients with enhanced Trp-Kyn metabolism at disease onset are characterized by more severe disease status and poor prognosis. Intrinsic immune regulation function via enhanced Trp-Kyn metabolism by IDO1 induction may be a potential therapeutic target in DM.Key Points • HPLC–MS identified increased serum Kyn/Trp ratio in DM patients, which positively correlated with levels of muscle enzymes and inflammatory markers and was downregulated upon treatment. • Cox regression analyses identified ln(Kyn/Trp) as an independent prognostic predictor of mortality in DM. • Monitoring intrinsic immune regulation function should be considered a potential therapeutic target in DM patients. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-022-06263-3.
Collapse
Affiliation(s)
- Dan Wu
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Mengya Chen
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Shile Chen
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Shimin Zhang
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yongheng Chen
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Qian Zhao
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Ke Xue
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Feng Xue
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of Oncology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yunchen Le
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Hua Cao
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
3
|
Zhou X, Ding S, Wang D, Chen L, Feng K, Huang T, Li Z, Cai Y. Identification of Cell Markers and Their Expression Patterns in Skin Based on Single-Cell RNA-Sequencing Profiles. Life (Basel) 2022; 12:life12040550. [PMID: 35455041 PMCID: PMC9025372 DOI: 10.3390/life12040550] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis and psoriasis are members of a family of inflammatory skin disorders. Cellular immune responses in skin tissues contribute to the development of these diseases. However, their underlying immune mechanisms remain to be fully elucidated. We developed a computational pipeline for analyzing the single-cell RNA-sequencing profiles of the Human Cell Atlas skin dataset to investigate the pathological mechanisms of skin diseases. First, we applied the maximum relevance criterion and the Boruta feature selection method to exclude irrelevant gene features from the single-cell gene expression profiles of inflammatory skin disease samples and healthy controls. The retained gene features were ranked by using the Monte Carlo feature selection method on the basis of their importance, and a feature list was compiled. This list was then introduced into the incremental feature selection method that combined the decision tree and random forest algorithms to extract important cell markers and thus build excellent classifiers and decision rules. These cell markers and their expression patterns have been analyzed and validated in recent studies and are potential therapeutic and diagnostic targets for skin diseases because their expression affects the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Xianchao Zhou
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, China
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| |
Collapse
|
4
|
Midtbø H, Kringeland E, Gerdts E, Ueland PM, Meyer K, Linde A, Ulvik A, Jonsson R, Tveit KS. Biomarkers of inflammation and left ventricular remodelling in psoriasis patients treated with infliximab. Int J Immunopathol Pharmacol 2022; 36:3946320221111131. [PMID: 35968808 PMCID: PMC9379959 DOI: 10.1177/03946320221111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Psoriasis is an immune mediated disorder associated with T cell activation and cardiovascular disease (CVD). We explored the association of inflammation with left ventricular (LV) remodelling in psoriasis patients receiving treatment with the tumour necrosis factor-α (TNF-α) blocker infliximab. Methods: Psoriasis patients (n = 47, age 47 ± 14 years, 66% men) and 99 control subjects without psoriasis (age 47 ± 11 years, 72% men) were examined by echocardiography in a cross-sectional study. LV remodelling was assessed by LV mass index for height in the allometric power of 2.7. Serum concentrations of C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine:tryptophan ratio (KTR) and the pyridoxic acid ratio (PAr) index were measured. Results: Serum concentration of neopterin (p = .007) was higher in psoriasis patients, while the other inflammatory biomarkers had similar levels. LV mass index was lower in patients than controls (35.6 ± 9.6 g/m2.7 vs. 40.3 ± 9.8 g/m2.7, p = .008). In the total study population, serum SAA (β = 0.18, p = .02), KTR (β = 0.20, p = .02) and the PAr index (β = 0.26, p = .002) were all associated with higher LV mass index independent of age, sex, body mass index, hypertension, smoking, renal function and psoriasis. Also in psoriasis patients, higher SAA level (β = 0.34, p = .02), KTR (β = 0.32, p = .02) and the PAr index (β = 0.29, p = .05) were associated with higher LV mass index independent of body mass index, hypertension and diabetes. Conclusion: Higher levels of the inflammatory biomarkers SAA, KTR and the PAr index were associated with greater LV mass index in psoriasis patients, indicating a role of chronic inflammation in LV remodelling evident even during treatment with TNF-α blockers.
Collapse
Affiliation(s)
- Helga Midtbø
- Department of Heart Disease, 60498Haukeland University Hospital, Bergen, Norway.,Centre for Research on Cardiac Disease in Women, Department of Clinical Science, 1658University of Bergen, Bergen, Norway
| | - Ester Kringeland
- Centre for Research on Cardiac Disease in Women, Department of Clinical Science, 1658University of Bergen, Bergen, Norway
| | - Eva Gerdts
- Department of Heart Disease, 60498Haukeland University Hospital, Bergen, Norway.,Centre for Research on Cardiac Disease in Women, Department of Clinical Science, 1658University of Bergen, Bergen, Norway
| | - Per Magne Ueland
- Department of Clinical Science, 1658University of Bergen, Bergen, Norway
| | | | - Anja Linde
- Centre for Research on Cardiac Disease in Women, Department of Clinical Science, 1658University of Bergen, Bergen, Norway.,Norwegian Research Centre for Women's Health, 155272Oslo University Hospital, Oslo, Norway
| | | | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, 1658University of Bergen, Bergen, Norway
| | - Kåre Steinar Tveit
- Department of Dermatology, 60498Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Alterations in Kynurenine and NAD + Salvage Pathways during the Successful Treatment of Inflammatory Bowel Disease Suggest HCAR3 and NNMT as Potential Drug Targets. Int J Mol Sci 2021; 22:ijms222413497. [PMID: 34948292 PMCID: PMC8705244 DOI: 10.3390/ijms222413497] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
A meta-analysis of publicly available transcriptomic datasets was performed to identify metabolic pathways profoundly implicated in the progression and treatment of inflammatory bowel disease (IBD). The analysis revealed that genes involved in tryptophan (Trp) metabolism are upregulated in Crohn’s disease (CD) and ulcerative colitis (UC) and return to baseline after successful treatment with infliximab. Microarray and mRNAseq profiles from multiple experiments confirmed that enzymes responsible for Trp degradation via the kynurenine pathway (IDO1, KYNU, IL4I1, KMO, and TDO2), receptor of Trp metabolites (HCAR3), and enzymes catalyzing NAD+ turnover (NAMPT, NNMT, PARP9, CD38) were synchronously coregulated in IBD, but not in intestinal malignancies. The modeling of Trp metabolite fluxes in IBD indicated that changes in gene expression shifted intestinal Trp metabolism from the synthesis of 5-hydroxytryptamine (5HT, serotonin) towards the kynurenine pathway. Based on pathway modeling, this manifested in a decline in mucosal Trp and elevated kynurenine (Kyn) levels, and fueled the production of downstream metabolites, including quinolinate, a substrate for de novo NAD+ synthesis. Interestingly, IBD-dependent alterations in Trp metabolites were normalized in infliximab responders, but not in non-responders. Transcriptomic reconstruction of the NAD+ pathway revealed an increased salvage biosynthesis and utilization of NAD+ in IBD, which normalized in patients successfully treated with infliximab. Treatment-related changes in NAD+ levels correlated with shifts in nicotinamide N-methyltransferase (NNMT) expression. This enzyme helps to maintain a high level of NAD+-dependent proinflammatory signaling by removing excess inhibitory nicotinamide (Nam) from the system. Our analysis highlights the prevalent deregulation of kynurenine and NAD+ biosynthetic pathways in IBD and gives new impetus for conducting an in-depth examination of uncovered phenomena in clinical studies.
Collapse
|
6
|
Fernández-Gallego N, Sánchez-Madrid F, Cibrian D. Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation. Cells 2021; 10:cells10113176. [PMID: 34831399 PMCID: PMC8622815 DOI: 10.3390/cells10113176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is an important regulator of skin barrier function. It also controls immune-mediated skin responses. The AHR modulates various physiological functions by acting as a sensor that mediates environment–cell interactions, particularly during immune and inflammatory responses. Diverse experimental systems have been used to assess the AHR’s role in skin inflammation, including in vitro assays of keratinocyte stimulation and murine models of psoriasis and atopic dermatitis. Similar approaches have addressed the role of AHR ligands, e.g., TCDD, FICZ, and microbiota-derived metabolites, in skin homeostasis and pathology. Tapinarof is a novel AHR-modulating agent that inhibits skin inflammation and enhances skin barrier function. The topical application of tapinarof is being evaluated in clinical trials to treat psoriasis and atopic dermatitis. In the present review, we summarize the effects of natural and synthetic AHR ligands in keratinocytes and inflammatory cells, and their relevance in normal skin homeostasis and cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| | - Danay Cibrian
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| |
Collapse
|
7
|
Wang M, Wang Y, Zhang M, Duan Q, Chen C, Sun Q, Liu M, Zheng Y, Shao Y. Kynureninase contributes to the pathogenesis of psoriasis through pro-inflammatory effect. J Cell Physiol 2021; 237:1044-1056. [PMID: 34553380 DOI: 10.1002/jcp.30587] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Kynureninase (KYNU) is a key enzyme in the tryptophan metabolism pathway with elevated expression in psoriatic lesions relative to normal skin. However, whether KYNU contributes to the pathogenesis of psoriasis remains unknown. We sought to investigate the role of KYNU in psoriasis and its possible regulation mechanism. In the results, KYNU is upregulated in psoriatic skin samples from patients or animal models compared with normal skin control which was assayed in psoriatic patient samples, IMQ-induced psoriasis-like skin inflammation in BABL/c mice and M5-stimulated keratinocyte cell lines by immunohistochemistry (IHC). KYNU knockdown had a trivial impact on keratinocyte proliferation, but significantly inhibited the production of inflammatory cytokines in HaCaT, HEKα, and HEKn cells by quantitative reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blot analysis. The 3'-untranslated region of KYNU contains a conserved target site of a skin-specific microRNA (miRNA), miR-203a, as predicted by TargetScan software. Furthermore, miR-203a exhibited an inversed expression kinetics to KYNU during the development of IMQ-induced psoriasis-like skin inflammation in BABL/c mice. Overexpression of miR-203 subsequently leading to the inhibition of KYNU, could significantly reduce the production of M5-induced, psoriasis-related inflammatory factors in keratinocytes. Finally, KYNU inhibitors could alleviate the pathological phenotypes in IMQ-mice. Our study supported the contributive role of KYNU in the development of psoriasis and provided preliminary evidence for KYNU as a potential therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Min Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yuqian Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Qiqi Duan
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Caifeng Chen
- Department of Dermatology, Fujian Provincial Hospital, Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qiong Sun
- Department of Life Science and Technology, Institute of Mitochondria, Xi'an Jiaotong University, Xi'an, China
| | - Meng Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yongping Shao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
9
|
Increased Expression of Indoleamine 2,3-Dioxygenase (IDO) in Vogt-Koyanagi-Harada (VKH) Disease May Lead to a Shift of T Cell Responses Toward a Treg Population. Inflammation 2021; 43:1780-1788. [PMID: 32435912 DOI: 10.1007/s10753-020-01252-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Previous studies have pointed out that indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme initiating tryptophan metabolism, plays a role in the regulation of the immune system. This project was designed to investigate the potential role of IDO in monocyte-derived dendritic cells (moDCs) obtained from active Vogt-Koyanagi-Harada (VKH) disease patients. In this study, we found that the IDO mRNA expression and enzyme activity were increased in active VKH patients as compared with healthy controls and patients in remission. To investigate the role of IDO in immune regulation, an effective inhibitor 1-methyl-L-tryptophan (1-MT) was used to suppress its activity in DCs. The results showed that inhibition of IDO with 1-MT significantly decreased the expression of DC marker CD86. IDO inhibition did not affect the cytokine production of IL-6, IL-1β, TNF-α, IL-10, and TGF-β in DCs. Downregulation of IDO in DCs also led to the reduction of regulatory T (Treg) cells and an increased CD4+ T cell proliferation. Treatment with 1-MT did not affect the phosphorylation of the MAPK pathway in DCs. In general, our study suggests that IDO may play an important role in the pathogenesis of VKH disease by regulating DC and CD4+ T cell function. Tryptophan deficiency and kynurenine accumulation may account for the complicated effects of IDO. Further research is needed to study the precise tryptophan metabolites that may limit immune responses in VKH disease.
Collapse
|
10
|
The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflamm Res 2020; 70:79-87. [DOI: 10.1007/s00011-020-01412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
|
11
|
Fujii K, Yamamoto Y, Mizutani Y, Saito K, Seishima M. Indoleamine 2,3-Dioxygenase 2 Deficiency Exacerbates Imiquimod-Induced Psoriasis-Like Skin Inflammation. Int J Mol Sci 2020; 21:E5515. [PMID: 32752186 PMCID: PMC7432009 DOI: 10.3390/ijms21155515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme known to suppress immune responses, and several reports have showed that it is associated with psoriasis. IDO2 is an isoform of IDO1, recently identified as a catalytic enzyme in the tryptophan-kynurenine pathway, which is expressed in dendritic cells and monocytes. The expression of IDO2 in immune cells suggests that IDO2 may contribute to immune functions. However, the role of IDO2 in the pathogenesis of psoriasis remains unclear. In this study, to elucidate the role of IDO2 in psoriasis, we assessed imiquimod (IMQ)-induced psoriasis-like dermatitis in IDO2 knockout (KO) mice. Skin inflammation, evaluated by scoring erythema, scaling, and ear thickness, was significantly worse in the IDO2 KO mice than in the wild-type (WT) mice. The mRNA expression levels of TNF-α, IL-23p19, and IL-17A, key cytokines involved in the development of psoriasis, were also increased in the IDO2 KO mice. Furthermore, immunohistochemistry revealed that the number of Ki67-positive cells in the epidermis and CD4-, CD8-, and IL-17-positive lymphocytes infiltrating the dermis were significantly increased in the IDO2 KO mice. These results suggest that IDO2 might decrease IL-17 expression, thereby resulting in the suppression of skin inflammation in IMQ-induced psoriasis-like dermatitis.
Collapse
Affiliation(s)
- Kento Fujii
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; (Y.Y.); (K.S.)
| | - Yoko Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; (Y.Y.); (K.S.)
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194, Japan; (Y.M.); (M.S.)
| |
Collapse
|
12
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
13
|
Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:3848-3857. [PMID: 32024760 DOI: 10.1073/pnas.1918215117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.
Collapse
|
14
|
Mondanelli G, Iacono A, Carvalho A, Orabona C, Volpi C, Pallotta MT, Matino D, Esposito S, Grohmann U. Amino acid metabolism as drug target in autoimmune diseases. Autoimmun Rev 2019; 18:334-348. [DOI: 10.1016/j.autrev.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
|
15
|
|
16
|
Trabanelli S. Indoleamine 2,3-dioxygenase in psoriasis: a defective mechanism. Br J Dermatol 2017; 176:570-572. [PMID: 28300312 DOI: 10.1111/bjd.15097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Trabanelli
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Hu P, Hunt NH, Arfuso F, Shaw LC, Uddin MN, Zhu M, Devasahayam R, Adamson SJ, Benson VL, Chan-Ling T, Grant MB. Increased Indoleamine 2,3-Dioxygenase and Quinolinic Acid Expression in Microglia and Müller Cells of Diabetic Human and Rodent Retina. Invest Ophthalmol Vis Sci 2017; 58:5043-5055. [PMID: 28980000 PMCID: PMC5633007 DOI: 10.1167/iovs.17-21654] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose We investigated the relationship between inflammation, neuronal loss, and expression of indoleamine 2, 3-dioxygenase (IDO) and quinolinic acid (QUIN) in the retina of subjects with type 1 diabetes (T1D) and type 2 diabetes (T2D) and in the retina of rats with T1D. Methods Retinas from T1D (n = 7), T2D (n = 13), and 20 age-matched nondiabetic human donors and from T1D (n = 3) and control rats (n = 3) were examined using immunohistochemistry for IDO, QUIN, cluster of differentiation 39 (CD39), ionized calcium-binding adaptor molecule (Iba-1, for macrophages and microglia), Vimentin (VIM; for Müller cells), neuronal nuclei (NeuN; for neurons), and UEA1 lectin (for blood vessels). Results Based on morphologic criteria, CD39+/ionized calcium binding adaptor molecule 1(Iba-1+) resident microglia and CD39−/Iba-1+ bone marrow–derived macrophages were present at higher density in T1D (13% increase) and T2D (26% increase) human retinas when compared with controls. The density and brightness of IDO+ microglia were increased in both T1D and T2D human retinas. The intensity of QUIN+ expression on CD39+ microglia and VIM+ Müller cells was greatly increased in both human T1D and T2D retinas. T1D retinas showed a 63% loss of NeuN+ neurons and T2D retinas lost approximately 43% when compared with nondiabetic human retinas. Few QUIN+ microglia-like cells were seen in nondiabetic retinas, but the numbers increased 18-fold in T1D and 7-fold in T2D in the central retina. In T1D rat retinas, the density of IDO+ microglia increased 2.8-fold and brightness increased 2.1-fold when compared with controls. Conclusions Our findings suggest that IDO and QUIN expression in the retinas of diabetic rats and humans could contribute to the neuronal degeneration that is characteristic of diabetic retinopathy.
Collapse
Affiliation(s)
- Ping Hu
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Nicholas H Hunt
- Department of Pathology, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Frank Arfuso
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Stem Cell & Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Lynn C Shaw
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Mohammad Nasir Uddin
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Meidong Zhu
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia.,Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, New South Wales, Australia
| | - Raj Devasahayam
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia
| | - Samuel J Adamson
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Vicky L Benson
- Department of Physiology, Faculty of Health and Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tailoi Chan-Ling
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Maria B Grant
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States.,Univeristy of Alabama, Birmingham, Alabama, United States
| |
Collapse
|