1
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
2
|
Bou-Fakhredin R, De Franceschi L, Motta I, Cappellini MD, Taher AT. Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals (Basel) 2022; 15:ph15060753. [PMID: 35745672 PMCID: PMC9227505 DOI: 10.3390/ph15060753] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
A significant amount of attention has recently been devoted to the mechanisms involved in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile, progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-inducing strategies has been made possible as a result of a better understanding of γ-globin regulation. In this review, we will provide an update on all current pharmacological inducer agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially therapeutic, HbF-inducing agents.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: (M.D.C.); (A.T.T.)
| | - Ali T. Taher
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
- Correspondence: (M.D.C.); (A.T.T.)
| |
Collapse
|
3
|
Park SH, Lee CM, Bao G. Identification and Validation of CRISPR/Cas9 Off-Target Activity in Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2022; 2429:281-306. [PMID: 35507169 PMCID: PMC10972534 DOI: 10.1007/978-1-0716-1979-7_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeted genome editing in hematopoietic stem and progenitor cells (HSPCs) using CRISPR/Cas9 can potentially provide a permanent cure for hematologic diseases. However, the utility of CRISPR/Cas9 systems for therapeutic genome editing can be compromised by their off-target effects. In this chapter, we outline the procedures for CRISPR/Cas9 off-target identification and validation in HSPCs. This method is broadly applicable to diverse CRISPR/Cas9 systems and cell types. Using this protocol, researchers can perform computational prediction and experimental identification of potential off-target sites followed by off-target activity quantification by next-generation sequencing.
Collapse
Affiliation(s)
- So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ciaran M Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood 2021; 138:1615-1627. [PMID: 34036344 DOI: 10.1182/blood.2020007401] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.
Collapse
|
5
|
Batista JVGF, Arcanjo GS, Batista THC, Sobreira MJ, Santana RM, Domingos IF, Hatzlhofer BL, Falcão DA, Pereira-Martins DA, Oliveira JM, Araujo AS, Laranjeira LPM, Medeiros FS, Albuquerque FP, Albuquerque DM, Santos MN, Hazin MF, Dos Anjos AC, Costa FF, Araujo AS, Lucena-Araujo AR, Bezerra MA. Influence of UGT1A1 promoter polymorphism, α-thalassemia and β s haplotype in bilirubin levels and cholelithiasis in a large sickle cell anemia cohort. Ann Hematol 2021; 100:903-911. [PMID: 33523291 DOI: 10.1007/s00277-021-04422-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Hyperbilirubinemia in patients with sickle cell anemia (SCA) as a result of enhanced erythrocyte destruction, lead to cholelithiasis development in a subset of patients. Evidence suggests that hyperbilirubinemia may be related to genetic variations, such as the UGT1A1 gene promoter polymorphism, which causes Gilbert syndrome (GS). Here, we aimed to determine the frequencies of UGT1A1 promoter alleles, alpha thalassemia, and βS haplotypes and analyze their association with cholelithiasis and bilirubin levels. The UGT1A1 alleles, -3.7 kb alpha thalassemia deletion and βS haplotypes were determined using DNA sequencing and PCR-based assays in 913 patients with SCA. The mean of total and unconjugated bilirubin and the frequency of cholelithiasis in GS patients were higher when compared to those without this condition, regardless of age (P < 0.05). Cumulative analysis demonstrated an early age-at-onset for cholelithiasis in GS genotypes (P < 0.05). Low fetal hemoglobin (HbF) levels and normal alpha thalassemia genotype were related to cholelithiasis development (P > 0.05). However, not cholelithiasis but total and unconjugated bilirubin levels were associated with βS haplotype. These findings confirm in a large cohort that the UGT1A1 polymorphism influences cholelithiasis and hyperbilirubinemia in SCA. HbF and alpha thalassemia also appear as modulators for cholelithiasis risk.
Collapse
Affiliation(s)
| | - Gabriela S Arcanjo
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Thais H C Batista
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil
| | | | - Rodrigo M Santana
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Igor F Domingos
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil.,Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Betânia L Hatzlhofer
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil.,Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, Recife, Brazil
| | - Diego A Falcão
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Diego A Pereira-Martins
- Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jéssica M Oliveira
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil
| | - Amanda S Araujo
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | | | - Magnun N Santos
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Manuela F Hazin
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Brazil
| | - Ana C Dos Anjos
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Brazil
| | - Fernando F Costa
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Aderson S Araujo
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Brazil
| | | | - Marcos A Bezerra
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
6
|
Guo L, Chen J, Wang Q, Zhang J, Huang W. Oridonin enhances γ‑globin expression in erythroid precursors from patients with β‑thalassemia via activation of p38 MAPK signaling. Mol Med Rep 2019; 21:909-917. [PMID: 31789406 DOI: 10.3892/mmr.2019.10848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/20/2019] [Indexed: 11/05/2022] Open
Abstract
Upregulation of fetal hemoglobin expression can alleviate the severity of β‑thalassaemia. This study aimed to investigate the effects of Oridonin (ORI, a diterpenoid compound) on γ‑globin expression in human erythroid precursor cells and the potential underlying mechanisms. Erythroid precursor cells were enriched from 12 patients with β‑thalassaemia by two‑phase culture. The cells were then treated with different doses of ORI and the survival of erythroid precursor cells was determined. In addition, the expression levels of γ‑globin and potential mechanisms were analyzed by reverse transcription‑quantitative PCR, western blotting and chromatin immunoprecipitation. Treatment with 0.5 µM ORI preferably enhanced γ‑globin expression and exhibited little cytotoxicity. Similar to sodium butyrate (NaB, a histone deacetylase inhibitor), ORI significantly increased p38 mitogen‑activated protein kinase (MAPK) activation, γ‑globin expression, histone H3 and H4 acetylation at the Gγ‑ and Aγ‑globin promoters, and cAMP‑response element binding protein 1 (CREB1) phosphorylation. These effects were significantly mitigated by treatment with SB23580, a p38 MAPK inhibitor, in erythroid precursor cells. Therefore, ORI may effectively enhance γ‑globin expression by activating p38 MAPK and CREB1, leading to histone modification in γ‑globin gene promoters during the maturation of erythroid precursor cells. These findings suggested that ORI may be a novel and potential therapeutic agent for the treatment of β‑thalassaemia.
Collapse
Affiliation(s)
- Lishan Guo
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jia Chen
- Department of Neonatology, Pediatric Clinics of Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Qianying Wang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junliang Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
7
|
Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, Zhang Y, Paikari A, Chang AK, Porteus MH, Sheehan VA, Bao G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res 2019; 47:7955-7972. [PMID: 31147717 PMCID: PMC6735704 DOI: 10.1093/nar/gkz475] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder that affects millions worldwide. Allogeneic hematopoietic stem cell transplantation is the only available cure. Here, we demonstrate the use of CRISPR/Cas9 and a short single-stranded oligonucleotide template to correct the sickle mutation in the β-globin gene in hematopoietic stem and progenitor cells (HSPCs) from peripheral blood or bone marrow of patients with SCD, with 24.5 ± 7.6% efficiency without selection. Erythrocytes derived from gene-edited cells showed a marked reduction of sickle cells, with the level of normal hemoglobin (HbA) increased to 25.3 ± 13.9%. Gene-corrected SCD HSPCs retained the ability to engraft when transplanted into non-obese diabetic (NOD)-SCID-gamma (NSG) mice with detectable levels of gene correction 16-19 weeks post-transplantation. We show that, by using a high-fidelity SpyCas9 that maintained the same level of on-target gene modification, the off-target effects including chromosomal rearrangements were significantly reduced. Taken together, our results demonstrate efficient gene correction of the sickle mutation in both peripheral blood and bone marrow-derived SCD HSPCs, a significant reduction in sickling of red blood cells, engraftment of gene-edited SCD HSPCs in vivo and the importance of reducing off-target effects; all are essential for moving genome editing based SCD treatment into clinical practice.
Collapse
Affiliation(s)
- So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Waracharee Srifa
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Yankai Zhang
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alireza Paikari
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alicia K Chang
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vivien A Sheehan
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
8
|
Mettananda S, Yasara N, Fisher CA, Taylor S, Gibbons R, Higgs D. Synergistic silencing of α-globin and induction of γ-globin by histone deacetylase inhibitor, vorinostat as a potential therapy for β-thalassaemia. Sci Rep 2019; 9:11649. [PMID: 31406232 PMCID: PMC6690964 DOI: 10.1038/s41598-019-48204-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
β-Thalassaemia is one of the most common monogenic diseases with no effective cure in the majority of patients. Unbalanced production of α-globin in the presence of defective synthesis of β-globin is the primary mechanism for anaemia in β-thalassaemia. Clinical genetic data accumulated over three decades have clearly demonstrated that direct suppression of α-globin and induction of γ-globin are effective in reducing the globin chain imbalance in erythroid cells hence improving the clinical outcome of patients with β-thalassaemia. Here, we show that the histone deacetylase inhibitor drug, vorinostat, in addition to its beneficial effects for patients with β-thalassaemia through induction of γ-globin, has the potential to simultaneously suppress α-globin. We further show that vorinostat exhibits these synergistic beneficial effects in globin gene expression at nanomolar concentrations without perturbing erythroid expansion, viability, differentiation or the transcriptome. This new evidence will be helpful for the interpretation of existing clinical trials and future clinical studies that are directed towards finding a cure for β-thalassaemia using vorinostat.
Collapse
Affiliation(s)
- Sachith Mettananda
- Department of Paediatrics, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka. .,Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK.
| | - Nirmani Yasara
- Department of Paediatrics, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka
| | - Christopher A Fisher
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Richard Gibbons
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Doug Higgs
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| |
Collapse
|
9
|
Reflection of treatment proficiency of hydroxyurea treated β-thalassemia serum samples through nuclear magnetic resonance based metabonomics. Sci Rep 2019; 9:2041. [PMID: 30765825 PMCID: PMC6376050 DOI: 10.1038/s41598-019-38823-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
β-Thalassemia is a widespread autosomal recessive blood disorder found in most parts of the world. Fetal hemoglobin (HbF), a form of hemoglobin is found in infants, replaced by adult hemoglobin (HbA) after birth. Hydroxyurea (HU) is one of the most effective HbF inducer used for the treatment of anemic diseases. We aimed to improve the understanding of HU therapy in β-thalassemia by metabonomics approach using 1H NMR spectroscopy. This study includes 40 cases of β-thalassemia before and after HU therapy along with 40 healthy as controls. Carr-Purcell-Meiboom-Gill (CPMG) sequence was used to identify forty-one putative metabolites. Generation of models like partial least square discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) based on different metabolites including lipids, amino acids, glucose, fucose, isobutyrate, and glycerol revealed satisfactory outcomes with 85.2% and 91.1% classification rates, respectively. The concentration of these metabolites was altered in β-thalassemia samples. However, after HU treatment metabolic profile of same patients showed closeness towards healthy. Deviant metabolic pathways counting lipoprotein changes, glycolysis, TCA cycle, fatty acid and choline metabolisms were identified as having significant differences among study groups. Findings of this study may open a better way to monitor HU treatment effectiveness in β-thalassemia patients, as the results suggested that metabolic profile of β-thalassemia patients shows similarity towards normal profile after this therapy.
Collapse
|
10
|
Iqbal A, Ansari SH, Parveen S, Khan IA, Siddiqui AJ, Musharraf SG. Hydroxyurea Treated β-Thalassemia Children Demonstrate a Shift in Metabolism Towards Healthy Pattern. Sci Rep 2018; 8:15152. [PMID: 30310134 PMCID: PMC6182004 DOI: 10.1038/s41598-018-33540-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/24/2018] [Indexed: 12/02/2022] Open
Abstract
Augmentation of fetal hemoglobin (HbF) production has been an enduring therapeutic objective in β-thalassemia patients for which hydroxyurea (HU) has largely been the drug of choice and the most cost-effective approach. A serum metabolomics study on 40 patients with β-thalassemia prior to and after administration of HU was done along with healthy controls. Treated patients were divided further into non-responders (NR), partial (PR) and good (GR) per their response. 25 metabolites that were altered before HU therapy at p ≤ 0.05 and fold change >2.0 in β-thalassemia patients; started reverting towards healthy group after HU treatment. A prediction model based on another set of 70 HU treated patients showed a good separation of GR from untreated β-thalassemia patients with an overall accuracy of 76.37%. Metabolic pathway analysis revealed that various important pathways that were disturbed in β-thalassemia were reverted after treatment with HU and among them linoleic acid pathway was most impactfully improved in HU treated patients which is a precursor of important signaling molecules. In conclusion, this study indicates that HU is a good treatment option for β-thalassemia patients because in addition to reducing blood transfusion burden it also ameliorates disease complications by shifting body metabolism towards normal.
Collapse
Affiliation(s)
- Ayesha Iqbal
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saqib Hussain Ansari
- Department of Pediatric Hematology & Molecular Medicine, National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, 75300, Pakistan
| | - Sadia Parveen
- Department of Pediatric Hematology & Molecular Medicine, National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, 75300, Pakistan
| | - Ishtiaq Ahmad Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Amna Jabbar Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
11
|
Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood 2018; 132:321-333. [PMID: 29884740 DOI: 10.1182/blood-2017-11-814335] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/25/2018] [Indexed: 01/08/2023] Open
Abstract
Induction of red blood cell (RBC) fetal hemoglobin (HbF; α2γ2) ameliorates the pathophysiology of sickle cell disease (SCD) by reducing the concentration of sickle hemoglobin (HbS; α2βS2) to inhibit its polymerization. Hydroxyurea (HU), the only US Food and Drug Administration (FDA)-approved drug for SCD, acts in part by inducing HbF; however, it is not fully effective, reflecting the need for new therapies. Whole-exome sequence analysis of rare genetic variants in SCD patients identified FOXO3 as a candidate regulator of RBC HbF. We validated these genomic findings through loss- and gain-of-function studies in normal human CD34+ hematopoietic stem and progenitor cells induced to undergo erythroid differentiation. FOXO3 gene silencing reduced γ-globin RNA levels and HbF levels in erythroblasts, whereas overexpression of FOXO3 produced the opposite effect. Moreover, treatment of primary CD34+ cell-derived erythroid cultures with metformin, an FDA-approved drug known to enhance FOXO3 activity in nonerythroid cells, caused dose-related FOXO3-dependent increases in the percentage of HbF protein and the fraction of HbF-immunostaining cells (F cells). Combined HU and metformin treatment induced HbF additively and reversed the arrest in erythroid maturation caused by HU treatment alone. HbF induction by metformin in erythroid precursors was dependent on FOXO3 expression and did not alter expression of BCL11A, MYB, or KLF1. Collectively, our data implicate FOXO3 as a positive regulator of γ-globin expression and identify metformin as a potential therapeutic agent for SCD.
Collapse
|
12
|
The effect of histone deacetylase inhibitors on AHSP expression. PLoS One 2018; 13:e0189267. [PMID: 29389946 PMCID: PMC5794076 DOI: 10.1371/journal.pone.0189267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 11/03/2017] [Indexed: 11/25/2022] Open
Abstract
Alpha-hemoglobin stabilizing protein (AHSP) is a molecular chaperone that can reduce the damage caused by excess free α-globin to erythroid cells in patients with impaired β-globin chain synthesis. We assessed the effect of sodium phenylbutyrate and sodium valproate, two histone deacetylase inhibitors (HDIs) that are being studied for the treatment of hemoglobinopathies, on the expression of AHSP, BCL11A (all isoforms), γ-globin genes (HBG1/2), and some related transcription factors including GATA1, NFE2, EKLF, KLF4, and STAT3. For this purpose, the K562 cell line was cultured for 2, 4, and 6 days in the presence and absence of sodium phenylbutyrate and sodium valproate. Relative real-time qRT-PCR analysis of mRNA levels was performed to determine the effects of the two compounds on gene expression. Expression of all target mRNAs increased significantly (p < 0.05), except for the expression of BCL11A, which was down-regulated (p < 0.05) in the cells treated with both compounds relative to the levels measured for untreated cells. The findings indicated that sodium valproate had a more considerable effect than sodium phenylbutyrate (p < 0.0005) on BCL11A repression and the up-regulation of other studied genes. γ-Globin and AHSP gene expression continuously increased during the culture period in the treated cells, with the highest gene expression observed for 1 mM sodium valproate after 6 days. Both compounds repressed the expression of BCL11A (-XL, -L, -S) and up-regulated GATA1, NFE2, EKLF, KLF4, STAT3, AHSP, and γ-globin genes expression. Moreover, sodium valproate showed a stronger effect on repressing BCL11A and escalating the expression of other target genes. The findings of this in vitro experiment could be considered in selecting drugs for clinical use in patients with β-hemoglobinopathies.
Collapse
|
13
|
Lohani N, Bhargava N, Munshi A, Ramalingam S. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol 2017; 233:4563-4577. [PMID: 29159826 DOI: 10.1002/jcp.26292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment. On account of these constraints, reactivation of fetal hemoglobin (HbF) synthesis holds immense promise and is a viable strategy to alleviate the symptoms of β-hemoglobin disorders. Development of new genomic tools has led to the identification of important natural genetic modifiers of hemoglobin switching which include BCL11A, KLF1, HBSIL-MYB, LRF, LSD1, LDB1, histone deacetylases 1 and 2 (HDAC1 and HDAC2). miRNAs are also promising therapeutic targets for development of more effective strategies for the induction of HbF production. Many new small molecule pharmacological inducers of HbF production are already under pre-clinical and clinical development. Furthermore, recent advancements in gene and cell therapy includes targeted genome editing and iPS cell technologies, both of which utilizes a patient's own cells, are emerging as extremely promising approaches for significantly reducing the burden of β-hemoglobin disorders.
Collapse
Affiliation(s)
- Neelam Lohani
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
14
|
Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2. PLoS One 2016; 11:e0153767. [PMID: 27073918 PMCID: PMC4830539 DOI: 10.1371/journal.pone.0153767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/04/2016] [Indexed: 01/10/2023] Open
Abstract
Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF) is a promising approach for ameliorating sickle cell disease (SCD) and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC) 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2), elicits a dose and time dependent induction of γ-globin mRNA (HBG) and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB). Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq) of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.
Collapse
|
15
|
de Dreuzy E, Bhukhai K, Leboulch P, Payen E. Current and future alternative therapies for beta-thalassemia major. Biomed J 2016; 39:24-38. [PMID: 27105596 PMCID: PMC6138429 DOI: 10.1016/j.bj.2015.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/12/2015] [Indexed: 11/15/2022] Open
Abstract
Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no β-globin chains. Novel approaches are being developed to correct the resulting α/β-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g. life-long red blood cell transfusion, iron chelation, splenectomy), which impose high costs on healthcare systems. Three approaches are envisaged: fetal globin gene reactivation by pharmacological compounds injected into patients throughout their lives, allogeneic hematopoietic stem cell transplantation (HSCT), and gene therapy. HSCT is currently the only treatment shown to provide an effective, definitive cure for β-thalassemia. However, this procedure remains risky and histocompatible donors are identified for only a small fraction of patients. New pharmacological compounds are being tested, but none has yet made it into common clinical practice for the treatment of beta-thalassemia major. Gene therapy is in the experimental phase. It is emerging as a powerful approach without the immunological complications of HSCT, but with other possible drawbacks. Rapid progress is being made in this field, and long-term efficacy and safety studies are underway.
Collapse
Affiliation(s)
- Edouard de Dreuzy
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Kanit Bhukhai
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France
| | - Philippe Leboulch
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; Department of Medicine, Harvard Medical School and Genetics Division, Brigham and Women's Hospital, Boston MA, USA; Mahidol University and Ramathibodi Hospital, Bangkok, Thailand
| | - Emmanuel Payen
- CEA, Institute of Emerging Diseases and Innovative Therapies, Fontenay aux Roses, France; University of Paris 11, CEA-iMETI, 92260 Fontenay aux Roses, France; INSERM, Paris, France.
| |
Collapse
|
16
|
Costa D, Capuano M, Sommese L, Napoli C. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies. Blood Cells Mol Dis 2015; 55:95-100. [DOI: 10.1016/j.bcmd.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 11/24/2022]
|
17
|
Finotti A, Gambari R. Recent trends for novel options in experimental biological therapy of β-thalassemia. Expert Opin Biol Ther 2014; 14:1443-54. [PMID: 24934764 DOI: 10.1517/14712598.2014.927434] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to low or absent production of adult hemoglobin. Achievements have been recently obtained on innovative therapeutic strategies for β-thalassemias, based on studies focusing on the transcriptional regulation of the γ-globin genes, epigenetic mechanisms governing erythroid differentiation, gene therapy and genetic correction of the mutations. AREAS COVERED The objective of this review is to describe recently published approaches (the review covers the years 2011 - 2014) useful for the development of novel therapeutic strategies for the treatment of β-thalassemia. EXPERT OPINION Modification of β-globin gene expression in β-thalassemia cells was achieved by gene therapy (eventually in combination with induction of fetal hemoglobin [HbF]) and correction of the mutated β-globin gene. Based on recent areas of progress in understanding the control of γ-globin gene expression, novel strategies for inducing HbF have been proposed. Furthermore, the identification of microRNAs involved in erythroid differentiation and HbF production opens novel options for developing therapeutic approaches for β-thalassemia and sickle-cell anemia.
Collapse
Affiliation(s)
- Alessia Finotti
- Biotechnology Centre of Ferrara University, Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia , Ferrara , Italy
| | | |
Collapse
|