1
|
Eckhart L, Holthaus KB, Sachslehner AP. Cell differentiation in the embryonic periderm and in scaffolding epithelia of skin appendages. Dev Biol 2024; 515:60-66. [PMID: 38964706 DOI: 10.1016/j.ydbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Terminal differentiation of epithelial cells is critical for the barrier function of the skin, the growth of skin appendages, such as hair and nails, and the development of the skin of amniotes. Here, we present the hypothesis that the differentiation of cells in the embryonic periderm shares characteristic features with the differentiation of epithelial cells that support the morphogenesis of cornified skin appendages during postnatal life. The periderm prevents aberrant fusion of adjacent epithelial sites during early skin development. It is shed off when keratinocytes of the epidermis form the cornified layer, the stratum corneum. A similar role is played by epithelia that ensheath cornifying skin appendages until they disintegrate to allow the separation of the mature part of the skin appendage from the adjacent tissue. These epithelia, exemplified by the inner root sheath of hair follicles and the epithelia close to the free edge of nails or claws, are referred to as scaffolding epithelia. The periderm and scaffolding epithelia are similar with regard to their transient functions in separating tissues and the conserved expression of trichohyalin and trichohyalin-like genes in mammals and birds. Thus, we propose that parts of the peridermal differentiation program were coopted to a new postnatal function during the evolution of cornified skin appendages in amniotes.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
2
|
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024; 13:1675. [PMID: 39451193 PMCID: PMC11506049 DOI: 10.3390/cells13201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The epidermis of the skin and skin appendages, such as nails, hair and sebaceous glands, depend on a balance of cell proliferation and terminal differentiation in order to fulfill their functions at the interface of the body and the environment. The differentiation of epithelial cells of the skin, commonly referred to as keratinocytes, involves major remodeling processes that generate metabolically inactive cell remnants serving as building blocks of the epidermal stratum corneum, nail plates and hair shafts. Only sebaceous gland differentiation results in cell disintegration and holocrine secretion. A series of studies performed in the past decade have revealed that the lysosome-dependent intracellular degradation mechanism of autophagy is active during keratinocyte differentiation, and the blockade of autophagy significantly alters the properties of the differentiation products. Here, we present a model for the autophagy-mediated degradation of organelles and cytosolic proteins as an important contributor to cellular remodeling in keratinocyte differentiation. The roles of autophagy are discussed in comparison to alternative intracellular degradation mechanisms and in the context of programmed cell death as an integral end point of epithelial differentiation.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence—SKINMAGINE, 1090 Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Matamá T, Costa C, Fernandes B, Araújo R, Cruz CF, Tortosa F, Sheeba CJ, Becker JD, Gomes A, Cavaco-Paulo A. Changing human hair fibre colour and shape from the follicle. J Adv Res 2024; 64:45-65. [PMID: 37967812 PMCID: PMC11464751 DOI: 10.1016/j.jare.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION Natural hair curvature and colour are genetically determined human traits, that we intentionally change by applying thermal and chemical treatments to the fibre. Presently, those cosmetic methodologies act externally and their recurrent use is quite detrimental to hair fibre quality and even to our health. OBJECTIVES This work represents a disruptive concept to modify natural hair colour and curvature. We aim to model the fibre phenotype as it is actively produced in the follicle through the topical delivery of specific bioactive molecules to the scalp. METHODS Transcriptome differences between curly and straight hairs were identified by microarray. In scalp samples, the most variable transcripts were mapped by in situ hybridization. Then, by using appropriate cellular models, we screened a chemical library of 1200 generic drugs, searching for molecules that could lead to changes in either fibre colour or curvature. A pilot-scale, single-centre, investigator-initiated, prospective, blind, bilateral (split-scalp) placebo-controlled clinical study with the intervention of cosmetics was conducted to obtain a proof of concept (RNEC n.92938). RESULTS We found 85 genes transcribed significantly different between curly and straight hair, not previously associated with this human trait. Next, we mapped some of the most variable genes to the inner root sheath of follicles, reinforcing the role of this cell layer in fibre shape moulding. From the drug library screening, we selected 3 and 4 hits as modulators of melanin synthesis and gene transcription, respectively, to be further tested in 33 volunteers. The intentional specific hair change occurred: 8 of 14 volunteers exhibited colour changes, and 16 of 19 volunteers presented curvature modifications, by the end of the study. CONCLUSION The promising results obtained are the first step towards future cosmetics, complementary or alternative to current methodologies, taking hair styling to a new level: changing hair from the inside out.
Collapse
Affiliation(s)
- Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Fernandes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Rita Araújo
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Célia F Cruz
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Francisco Tortosa
- Serviço de Anatomia Patológica, CHLN - Hospital de Santa Maria / Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Unidade de Anatomia Patológica, Hospital CUF Descobertas, Rua Mário Botas (Parque das Nações), 1998-018, Lisboa, Portugal
| | - Caroline J Sheeba
- ICVS - Life and Health Sciences Research Institute, University of Minho, 4710-057 Braga, Portugal; NIHR Central Commissioning Facility (CCF), Grange House, 15 Church Street, Twickenham, TW1 3NL, UK
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Andreia Gomes
- CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga, Portugal; Solfarcos - Pharmaceutical and Cosmetic Solutions Ltd, Avenida Imaculada Conceição n. 589, 4700-034 Braga, Portugal.
| |
Collapse
|
4
|
Sukseree S, Karim N, Jaeger K, Zhong S, Rossiter H, Nagelreiter IM, Gruber F, Tschachler E, Rice RH, Eckhart L. Autophagy Controls the Protein Composition of Hair Shafts. J Invest Dermatol 2024; 144:170-173.e4. [PMID: 37517514 DOI: 10.1016/j.jid.2023.06.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Noreen Karim
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Karin Jaeger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Shaomin Zhong
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Dermatology, Peking University First Hospital, Beijing, China
| | | | | | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Davis MG, Piliang MP, Bergfeld WF, Caterino TL, Fisher BK, Sacha JP, Carr GJ, Moulton LT, Whittenbarger DJ, Schwartz JR. Scalp application of antioxidants improves scalp condition and reduces hair shedding in a 24-week randomized, double-blind, placebo-controlled clinical trial. Int J Cosmet Sci 2021; 43 Suppl 1:S14-S25. [PMID: 34424558 DOI: 10.1111/ics.12734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Increasing hair fullness is a global unmet need for many men and women. An approach to the problem is to decrease hair fall or shedding by reducing scalp stratum corneum oxidation and barrier damage to increase hair retention. This study evaluated a combination of functional antioxidants and barrier-enhancing cosmetic ingredients to improve scalp condition thereby enabling stronger hair anchorage and longer retention. METHODS Male and female subjects with normal scalp condition and self-perceived hair thinning participated in a 24-week, double-blind, placebo-controlled, randomized clinical study assessing either a regimen of treatment shampoo and leave-on treatment containing functional antioxidant and barrier-enhancing agents or an identical placebo chassis shampoo control. The functional ingredients were piroctone olamine, zinc pyrithione, zinc carbonate, niacinamide, panthenol and caffeine. At baseline and after 8, 16 and 24 weeks of product use, several measurements were taken: hair shedding, total hair count (by phototrichogram), hair samples, TEWL and evaluation of biomarkers of scalp and hair conditions. Subjects also completed self-assessment questionnaires. RESULTS Statistically significant effects for functional ingredient-containing treatment regimen versus a placebo control shampoo formulation were observed for reduced hair shedding, increased total hair count, reduced TEWL and improvement in scalp biomarker values. Subjects also noticed these improvements assessed via self-assessment questionnaires. CONCLUSIONS These results establish that the use of functional antioxidant and barrier-enhancing agents to further improve scalp condition can enable a reduction in hair shedding and thus an increase in perceived hair fullness. The underlying improvements in scalp condition suggest the hair benefits were achieved as a result of improved scalp skin barrier and scalp condition leading to a viable preventative approach for hair thinning.
Collapse
Affiliation(s)
| | - Melissa P Piliang
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wilma F Bergfeld
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Velamoor S, Mitchell A, Bostina M, Harland D. Processing hair follicles for transmission electron microscopy. Exp Dermatol 2021; 31:110-121. [PMID: 34351648 DOI: 10.1111/exd.14439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Transmission electron microscopy (TEM) has greatly advanced our knowledge of hair growth and follicle morphogenesis, but complex preparations such as fixation, dehydration and embedding compromise ultrastructure. While recent developments with cryofixation have been shown to preserve the ultrastructure of biological materials close to native state, they do have limitations. This review will focus on each stage of the TEM sample preparation process and their effects on the structural integrity of follicles.
Collapse
Affiliation(s)
- Sailakshmi Velamoor
- Proteins and Metabolites, AgResearch Limited, Lincoln, New Zealand.,Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Allan Mitchell
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| | - Duane Harland
- Proteins and Metabolites, AgResearch Limited, Lincoln, New Zealand
| |
Collapse
|
7
|
Tosti A, Schwartz J. Role of Scalp Health in Achieving Optimal Hair Growth and Retention. Int J Cosmet Sci 2021; 43 Suppl 1:S1-S8. [PMID: 33932025 DOI: 10.1111/ics.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
We have conducted a thorough review of the literature to assess the evidence for supporting a cause-and-effect linkage between scalp condition and resultant hair condition. Over 20 epidemiological studies have been published covering a wide range of abnormal scalp conditions in which consequent impacts to the hair have been documented. A treatment study was conducted to demonstrate not only that impaired scalp condition led to impaired hair quality but that the impacts to hair are reversible upon normalization of the scalp condition. A proposed explanation involves the impact of scalp oxidative stress, which is part of the etiology of these scalp conditions as well as normal aging, in interfering with the normal keratinization of the pre-emergent hair cuticle. This perturbed cuticle impedes normal fiber anchorage and emerges more brittle and fragile than normal cuticle leading to accelerated physical degradation, mirroring the effects of chronological aging of the hair fiber. The consequences of the rapid cuticle degradation result in hair that is more vulnerable to mechanical insults and compromised overall quality.
Collapse
Affiliation(s)
- Antonella Tosti
- Fredric Brandt Endowed Professor, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, USA
| | | |
Collapse
|
8
|
Lyamzaev KG, Knorre DA, Chernyak BV. Mitoptosis, Twenty Years After. BIOCHEMISTRY (MOSCOW) 2021; 85:1484-1498. [PMID: 33705288 DOI: 10.1134/s0006297920120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of "mitoptotic body" surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Lim YS, Harland DP, Dawson TL. Wanted, dead and alive: Why a multidisciplinary approach is needed to unlock hair treatment potential. Exp Dermatol 2020; 28:517-527. [PMID: 30706973 DOI: 10.1111/exd.13898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
Human recorded history is littered with attempts to improve the perceived appearance of scalp hair. Throughout history, treatments have included both biological and chemical interventions. Hair "quality" or "perceived appearance" is regulated by multiple biological intervention opportunities: adding more hairs by flipping follicles from telogen to anagen, or delaying anagen follicles transiting into catagen; altering hair "apparent amount" by modulating shaft diameter or shape; or, in principle, altering shaft physical properties changing its synthesis. By far the most common biological intervention strategy today is to increase the number of hairs, but to date this has proven difficult and has yielded minimal benefits. Chemical intervention primarily consists of active material surface deposition to improve shaft shine, fibre-fibre interactions and strength. Real, perceptible benefits will best be achieved by combining opportunity areas across the three primary sciences: biology, chemistry and physics. Shaft biogenesis begins with biology: proliferation in the germinative matrix, then crossing "Auber's Critical Line" and ceasing proliferation to synthesize shaft components. Biogenesis then shifts to oxidative chemistry, where previously synthesized components are organized and cross-linked into a shaft. We herein term the crossing point from biology to chemistry as "The Orwin Threshold." Historically, hair biology and chemistry have been conducted in different fields, with biological manipulation residing in biomedical communities and hair shaft chemistry and physics within the consumer care industry, with minimal cross-fertilization. Detailed understanding of hair shaft biogenesis should enable identification of factors necessary for optimum hair shaft production and new intervention opportunities.
Collapse
Affiliation(s)
- Yi Shan Lim
- Skin Research Institute Singapore, Singapore
| | - Duane P Harland
- Food and Bio-based Products Group, AgResearch, Crown Research Institute, Lincoln, New Zealand
| | - Thomas L Dawson
- Skin Research Institute Singapore, Singapore.,Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Jaeger K, Sukseree S, Zhong S, Phinney BS, Mlitz V, Buchberger M, Narzt MS, Gruber F, Tschachler E, Rice RH, Eckhart L. Cornification of nail keratinocytes requires autophagy for bulk degradation of intracellular proteins while sparing components of the cytoskeleton. Apoptosis 2020; 24:62-73. [PMID: 30552537 PMCID: PMC6373260 DOI: 10.1007/s10495-018-1505-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epidermal keratinocytes undergo cornification to form the cellular building blocks of hard skin appendages such as nails and the protective layer on the surface of the skin. Cornification requires the cross-linking of structural proteins and the removal of other cellular components to form mechanically rigid and inert corneocytes. Autophagy has been proposed to contribute to this intracellular remodelling process, but its molecular targets in keratinocytes, if any, have remained elusive. Here, we deleted the essential autophagy factor Atg7 in K14-positive epithelia of mice and determined by proteomics the impact of this deletion on the abundance of individual proteins in cornified nails. The genetic suppression of autophagy in keratinocytes resulted in a significant increase in the number of proteins that survived cornification and in alterations of their abundance in the nail proteome. A broad range of enzymes and other non-structural proteins were elevated whereas the amounts of cytoskeletal proteins of the keratin and keratin-associated protein families, cytolinker proteins and desmosomal proteins were either unaltered or decreased in nails of mice lacking epithelial autophagy. Among the various types of non-cytoskeletal proteins, the subunits of the proteasome and of the TRiC/CCT chaperonin were most strongly elevated in mutant nails, indicating a particularly important role of autophagy in removing these large protein complexes during normal cornification. Taken together, the results of this study suggest that autophagy is active during nail keratinocyte cornification and its substrate specificity depends on the accessibility of proteins outside of the cytoskeleton and their presence in large complexes.
Collapse
Affiliation(s)
- Karin Jaeger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Shaomin Zhong
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Brett S Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, CA, USA
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marie Sophie Narzt
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616-8588, USA.
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
11
|
VELAMOOR S, RICHENA M, MITCHELL A, LEQUEUX S, BOSTINA M, HARLAND D. High‐pressure freezing followed by freeze substitution of a complex and variable density miniorgan: the wool follicle. J Microsc 2020; 278:18-28. [DOI: 10.1111/jmi.12875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 01/15/2023]
Affiliation(s)
- S. VELAMOOR
- Lincoln Research Centre, Food & Bio‐Based ProductsAgresearch Limited Lincoln New Zealand
- Department of Immunology and MicrobiologyUniversity of Otago Dunedin New Zealand
| | - M. RICHENA
- Lincoln Research Centre, Food & Bio‐Based ProductsAgresearch Limited Lincoln New Zealand
| | - A. MITCHELL
- Otago Micro and Nano Imaging UnitUniversity of Otago Dunedin New Zealand
| | - S. LEQUEUX
- Otago Micro and Nano Imaging UnitUniversity of Otago Dunedin New Zealand
| | - M. BOSTINA
- Department of Immunology and MicrobiologyUniversity of Otago Dunedin New Zealand
- Otago Micro and Nano Imaging UnitUniversity of Otago Dunedin New Zealand
| | - D. HARLAND
- Lincoln Research Centre, Food & Bio‐Based ProductsAgresearch Limited Lincoln New Zealand
| |
Collapse
|
12
|
Abstract
The growth of hairs occurs during the anagen phase of the follicle cycle. Hair growth begins with basement membrane-bound stem cells (mother cells) around the dermal papilla neck which continuously bud off daughter cells which further divide as a transient amplifying population. Division ceases as cell line differentiation begins, which entails changes in cell junctions, cell shape and position, and cell-line specific cytoplasmic expression of keratin and trichohyalin. As the differentiating cells migrate up the bulb, nuclear function ceases in cortex, cuticle and inner root sheath (IRS) layers. Past the top of the bulb, cell shape/position changes cease, and there is a period of keratin and keratin-associated protein (KAP) synthesis in fibre cell lines, with increases, in particular of KAP species. A gradual keratinization process begins in the cortex at this point and then non-keratin cell components are increasingly broken down. Terminal cornification, or hardening, is associated with water loss and precipitation of keratin. In the upper follicle, the hair, now in its mature form, detaches from the IRS, which is then extracted of material and becomes fragmented to release the fibre. Finally, the sebaceous and sudoriferous (if present) glands coat the fibre in lipid-rich material and the fibre emerges from the skin. This chapter follows the origin of the hair growth in the lower bulb and traces the development of the various cell lines.
Collapse
|