1
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
2
|
Suzuki T, Ito T, Gilhar A, Tokura Y, Reich K, Paus R. The hair follicle-psoriasis axis: Shared regulatory mechanisms and therapeutic targets. Exp Dermatol 2021; 31:266-279. [PMID: 34587317 DOI: 10.1111/exd.14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
It has long been known that there is a special affinity of psoriasis for the scalp: Here, it occurs most frequently, lesions terminate sharply in frontal skin beyond the hair line and are difficult to treat. Yet, surprisingly, scalp psoriasis only rarely causes alopecia, even though the pilosebaceous unit clearly is affected. Here, we systematically explore the peculiar, insufficiently investigated connection between psoriasis and growing (anagen) terminal scalp hair follicles (HFs), with emphasis on shared regulatory mechanism and therapeutic targets. Interestingly, several drugs and stressors that can trigger/aggravate psoriasis can inhibit hair growth (e.g. beta-blockers, chloroquine, carbamazepine, interferon-alpha, perceived stress). Instead, several anti-psoriatic agents can stimulate hair growth (e.g. cyclosporine, glucocorticoids, dithranol, UV irradiation), while skin/HF trauma (Köbner phenomenon/depilation) favours the development of psoriatic lesions and induces anagen in "quiescent" (telogen) HFs. On this basis, we propose two interconnected working models: (a) the existence of a bidirectional "hair follicle-psoriasis axis," along which keratinocytes of anagen scalp HFs secrete signals that favour the development and maintenance of psoriatic scalp lesions and respond to signals from these lesions, and (b) that anagen induction and psoriatic lesions share molecular "switch-on" mechanisms, which invite pharmacological targeting, once identified. Therefore, we advocate a novel, cross-fertilizing and integrative approach to psoriasis and hair research that systematically characterizes the "HF-psoriasis axis," focused on identification and therapeutic targeting of selected, shared signalling pathways in the future management of both, psoriasis and hair growth disorders.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Allergic Disease Research Center, Chutoen General Medical Center, Kakegawa, Japan
| | - Kristian Reich
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Monasterium Laboratory, Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Center, Manchester, UK
| |
Collapse
|
3
|
Gilhar A, Reich K, Keren A, Kabashima K, Steinhoff M, Paus R. Mouse models of atopic dermatitis: a critical reappraisal. Exp Dermatol 2021; 30:319-336. [PMID: 33368555 DOI: 10.1111/exd.14270] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Mouse models for atopic dermatitis (AD) are an indispensable preclinical research tool for testing new candidate AD therapeutics and for interrogating AD pathobiology in vivo. In this Viewpoint, we delineate why, unfortunately, none of the currently available so-called "AD" mouse models satisfactorily reflect the clinical complexity of human AD, but imitate more "allergic" or "irriant" contact dermatitis conditions. This limits the predictive value of AD models for clinical outcomes of new tested candidate AD therapeutics and the instructiveness of mouse models for human AD pathophysiology research. Here, we propose to initiate a rational debate on the minimal criteria that a mouse model should meet in order to be considered relevant for human AD. We suggest that valid AD models should at least meet the following criteria: (a) an AD-like epidermal barrier defect with reduced filaggrin expression along with hyperproliferation, hyperplasia; (b) increased epidermal expression of thymic stromal lymphopoietin (TSLP), periostin and/or chemokines such as TARC (CCL17); (c) a characteristic dermal immune cell infiltrate with overexpression of some key cytokines such as IL-4, IL-13, IL-31 and IL-33; (d) distinctive "neurodermatitis" features (sensory skin hyperinnervation, defective beta-adrenergic signalling, neurogenic skin inflammation and triggering or aggravation of AD-like skin lesions by perceived stress); and (e) response of experimentally induced skin lesions to standard AD therapy. Finally, we delineate why humanized AD mouse models (human skin xenotransplants on SCID mice) offer a particularly promising preclinical research alternative to the currently available "AD" mouse models.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - Kristian Reich
- Centre for Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Skinflammation Center, Hamburg, Germany
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion -Israel Institute of Technology, Haifa, Israel
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Qatar University, Doha, Qatar.,School of Medicine, Weill Cornell University-Qatar and Qatar University, Doha, Qatar
| | - Ralf Paus
- Dr. Phillip Frost, Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Dermatology Research Centre, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
4
|
Gilhar A, Laufer-Britva R, Keren A, Paus R. Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol 2019; 144:1478-1489. [PMID: 31606262 DOI: 10.1016/j.jaci.2019.08.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
This current review explores selected and as yet insufficiently investigated frontiers in current alopecia areata (AA) pathobiology research, with an emphasis on potential "new" players in AA pathobiology that deserve more systematic exploration and therapeutic targeting. Indeed, new evidence suggests that CD8+ T cells, which have long been thought to be the central players in AA pathobiology, are not the only drivers of disease. Instead, subsets of natural killer (NK) and so-called "unconventional" T cells (invariant NK T cells, γδ T cells, classic NK cells, and type 1 innate lymphoid cells), all of which can produce large amounts of IFN-γ, might also drive AA pathobiology independent of classical, autoantigen-dependent CD8+ T-cell functions. Another important new frontier is the role of regulatory lymphocyte subsets, such as regulatory T cells, γδ regulatory T cells, NKT10 cells, and perifollicular mast cells, in maintaining physiologic hair follicle immune privilege (IP); the extent to which these functions are defective in patients with AA; and how this IP-protective role could be restored therapeutically in patients with established AA. Broadening our AA research horizon along the lines suggested above promises not only to open the door to innovative and even more effective immunotherapy strategies for AA but will also likely be relevant for other autoimmune disorders in which pathobiology, ectopic MHC class I expression, and IP collapse play an important role.
Collapse
Affiliation(s)
- Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr Philipp Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Fla; Dermatology Research Centre, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| |
Collapse
|