1
|
Son HG, Ha DT, Xia Y, Li T, Blandin J, Oka T, Azin M, Conrad DN, Zhou C, Zeng Y, Hasegawa T, Strickley JD, Messerschmidt JL, Guennoun R, Erlich TH, Shoemaker GL, Johnson LH, Palmer KE, Fisher DE, Horn TD, Neel VA, Nazarian RM, Joh JJ, Demehri S. Commensal papillomavirus immunity preserves the homeostasis of highly mutated normal skin. Cancer Cell 2024:S1535-6108(24)00448-3. [PMID: 39672169 DOI: 10.1016/j.ccell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system's role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin. Mouse papillomavirus (MmuPV1) colonization blocks the expansion of mutant p53 clones in the epidermis in a CD8+ T cell-dependent manner. MmuPV1 activity is increased in p53-deficient keratinocytes, leading to their specific targeting by CD8+ T cells in the skin. Sun-exposed human skin containing mutant p53 clones shows increased epidermal beta-human papillomavirus (β-HPV) activity and CD8+ T cell infiltrates compared with sun-protected skin. The expansion of mutant p53 clones in premalignant skin lesions associates with β-HPV loss. Thus, immunity to commensal HPVs contributes to the homeostasis of mutated normal skin, highlighting the role of virome-immune system interactions in preserving aging human tissues.
Collapse
Affiliation(s)
- Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dat Thinh Ha
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yun Xia
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tiancheng Li
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmine Blandin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomonori Oka
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle N Conrad
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhou
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuhan Zeng
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tatsuya Hasegawa
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John D Strickley
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jonathan L Messerschmidt
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ranya Guennoun
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tal H Erlich
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory L Shoemaker
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Luke H Johnson
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Kenneth E Palmer
- Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas D Horn
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Victor A Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rosalynn M Nazarian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joongho J Joh
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chiantore MV, Iuliano M, Mongiovì RM, Luzi F, Mangino G, Grimaldi L, Accardi L, Fiorucci G, Romeo G, Di Bonito P. MicroRNAs Differentially Expressed in Actinic Keratosis and Healthy Skin Scrapings. Biomedicines 2023; 11:1719. [PMID: 37371814 DOI: 10.3390/biomedicines11061719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Actinic keratosis (AK) is a carcinoma in situ precursor of cutaneous squamous cell carcinoma (cSCC), the second most common cancer affecting the Caucasian population. AK is frequently present in the sun-exposed skin of the elderly population, UV radiation being the main cause of this cancer, and other risk factors contributing to AK incidence. The dysregulation of microRNAs (miRNAs) observed in different cancers leads to an improper expression of miRNA targets involved in several cellular pathways. The TaqMan Array Human MicroRNA Card assay for miRNA expression profiling was performed in pooled AK compared to healthy skin scraping samples from the same patients. Forty-three miRNAs were modulated in the AK samples. The expression of miR-19b (p < 0.05), -31, -34a (p < 0.001), -126, -146a (p < 0.01), -193b, and -222 (p < 0.05) was validated by RT-qPCR. The MirPath tool was used for MiRNA target prediction and enriched pathways. The top DIANA-mirPath pathways regulated by the targets of the 43 miRNAs are TGF-beta signaling, Proteoglycans in cancer, Pathways in cancer, and Adherens junction (7.30 × 10-10 < p < 1.84 × 10-8). Selected genes regulating the KEGG pathways, i.e., TP53, MDM2, CDKN1A, CDK6, and CCND1, were analyzed. MiRNAs modulated in AK regulate different pathways involved in tumorigenesis, indicating miRNA regulation as a critical step in keratinocyte cancer.
Collapse
Affiliation(s)
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Roberta Maria Mongiovì
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute IRCCS, 00144 Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Lorenzo Grimaldi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Luisa Accardi
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Gianna Fiorucci
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, 04100 Latina, Italy
| | - Paola Di Bonito
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
3
|
Donà MG, Gheit T, Chiantore MV, Vescio MF, Luzi F, Rollo F, Accardi L, Cota C, Galati L, Romeo G, Giuliani M, Tommasino M, Di Bonito P. Prevalence of 13 polyomaviruses in actinic keratosis and matched healthy skin samples of immunocompetent individuals. Infect Agent Cancer 2022; 17:59. [PMID: 36457033 PMCID: PMC9714215 DOI: 10.1186/s13027-022-00472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Actinic keratosis (AK) is a precursor of cutaneous squamous cell carcinoma (cSCC). UV radiation is the major risk factor for AK, but certain human papillomaviruses (HPVs) of the beta genus are also involved in its development. Differently, the role of polyomaviruses (PyVs) in skin carcinogenesis is still debated. Fiftheen PyVs have been isolated from human tissues so far, including Merkel cell polyomavirus (MCPyV), the aetiological agent of Merkel cell carcinoma. METHODS The presence of 13 PyVs was assessed in skin samples from AK patients (n = 342). Matched fresh-frozen scrapings from healthy skin (HS) and AK lesions from 242 patients, and formalin-fixed paraffin-embedded AK biopsies from a different cohort of 100 patients were analyzed by multiplex PyVs genotyping assay. RESULTS The most frequent lesion site was the scalp in men (27.3%), and the cheek area in women (29.0%). Differences between men and women were significant for the scalp, the cheek area and the lips. Almost all the scrapings were PyV-positive (HS: 89.7%, AK: 94.6%; p = 0.04). The three most frequent PyVs were MCPyV, HPyV6 and JCPyV (HS: 87.2%, 58.7%, 6.6%, respectively; AK: 88.8%, 51.2%, 9.9%, respectively). HPyV9, TSPyV, BKPyV, HPyV7, LIPyV and SV40 were detected in < 2% of the scrapings. In most cases, matched HS and AK scrapings were both positive (MCPyV: 78.1%, HPyV6: 41.7%), or both negative for the individual genotypes (for the remaining PyVs). PyV prevalence in AK biopsies was 22.0%. Only MCPyV (21.0%) and HPyV6 (3.0%) were detected in these samples. CONCLUSIONS PyV prevalence in HS and AK scrapings was high, but detection of PyVs exclusively in AK scrapings was rare. PyV positivity rate in AK biopsies was modest. Further research is need to reach firm conclusions regarding the role of these viruses in AK development.
Collapse
Affiliation(s)
| | - Tarik Gheit
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Maria Fenicia Vescio
- Epidemiology Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Francesca Rollo
- Pathology Department, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Luisa Accardi
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Cota
- Department of Dermopathology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luisa Galati
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome-Polo Pontino, Latina, Italy
| | - Massimo Giuliani
- STI/HIV Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | | | - Paola Di Bonito
- EVOR Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Chiantore MV, Iuliano M, Mongiovì RM, Dutta S, Tommasino M, Di Bonito P, Accardi L, Mangino G, Romeo G. The E6 and E7 proteins of beta3 human papillomavirus 49 can deregulate both cellular and extracellular vesicles-carried microRNAs. Infect Agent Cancer 2022; 17:29. [PMID: 35705991 PMCID: PMC9199308 DOI: 10.1186/s13027-022-00445-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The β3 human papillomavirus (HPV)49 induces immortalization of primary keratinocytes through the action of E6 and E7 oncoproteins with an efficiency similar to alpha high risk (HR)-HPV16. Since HR-HPV oncoproteins are known to alter microRNA (miRNA) expression and extracellular vesicle (EV) production, we investigated the impact of HPV49 E6 and E7 proteins on miRNA profile and EV expression, and their involvement in the control of cell proliferation. METHODS The miRNA expression was evaluated by a miRNA array and validated by RT-qPCR in primary human keratinocytes immortalized by β3 HPV49 (K49) or α9 HR-HPV16 (K16), and in EVs from K49 and K16. The modulation of miRNA target proteins was investigated by immunoblotting analyses. RESULTS By comparing miRNA expression in K49 and K16 and the derived EVs, six miRNAs involved in HPV tumorigenesis were selected and validated. MiR-19a and -99a were found to be upregulated and miR-34a downregulated in both cell lines; miR-17 and -590-5p were upregulated in K49 and downmodulated in K16; miR-21 was downregulated only in K16. As for EV-carried miRNAs, the expression of miR-17, -19a, -21 and -99a was decreased and miR-34a was increased in K49 EVs. In K16 EVs, we revealed the same modulation of miR-19a, -34a, and -99a observed in producing cells, while miR-21 was upregulated. Cyclin D1, a common target of the selected miRNAs, was downmodulated in both cell lines, whereas cyclin-dependent kinase 4 was down-modulated in K49 but upregulated in K16. CONCLUSION These data suggest that E6 and E7 proteins of β3 HPV49 and α9 HR-HPV16 affect key factors of cell cycle control by indirect mechanisms based on miRNA modulation.
Collapse
Affiliation(s)
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Roberta Maria Mongiovì
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Sankhadeep Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
- Present Address: Department of Pharmacy-Pharmaceutical Sciences, University of Bari A. Moro, Bari, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Luisa Accardi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| |
Collapse
|
5
|
Rollison DE, Amorrortu RP, Zhao Y, Messina JL, Schell MJ, Fenske NA, Cherpelis BS, Giuliano AR, Sondak VK, Pawlita M, McKay-Chopin S, Gheit T, Waterboer T, Tommasino M. Cutaneous Human Papillomaviruses and the Risk of Keratinocyte Carcinomas. Cancer Res 2021; 81:4628-4638. [PMID: 34266893 PMCID: PMC8416805 DOI: 10.1158/0008-5472.can-21-0805] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Cutaneous human papillomavirus (cuHPV) infections may be novel targets for skin cancer prevention and treatment, but critical information regarding the development of virus-positive skin cancers following cuHPV infection has been lacking. In this study, baseline cuHPV infection was measured by serology and viral DNA detection in eyebrow hairs (EBH) and forearm skin swabs (SSW) among 1,008 individuals undergoing routine skin cancer screening exams and followed for incidence of basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cuSCC). Baseline β-HPV detection, particularly in SSW, significantly predicted cuSCC (HR = 4.32; 95% confidence interval, 1.00-18.66), whereas serologic evidence of past β-HPV infection was not associated with cuSCC. Less than 5% of baseline β-HPV types detected in SSW were present in subsequent cuSCC tumors, and cuHPV detected in SSW with higher mean fluorescence intensity values were more likely to be present in cuSCC compared with those with lower levels (P < 0.001). β-HPV-positive cuSCC occurred more often in areas of highly sun-damaged skin than did β-HPV-negative cuSCC. Overall, no clear patterns were observed between baseline β-HPV detection and subsequent development of BCC, or between baseline γ-HPV detection and either cuSCC or BCC. Collectively, these results demonstrate that β-HPV detection in SSW is a significant predictor of cuSCC risk, although evidence suggests only a small subset of cuSCC is etiologically linked to β-HPV infection. SIGNIFICANCE: β-HPV positivity may be a useful biomarker for identifying individuals who could benefit from increased screening or novel cutaneous squamous cell carcinoma prevention strategies.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alphapapillomavirus
- Biomarkers, Tumor/metabolism
- Carcinoma, Basal Cell/diagnosis
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/virology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/virology
- DNA, Viral
- Early Detection of Cancer
- Female
- Follow-Up Studies
- Hair/metabolism
- Humans
- Keratinocytes/cytology
- Male
- Middle Aged
- Neoplasms, Basal Cell/diagnosis
- Neoplasms, Basal Cell/metabolism
- Neoplasms, Basal Cell/virology
- Papillomavirus Infections/diagnosis
- Papillomavirus Infections/metabolism
- Prospective Studies
- Risk Factors
- Skin Neoplasms/diagnosis
- Skin Neoplasms/metabolism
- Skin Neoplasms/virology
- Specimen Handling
- Surveys and Questionnaires
Collapse
Affiliation(s)
- Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida.
| | | | - Yayi Zhao
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Jane L Messina
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael J Schell
- Biostatistics and Bioinformatics Shared Resource, Moffitt Cancer Center, Tampa, Florida
| | - Neil A Fenske
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Basil S Cherpelis
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tarik Gheit
- International Agency for Research on Cancer, WHO, Lyon, France
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
6
|
Galati L, Brancaccio RN, Robitaille A, Cuenin C, Luzi F, Fiorucci G, Chiantore MV, Marascio N, Matera G, Liberto MC, Donà MG, Di Bonito P, Gheit T, Tommasino M. Detection of human papillomaviruses in paired healthy skin and actinic keratosis by next generation sequencing. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2020; 9:100196. [PMID: 32222599 PMCID: PMC7118314 DOI: 10.1016/j.pvr.2020.100196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
Actinic keratosis (AK) arises on photo-damaged skin and is considered to be the precursor lesion of cutaneous squamous cell carcinoma (cSCC). Many findings support the involvement of β human papillomaviruses (HPVs) in cSCC, while very little is known on γ HPV types. The objective of this study was to characterize the spectrum of PV types in healthy skin (HS) and AK samples of the same immunocompetent individuals using next generation sequencing (NGS). Viral DNA of 244 AK and 242 HS specimens were amplified by PCR using two different sets of primers (FAP59/64 and FAPM1). Purified amplicons were pooled and sequenced using NGS. The study resulted in the identification of a large number of known β and γ PV types. In addition, 27 putative novel β and 16 γ and 4 unclassified PVs were isolated. HPV types of species γ-1 (e.g. HPV4) appeared to be strongly enriched in AK versus HS. The NGS analysis revealed that a large spectrum of known and novel PVs is present in HS and AK. The evidence that species γ-1 HPV types appears to be enriched in AK in comparison to HS warrants further studies to evaluate their role in development of skin (pre)cancerous lesions.
Collapse
Affiliation(s)
- Luisa Galati
- International Agency for Research on Cancer-World Health Organization, Lyon, France; "Magna Graecia" University, Catanzaro, Italy
| | | | - Alexis Robitaille
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Cyrille Cuenin
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Gianna Fiorucci
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Rome, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | | | | | | - Paola Di Bonito
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Tarik Gheit
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer-World Health Organization, Lyon, France.
| |
Collapse
|
7
|
Preti M, Rotondo JC, Holzinger D, Micheletti L, Gallio N, McKay-Chopin S, Carreira C, Privitera SS, Watanabe R, Ridder R, Pawlita M, Benedetto C, Tommasino M, Gheit T. Role of human papillomavirus infection in the etiology of vulvar cancer in Italian women. Infect Agent Cancer 2020; 15:20. [PMID: 32266002 PMCID: PMC7110671 DOI: 10.1186/s13027-020-00286-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Vulvar squamous cell carcinoma (VSCC) is a rare malignancy of the female genital tract. We aimed to determine the mucosal high-risk human papillomavirus (HPV)-attributable fraction of VSCCs from Italian women using multiple markers of viral infections. Methods VSCCs and 8 metastatic lymph node samples from 107 Italian women were analyzed by a highly type-specific multiplex genotyping assay for the presence of DNA from 119 different HPVs. Tissues were further analyzed for HPV RNA and for upregulation of the cellular protein p16INK4a. Results The rate of mucosal HPV-related tumors defined by viral DNA and RNA positivity was low (7.8%). HPV16 was the most prevalent, followed by 53, 56, and 58. Only five (4.9%) p16INK4a-positive tumors were also positive for both viral DNA and RNA. One (14.3%) metastatic lymph node sample was positive for all three markers. DNA of cutaneous HPVs was detected in only two VSCCs, i.e. genus beta types 5 and 110. Conclusion A small proportion of Italian VSCCs is putatively HPV-related, i.e. positive for both viral DNA and RNA of the same type, thus reinforcing the importance of HPV vaccination. Moreover, this study suggests that a direct role of HPV from genus beta and gamma in vulvar carcinogenesis is unlikely.
Collapse
Affiliation(s)
- Mario Preti
- 1Department of Surgical Sciences, University of Turin, Turin, Italy
| | - John Charles Rotondo
- 2International Agency for Research on Cancer, Lyon, France.,3Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Dana Holzinger
- 4Infections and Cancer Epidemiology, Infections and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Niccolò Gallio
- 1Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | | | | | - Reiko Watanabe
- 2International Agency for Research on Cancer, Lyon, France
| | - Ruediger Ridder
- Roche mtm laboratories, Mannheim, Germany.,7Ventana Medical Systems Inc., Tucson, AZ USA
| | - Michael Pawlita
- 4Infections and Cancer Epidemiology, Infections and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Benedetto
- 1Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | - Tarik Gheit
- 2International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
8
|
Viarisio D, Robitaille A, Müller-Decker K, Flechtenmacher C, Gissmann L, Tommasino M. Cancer susceptibility of beta HPV49 E6 and E7 transgenic mice to 4-nitroquinoline 1-oxide treatment correlates with mutational signatures of tobacco exposure. Virology 2019; 538:53-60. [PMID: 31569015 DOI: 10.1016/j.virol.2019.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
We have previously showed that a transgenic (Tg) mouse model with cytokeratin 14 promoter (K14)-driven expression of E6 and E7 from beta-3 HPV49 in the basal layer of the epidermis and of the mucosal epithelia of the digestive tract (K14 HPV49 E6/E7 Tg mice) are highly susceptible to upper digestive tract carcinogenesis upon exposure to 4-nitroquinoline 1-oxide (4NQO). Using whole-exome sequencing, we show that in K14 HPV49 E6/E7 Tg mice, development of 4NQO-induced cancers tightly correlates with the accumulation of somatic mutations in cancer-related genes. The mutational signature in 4NQO-treated mice was similar to the signature observed in humans exposed to tobacco smoking and tobacco chewing. Similar results were obtained with K14 Tg animals expressing mucosal high-risk HPV16 E6 and E7 oncogenes. Thus, beta-3 HPV49 share some functional similarities with HPV16 in Tg animals.
Collapse
Affiliation(s)
- Daniele Viarisio
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Karin Müller-Decker
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christa Flechtenmacher
- Department of Pathology, University Hospital of Heidelberg, Im Neuenheimer Feld 220, 69120, Heidelberg, Germany
| | - Lutz Gissmann
- Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Department of Botany and Microbiology (honorary MMember), King Saud University, Riyadh, Saudi Arabia
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France.
| |
Collapse
|
9
|
Di Bonito P, Galati L, Focà A, Brambilla M, Bisaglia C, Bonanno Ferraro G, Mancini P, Iaconelli M, Veneri C, La Rosa G. Evidence for swine and human papillomavirus in pig slurry in Italy. J Appl Microbiol 2019; 127:1246-1254. [PMID: 31251456 PMCID: PMC7166630 DOI: 10.1111/jam.14363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Abstract
AIMS The diversity and the geographical distribution of swine papillomaviruses (PVs) are virtually unknown. The occurrence and the diversity of swine PV were therefore investigated in pig slurry collected in Italy, to contribute towards filling this gap in knowledge. METHODS AND RESULTS Twenty-two slurry samples underwent analysis by nested PCR and DNA sequencing using published and newly designed specific primer pairs for Sus scrofa papillomavirus (SsPV) type 1 and 2 (SsPV1 and 2), along with degenerate PV-specific primers targeting the major coat protein L1 and the helicase protein E1. Overall, three samples (13·6%) were positive for SsPV1 by specific primers, and nucleotide (nt) sequences showed 99-100% nt identity with SsPV1 variant a (EF395818), while SsPV2 was not found in any sample. Using generic primers, eight samples (36·4%) were tested positive for human papillomavirus (HPV), and were characterized as follows: β1-HPV8, β1-HPV14, β1-HPV206, β2-HPV113, β2-HPV120 and γ1-HPV173. Moreover, one unclassified γ-type was detected. CONCLUSIONS Both swine and human PVs were detected in pig slurry in this study. The unexpected presence of HPV in pig waste could be explained as the result of an improper use of the sewage collection pits and/or with improper procedures of the operators. SIGNIFICANCE AND IMPACT OF THE STUDY This study reports the first detection of SsPV1 in Italy, along with the first detection of HPVs in pig slurry samples in Italy, and expands our knowledge about PV diversity and geographic distribution.
Collapse
Affiliation(s)
- P Di Bonito
- Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - L Galati
- Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - A Focà
- School of medicine, "Magna Graecia" University, Catanzaro, Italy
| | - M Brambilla
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Research Centre for Engineering and Agri Food Processing, Treviglio, BG, Italy
| | - C Bisaglia
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Research Centre for Engineering and Agri Food Processing, Treviglio, BG, Italy
| | - G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|