1
|
Drozdov D, Kandil J, Long SE, Demorest C, Cao Q, Lund TC, Gupta AO, Boelens JJ, Orchard PJ. Bodyweight and Absolute Lymphocyte Count-Based Dosing of Rabbit Anti-thymocyte Globulin Results in Early CD4 + Immune Reconstitution in Patients with Inborn Errors of Metabolism Undergoing Umbilical Cord Blood Transplantation. Transplant Cell Ther 2025:S2666-6367(25)01006-1. [PMID: 39914492 DOI: 10.1016/j.jtct.2025.01.893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Rabbit anti-thymocyte globulin (rATG) decreases the risk of graft failure and graft-versus-host disease (GVHD) in a setting of allogenic hematopoietic cell transplantation (HCT) but has highly variable pharmacokinetics. Recently, it was shown that a dosing nomogram based on recipient bodyweight and absolute lymphocyte count reduced rATG overexposure, which led to faster immune reconstitution. The aim of this study is to evaluate the feasibility and benefits of using an rATG dosing nomogram to achieve early CD4+ immune reconstitution in pediatric patients with inborn errors of metabolism (IEM) undergoing umbilical cord blood transplantation. METHODS The rATG dosing nomogram in pediatric patients with IEM receiving an umbilical cord blood transplant with busulfan-based myeloablative conditioning at the University of Minnesota Masonic Children's Hospital was used prospectively since 2017. The primary endpoint was CD4+ immune reconstitution (>50 CD4+ T-cells/mL) within 100 days after HCT. Secondary endpoints included overall survival, graft failure, acute and chronic GVHD, and viral reactivations. RESULTS A total of 27 patients were included in the study. Median follow-up time was 31 months (interquartile range [IQR], 22-38) and median age was 1.5 years (IQR, 0.7-3.9). The underlying disease was Hurler syndrome in 17 (63%), Hunter syndrome in 4 (15%), and cerebral adrenoleukodystrophy in 4 (15%) patients; 2 patients were transplanted for other IEM. The CD4+ recovery (>50 CD4+ T cells/mL) at 100 days post-HCT was reached in 22 (85%) of 26 patients. Overall survival was 83% (95% confidence interval [CI], 67%-100%). No graft failure was observed. Two (7%) patients developed acute GVHD grade II to IV and no patients had chronic GVHD. Six patients (22%) had cytomegalovirus (CMV) viremia. One patient had Epstein-Barr virus reactivation requiring treatment. CONCLUSION In patients with IEM, individualized dosing of rATG was associated with a robust and early CD4+ immune reconstitution, with no graft failures and low GVHD incidence.
Collapse
Affiliation(s)
- Daniel Drozdov
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Division of Stem Cell Transplantation and Cellular Therapies and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland; Division of Pediatric Hematology Oncology, Kantonsspital Aarau, Aarau, Switzerland.
| | - Jessica Kandil
- Division of Pediatric Hematology Oncology, Kantonsspital Aarau, Aarau, Switzerland; University of Zürich, Zürich, Switzerland
| | - Susie E Long
- Acute Care Pharmacy Services, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota
| | - Connor Demorest
- Biostatistics Core at Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core at Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Troy C Lund
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Ashish O Gupta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
2
|
Song Z, Cui X, Zhang Z, Liu R, Shi X. Haploidentical haematopoietic stem cell transplantation combined with post-transplant cyclophosphamide in neuronal ceroid lipofuscinosis: Experience in eight patients. Med Clin (Barc) 2024; 162:244-249. [PMID: 38044188 DOI: 10.1016/j.medcli.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCLs) are rare lysosomal storage disorders characterized by progressive mental retardation and motor developmental regression and myoclonic seizures. Hematopoietic stem cell transplantation (HSCT) has been suggested to be used in the treatment of lysosomal disorders and brain damage caused by a deficiency of soluble lysosomal enzymes. There are no previous reports on treating NCLs with HSCT in China. MATERIAL AND METHOD NCL pediatric patients who underwent allo-HSCT at Affiliated Children's Hospital of Capital Institute of Pediatrics were involved. A combination of medical histories, clinical features, and genetic analyses was used for the diagnosis of all patients. The written consent form for allo-HSCT was attained from the patient's guardian, which was then reviewed and approved by the ethics committee before the procedure. RESULTS From January 2018 to May 2019, the haplo-HSCT followed by PT/Cy on eight NCL pediatric patients was performed. The median age was 4.5 years (ranging from 2.8 to 7 years). The donors were their haploidentical HLA-matched parents, as no identically matched donors were found. The median nucleated cell count was 25.37 (10-34.41)×108/kg, and the median CD34+ count was 13.7 (8.95-22)×106/kg. Neutrophil reconstitution occurred 12 days (11-14 days) after transplantation, and the median platelet reconstitution time was 12 days (9-14 days) after transplantation. All patients achieved full donor chimerism and did not develop Grade II-IV acute GvHD or chronic GvHD after transplantation. The median follow-up period was 2.2 (1.5-2.6) years. All patients are still alive at present and develop no severe transplantation-related complications. The mental motor disorders, myoclonic seizures, and vision loss of all patients continued to progress. However, the progression slowed at 12 months after transplantation. CONCLUSION This study demonstrated that it is safe and efficacious to treat NCLs with haplo-HSCT. Transplantation should be performed at an early stage for the survival quality of pediatric patients.
Collapse
Affiliation(s)
- Zeliang Song
- Department of Hematology, Children's Hospital of Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaodai Cui
- Department of Key Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhaoxia Zhang
- Department of Hematology, Children's Hospital of Capital Institute of Pediatrics, Beijing 100020, China
| | - Rong Liu
- Department of Hematology, Children's Hospital of Capital Institute of Pediatrics, Beijing 100020, China.
| | - Xiaodong Shi
- Department of Hematology, Children's Hospital of Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
3
|
Elvidge KL, Christodoulou J, Farrar MA, Tilden D, Maack M, Valeri M, Ellis M, Smith NJC. The collective burden of childhood dementia: a scoping review. Brain 2023; 146:4446-4455. [PMID: 37471493 PMCID: PMC10629766 DOI: 10.1093/brain/awad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
Childhood dementia is a devastating and under-recognized group of disorders with a high level of unmet need. Typically monogenic in origin, this collective of individual neurodegenerative conditions are defined by a progressive impairment of neurocognitive function, presenting in childhood and adolescence. This scoping review aims to clarify definitions and conceptual boundaries of childhood dementia and quantify the collective disease burden. A literature review identified conditions that met the case definition. An expert clinical working group reviewed and ratified inclusion. Epidemiological data were extracted from published literature and collective burden modelled. One hundred and seventy genetic childhood dementia disorders were identified. Of these, 25 were analysed separately as treatable conditions. Collectively, currently untreatable childhood dementia was estimated to have an incidence of 34.5 per 100 000 (1 in 2900 births), median life expectancy of 9 years and prevalence of 5.3 per 100 000 persons. The estimated number of premature deaths per year is similar to childhood cancer (0-14 years) and approximately 70% of those deaths will be prior to adulthood. An additional 49.8 per 100 000 births are attributable to treatable conditions that would cause childhood dementia if not diagnosed early and stringently treated. A relational database of the childhood dementia disorders has been created and will be continually updated as new disorders are identified (https://knowledgebase.childhooddementia.org/). We present the first comprehensive overview of monogenic childhood dementia conditions and their collective epidemiology. Unifying these conditions, with consistent language and definitions, reinforces motivation to advance therapeutic development and health service supports for this significantly disadvantaged group of children and their families.
Collapse
Affiliation(s)
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Randwick, NSW 2031, Australia
- Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | | | - Megan Maack
- Childhood Dementia Initiative, Brookvale, NSW 2100, Australia
| | | | - Magda Ellis
- THEMA Consulting Pty Ltd, Pyrmont, NSW 2009, Australia
| | - Nicholas J C Smith
- Discipline of Paediatrics, University of Adelaide, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Health Network, North Adelaide, South Australia 5006, Australia
| |
Collapse
|
4
|
Andreou T, Ishikawa-Learmonth Y, Bigger BW. Phenotypic characterisation of the Mucopolysaccharidosis Type I (MPSI) Idua-W392X mouse model reveals increased anxiety-related traits in female mice. Mol Genet Metab 2023; 139:107651. [PMID: 37473537 DOI: 10.1016/j.ymgme.2023.107651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Mucopolysaccharidosis Type I (MPSI) is a rare inherited lysosomal storage disease that arises due to mutations in the IDUA gene. Defective alpha-L-iduronidase (IDUA) enzyme is unable to break down glucosaminoglycans (GAGs) within the lysosomes and, as a result, there is systemic accumulation of undegraded products in lysosomes throughout the body leading to multi-system disease. Here, we characterised the skeletal/craniofacial, neuromuscular and behavioural outcomes of the MPSI Idua-W392X mouse model. We demonstrate that Idua-W392X mice have gross craniofacial abnormalities, showed signs of kyphosis, and show signs of hypoactivity compared to wild-type mice. X-ray imaging analysis revealed significantly shorter and wider tibias and femurs, significantly wider snouts, increased skull width and significantly thicker zygomatic arch bones in Idua-W392X female mice compared to wild-type mice at 9 and 10.5 months of age. Idua-W392X mice display decreased muscle strength, especially in the forelimbs, which is already apparent from 3 months of age. Female Idua-W392X mice display hypoactivity in the open-field test from 9 months of age and anxiety-like behaviour at 10 months of age. As these behaviours have been identified in Hurler children, the MPSI Idua-W392X mouse model may be important for the investigation of new therapeutic approaches for MPSI-Hurler.
Collapse
Affiliation(s)
- Tereza Andreou
- Stem Cell and Neurotherapies Group, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Yuko Ishikawa-Learmonth
- Stem Cell and Neurotherapies Group, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Brian W Bigger
- Stem Cell and Neurotherapies Group, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom.
| |
Collapse
|
5
|
Hematopoietic Stem Cell Transplantation for Children With Inborn Errors of Metabolism: Single Center Experience Over Two Decades. Indian Pediatr 2022. [DOI: 10.1007/s13312-022-2597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Lin HY, Chang YH, Lee CL, Tu YR, Lo YT, Hung PW, Niu DM, Liu MY, Liu HY, Chen HJ, Kao SM, Wang LY, Ho HJ, Chuang CK, Lin SP. Newborn Screening Program for Mucopolysaccharidosis Type II and Long-Term Follow-Up of the Screen-Positive Subjects in Taiwan. J Pers Med 2022; 12:jpm12071023. [PMID: 35887520 PMCID: PMC9320252 DOI: 10.3390/jpm12071023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mucopolysaccharidosis II (MPS II) is an X-linked disorder resulting from a deficiency in lysosomal enzyme iduronate-2-sulfatase (IDS), which causes the accumulation of glycosaminoglycans (GAGs) in the lysosomes of many tissues and organs, leading to progressive cellular dysfunction. An MPS II newborn screening program has been available in Taiwan since 2015. The aim of the current study was to collect and analyze the long-term follow-up data of the screen-positive subjects in this program. Methods: From August 2015 to April 2022, 548,624 newborns were screened for MPS II by dried blood spots using tandem mass spectrometry, of which 202 suspected infants were referred to our hospital for confirmation. The diagnosis of MPS II was confirmed by IDS enzyme activity assay in leukocytes, quantitative determination of urinary GAGs by mass spectrometry, and identification of the IDS gene variant. Results: Among the 202 referred infants, 10 (5%) with seven IDS gene variants were diagnosed with confirmed MPS II (Group 1), 151 (75%) with nine IDS gene variants were classified as having suspected MPS II or pseudodeficiency (Group 2), and 41 (20%) with five IDS gene variants were classified as not having MPS II (Group 3). Long-term follow-up every 6 months was arranged for the infants in Group 1 and Group 2. Intravenous enzyme replacement therapy (ERT) was started in four patients at 1, 0.5, 0.4, and 0.5 years of age, respectively. Three patients also received hematopoietic stem cell transplantation (HSCT) at 1.5, 0.9, and 0.6 years of age, respectively. After ERT and/or HSCT, IDS enzyme activity and the quantity of urinary GAGs significantly improved in all of these patients compared with the baseline data. Conclusions: Because of the progressive nature of MPS II, early diagnosis via a newborn screening program and timely initiation of ERT and/or HSCT before the occurrence of irreversible organ damage may lead to better clinical outcomes. The findings of the current study could serve as baseline data for the analysis of the long-term effects of ERT and HSCT in these patients.
Collapse
Affiliation(s)
- Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (H.-Y.L.); (Y.-H.C.); (C.-L.L.)
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- The Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-T.L.); (P.-W.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (H.-Y.L.); (Y.-H.C.); (C.-L.L.)
- The Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-T.L.); (P.-W.H.)
| | - Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (H.-Y.L.); (Y.-H.C.); (C.-L.L.)
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- The Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-T.L.); (P.-W.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Yuan-Rong Tu
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
| | - Yun-Ting Lo
- The Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-T.L.); (P.-W.H.)
| | - Pei-Wen Hung
- The Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-T.L.); (P.-W.H.)
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Mei-Ying Liu
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei 10699, Taiwan; (M.-Y.L.); (H.-Y.L.); (H.-J.C.); (S.-M.K.)
| | - Hsin-Yun Liu
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei 10699, Taiwan; (M.-Y.L.); (H.-Y.L.); (H.-J.C.); (S.-M.K.)
| | - Hsiao-Jan Chen
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei 10699, Taiwan; (M.-Y.L.); (H.-Y.L.); (H.-J.C.); (S.-M.K.)
| | - Shu-Min Kao
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei 10699, Taiwan; (M.-Y.L.); (H.-Y.L.); (H.-J.C.); (S.-M.K.)
| | - Li-Yun Wang
- Taipei Institute of Pathology, Neonatal Screening Center, Taipei 10374, Taiwan; (L.-Y.W.); (H.-J.H.)
| | - Huey-Jane Ho
- Taipei Institute of Pathology, Neonatal Screening Center, Taipei 10374, Taiwan; (L.-Y.W.); (H.-J.H.)
| | - Chih-Kuang Chuang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- College of Medicine, Fu-Jen Catholic University, Taipei 24205, Taiwan
- Correspondence: (C.-K.C.); (S.-P.L.); Tel.: +886-2-2809-4661 (ext. 2348) (C.-K.C.); +886-2-2543-3535 (ext. 3090) (S.-P.L.); Fax: +886-2-2808-5952 (C.-K.C.); +886-2-2543-3642 (S.-P.L.)
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan; (H.-Y.L.); (Y.-H.C.); (C.-L.L.)
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- The Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan; (Y.-T.L.); (P.-W.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
- Correspondence: (C.-K.C.); (S.-P.L.); Tel.: +886-2-2809-4661 (ext. 2348) (C.-K.C.); +886-2-2543-3535 (ext. 3090) (S.-P.L.); Fax: +886-2-2808-5952 (C.-K.C.); +886-2-2543-3642 (S.-P.L.)
| |
Collapse
|
7
|
Yabe H. Allogeneic hematopoietic stem cell transplantation for inherited metabolic disorders. Int J Hematol 2022; 116:28-40. [PMID: 35594014 DOI: 10.1007/s12185-022-03383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) has been used to treat patients with inherited metabolic disorders (IMDs) for more than 40 years. In the first two decades, various IMDs were treated by HSCT with a wide variety of donor sources and conditioning regimens selected at the institutional level. However, HSCT was not always successful due to post-transplant complications such as graft failure. In the third decade, myeloablative conditioning with targeted busulfan-based pharmacokinetic monitoring was established as an optimal conditioning regimen, and unrelated cord blood was recognized as an excellent donor source. During the fourth decade, further improvements were made to transplant procedures, including modification of the conditioning regimen, and the survival rate after HSCT markedly improved. Simultaneously, several long-term observational studies for patients after HSCT clarified its therapeutic effects on growth and development of cognitive function, fine motor skills, and activities of daily living when compared with enzyme replacement therapy. Although immune-mediated cytopenia was newly highlighted as a problematic morbidity after HSCT for IMDs, especially in younger patients who received unrelated cord blood, a recent study with rituximab added to the conditioning raised expectations that this issue can be overcome.
Collapse
Affiliation(s)
- Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
8
|
Ahrens-Nicklas RC. Heal thyself: The promise of autologous hematopoietic stem cell gene therapy in neurometabolic disorders. Mol Ther 2022; 30:1353-1354. [PMID: 35313130 PMCID: PMC9077364 DOI: 10.1016/j.ymthe.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022] Open
|
9
|
Takahashi T, Illamola SM, Jennissen CA, Long SE, Lund TC, Orchard PJ, Gupta AO, Long-Boyle JR. Busulfan dose recommendation in inherited metabolic disorders: Population pharmacokinetic analysis. Transplant Cell Ther 2021; 28:104.e1-104.e7. [PMID: 34883294 DOI: 10.1016/j.jtct.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Busulfan is a commonly used alkylating agent in the conditioning regimens of hematopoietic cell transplantation (HCT). Population pharmacokinetic (popPK) models enable the description of busulfan PK and optimization of exposure, which leads to improvement of event-free survival after HCT. Prior busulfan popPK analysis has been limited by small numbers in patients with inherited metabolic disorders (IMD). The primary objective was to characterize population PK of busulfan in a large cohort of children and young adults undergoing HCT for IMD. PopPK analysis of busulfan drug concentrations was performed using data from 78 patients with IMD who received intravenous busulfan (every 24 hours, 4 doses) as part of pretransplantation combination chemotherapy. The final model for busulfan drug clearance was then used to estimate individual doses aimed to achieve a target cumulative area under the curve (cAUC) of 80 to 100 mg · h/L. We then compared the probability of cAUC within the range of 80 to 100 mg · h/L by the developed dosing regimen versus conventional regimen. A 1-compartment, linear elimination model best described the PK of busulfan. Significant covariates demonstrated to affect busulfan clearance included total body weight and the time (in days) from busulfan infusion start. The probability of target cumulative AUC attainment by the developed dosing versus the conventional dosing were 47% versus 43% for body weight <12 kg, and 48% versus 36% for body weight ≥12 kg. We described population PK of intravenous busulfan in a large IMD cohort. The proposed dosing regimen based on the developed model can improve the target cAUC attainment of busulfan for IMD.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.
| | - Sílvia M Illamola
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | | - Susan E Long
- Department of Pharmacy, Fairview MHealth, Minneapolis, Minnesota
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Janel R Long-Boyle
- Departments of Clinical Pharmacy, University of California San Francisco, Mission Bay, California; Division of Pediatric Allergy/Immunology/Bone Marrow Transplantation, University of California San Francisco, Mission Bay, California
| |
Collapse
|
10
|
Selvanathan A, Kinsella J, Moore F, Wynn R, Jones S, Shaw PJ, Wilcken B, Bhattacharya K. Effectiveness of early hematopoietic stem cell transplantation in preventing neurocognitive decline in aspartylglucosaminuria: A case series. JIMD Rep 2021; 61:3-11. [PMID: 34485011 PMCID: PMC8411101 DOI: 10.1002/jmd2.12222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 11/06/2022] Open
Abstract
Aspartylglucosaminuria (AGU) (OMIM #208400) is a recessively inherited disorder of glycoprotein catabolism, a subset of the lysosomal storage disorders (LSDs). Deficiency of the enzyme glycosylasparaginase (E.C. 3.5.1.26) leads to accumulation of aspartylglucosamine in various organs and its excretion in the urine. The disease is characterized by an initial period of normal development in infancy, a plateau in childhood, and subsequent regression in adolescence and adulthood. No curative treatments are currently available, leading to a protracted period of significant disability prior to early death. Hematopoietic stem cell transplantation (HSCT) has demonstrated efficacy in other LSDs, by providing enzyme replacement therapy in somatic viscera and decreasing substrate accumulation. Moreover, donor-derived monocytes cross the blood-brain barrier, differentiate into microglia, and secrete enzyme in the central nervous system (CNS). This has been shown to improve neurocognitive outcomes in other LSDs. The evidence to date for HSCT in AGU is varied, with marked improvement in glycosylasparaginase enzyme activity in the CNS in mice models, but varying neurocognitive outcomes in humans. We present a case series of four children with AGU who underwent HSCT at different ages (9 years, 5 years, 5 months, and 7 months of age), with long-term follow-up post-transplant (over 10 years). These cases demonstrate similar neurodevelopmental heterogeneity based on formal developmental assessments. The third case, transplanted prior to the onset of neurocognitive involvement, is developing normally despite a severe phenotype in other family members. This suggests that further research should examine the role of early HSCT in management of AGU.
Collapse
Affiliation(s)
- Arthavan Selvanathan
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Children's Hospital at Westmead Clinical School, the Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Jane Kinsella
- Manchester Centre for Genomic MedicineUniversity of ManchesterManchesterUK
| | - Francesca Moore
- NSW Biochemical Genetics ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Robert Wynn
- Department of Blood and Marrow TransplantRoyal Manchester Children's HospitalManchesterUK
| | - Simon Jones
- Manchester Centre for Genomic MedicineUniversity of ManchesterManchesterUK
| | - Peter J. Shaw
- Children's Hospital at Westmead Clinical School, the Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Blood and Marrow Transplant ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Bridget Wilcken
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Children's Hospital at Westmead Clinical School, the Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Children's Hospital at Westmead Clinical School, the Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
11
|
Therapy-type related long-term outcomes in mucopolysaccaridosis type II (Hunter syndrome) - Case series. Mol Genet Metab Rep 2021; 28:100779. [PMID: 34258227 PMCID: PMC8251508 DOI: 10.1016/j.ymgmr.2021.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare, X-linked recessive multisystem lysosomal storage disease due to iduronate-2-sulfatase enzyme deficiency. We presented three unrelated Slovenian patients with the severe form of MPS II that received three different management approaches: natural course of the disease without received specific treatment, enzyme replacement therapy (ERT), and hematopoietic stem cell transplantation (HSCT). The decision on the management depended on disease severity, degree of cognitive impairment, and parent's informed decision. The current benefits of MPS II treatments are limited. The lifelong costly intravenous ERT brings significant benefits but the patients with severe phenotypes and neurological involvement progress to cognitive decline and disability regardless of ERT, as demonstrated in published reviews and our case series. The patient after HSCT was the only one of the three cases reported to show a slowly progressing cognitive development. The type of information from the case series is insufficient for generalized conclusions, but with advanced myeloablative conditioning, HSCT may be a preferred treatment option in early diagnosed MPS II patients with the severe form of the disease and low disease burden at the time of presentation.
Collapse
|
12
|
Zaidman I, Elhasid R, Gefen A, Yahav Dovrat A, Mutaz S, Shaoul R, Eshach Adiv O, Mandel H, Tal G. Hematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalopathy: A single-center experience underscoring the multiple factors involved in the prognosis. Pediatr Blood Cancer 2021; 68:e28926. [PMID: 33533561 DOI: 10.1002/pbc.28926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive autosomal recessive disorder characterized by cachexia, gastrointestinal (GI) dysmotility, ptosis, peripheral neuropathy, and brain magnetic resonance imaging (MRI) white matter changes. Bi-allelic TYMP mutations lead to deficient thymidine phosphorylase (TP) activity, toxic accumulation of plasma nucleosides (thymidine and deoxyuridine), nucleotide pool imbalances, and mitochondrial DNA (mtDNA) instability. Death is mainly due to GI complications: intestinal perforation, peritonitis, and/or liver failure. Based on our previous observations in three patients with MNGIE that platelet infusions resulted in a transient 40% reduction of plasma nucleoside levels, in 2005 we performed the first hematopoietic stem cell transplantation (HSCT) worldwide as a life-long source of TP in a patient with MNGIE. PROCEDURE HSCT was performed in a total of six patients with MNGIE. The multiple factors involved in the prognosis of this cohort were analyzed and compared to the literature experience. RESULTS Cell source was bone marrow in five patients and peripheral stem cells in one, all from fully human leukocyte antigen (HLA)-matched related donors, including four who were TYMP mutation carriers. Four of six (66%) survived compared to the 37% survival rate in the literature. Reduced intensity conditioning regimen contributed to secondary graft failure in two patients. Fifteen years post HSCT, the first transplanted patient is seemingly cured. Severe GI symptoms before transplantation were mostly irreversible and were poor prognostic factors. CONCLUSIONS Allogenic HSCT could constitute a curative therapeutic option for carefully selected, young, presymptomatic, or mildly affected patients. Timing, donor selection, and optimal conditioning protocol are major determinants of outcome. HSCT is inadvisable in patients with advanced MNGIE disease.
Collapse
Affiliation(s)
- Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronit Elhasid
- Department of Hematology-Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Aharon Gefen
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | | | - Sultan Mutaz
- Department of Pediatrics, Makassed Hospital, Faculty of Medicine, Al-Quds University, Jerusalem, Israel
| | - Ron Shaoul
- Gastroenterology institute, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel.,Technion Faculty of Medicine, Haifa, Israel
| | - Orly Eshach Adiv
- Technion Faculty of Medicine, Haifa, Israel.,Pediatric Gastroenterology and Nutrition Unit, "HyllelYaffe" Medical Center, Hadera, Israel
| | - Hanna Mandel
- Technion Faculty of Medicine, Haifa, Israel.,Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Pediatric B Department, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
13
|
Edelmann MJ, Maegawa GHB. CNS-Targeting Therapies for Lysosomal Storage Diseases: Current Advances and Challenges. Front Mol Biosci 2020; 7:559804. [PMID: 33304924 PMCID: PMC7693645 DOI: 10.3389/fmolb.2020.559804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the past decades, several therapeutic approaches have been developed and made rapidly available for many patients afflicted with lysosomal storage disorders (LSDs), inborn organelle disorders with broad clinical manifestations secondary to the progressive accumulation of undegraded macromolecules within lysosomes. These conditions are individually rare, but, collectively, their incidence ranges from 1 in 2,315 to 7,700 live-births. Most LSDs are manifested by neurological symptoms or signs, including developmental delay, seizures, acroparesthesia, motor weakness, and extrapyramidal signs. The chronic and later-onset clinical forms are at one end of the continuum spectrum and are characterized by a subtle and slow progression of neurological symptoms. Due to its inherent physiological properties, unfortunately, the blood-brain barrier (BBB) constitutes a significant obstacle for current and upcoming therapies to achieve the central nervous system (CNS) and treat neurological problems so prevalent in these conditions. To circumvent this limitation, several strategies have been developed to make the therapeutic agent achieve the CNS. This narrative will provide an overview of current therapeutic strategies under development to permeate the BBB, and address and unmet need for treatment of the progressive neurological manifestations, which are so prevalent in these inherited lysosomal disorders.
Collapse
Affiliation(s)
- Mariola J Edelmann
- Department of Microbiology and Cell Science, The University of Florida's Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Gustavo H B Maegawa
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Tay LS, Palmer N, Panwala R, Chew WL, Mali P. Translating CRISPR-Cas Therapeutics: Approaches and Challenges. CRISPR J 2020; 3:253-275. [PMID: 32833535 PMCID: PMC7469700 DOI: 10.1089/crispr.2020.0025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CRISPR-Cas clinical trials have begun, offering a first glimpse at how DNA and RNA targeting could enable therapies for many genetic and epigenetic human diseases. The speedy progress of CRISPR-Cas from discovery and adoption to clinical use is built on decades of traditional gene therapy research and belies the multiple challenges that could derail the successful translation of these new modalities. Here, we review how CRISPR-Cas therapeutics are translated from technological systems to therapeutic modalities, paying particular attention to the therapeutic cascade from cargo to delivery vector, manufacturing, administration, pipelines, safety, and therapeutic target profiles. We also explore potential solutions to some of the obstacles facing successful CRISPR-Cas translation. We hope to illuminate how CRISPR-Cas is brought from the academic bench toward use in the clinic.
Collapse
Affiliation(s)
- Lavina Sierra Tay
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Palmer
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Wei Leong Chew
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Immune cytopenia post-cord transplant in Hurler syndrome is a forme fruste of graft rejection. Blood Adv 2020; 3:570-574. [PMID: 30787020 DOI: 10.1182/bloodadvances.2018026963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Umbilical cord blood (UCB) is the preferred donor cell source for children with Hurler syndrome undergoing transplant, and its use has been associated with improved "engrafted survival" rates. However, as in other pediatric recipients of UCB transplants for nonmalignant disease, immune-mediated cytopenia (IMC) is a significant complication. This article describes 8 episodes of IMC in 36 patients with Hurler syndrome undergoing UCB transplant. The incidence of IMC was increased in those with a higher preconditioning absolute lymphocyte count and in those conditioned with fludarabine-containing regimens rather than cyclophosphamide, and it included red cell alloantibodies directed at cord blood group antigens that are novel to the recipient. In several cases, IMC was a precursor to immune-mediated complete graft rejection. We describe IMC as part of a spectrum of graft rejection by a residual competent host immune system and a forme fruste of complete graft rejection.
Collapse
|
16
|
Ismail IT, Showalter MR, Fiehn O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites 2019; 9:metabo9100242. [PMID: 31640247 PMCID: PMC6835511 DOI: 10.3390/metabo9100242] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these pathways. While IEMs may present with multiple overlapping symptoms and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications and IEM screening methods are used. Currently, newborn screening programs exclusively use targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases. Such targeted approaches face the problem of false negative and false positive diagnoses that could be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of targeted and untargeted methods with respect to widening the scope of IEM diagnostics.
Collapse
Affiliation(s)
- Israa T Ismail
- National Liver Institute, Menoufia University, Shebeen El Kom 55955, Egypt.
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Megan R Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
17
|
Hall E, Shenoy S. Hematopoietic Stem Cell Transplantation: A Neonatal Perspective. Neoreviews 2019; 20:e336-e345. [PMID: 31261097 DOI: 10.1542/neo.20-6-e336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is indicated in various nonmalignant disorders that arise from genetic, hematopoietic, and immune system defects. Many of the disorders described here have life-threatening consequences in the absence of HSCT, a curative intervention. However, timing and approach to HSCT vary by disorder and optimum results are achieved by performing transplantation before irreversible disease-related morbidity or infectious complications. This article details the principles of HSCT in the very young, lists indications, and explores the factors that contribute to successful outcomes based on transplantation and disease-related nuances. It provides an overview into the HSCT realm from a neonatologist's perspective, describes the current status of transplantation for relevant disorders of infancy, and provides a glimpse into future efforts at improving on current success.
Collapse
Affiliation(s)
- Erin Hall
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Children's Mercy Hospital, Kansas City, MO
| | - Shalini Shenoy
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| |
Collapse
|
18
|
Takahashi T, Pereda MA, Bala N, Nagarajan S. In-hospital mortality of hematopoietic stem cell transplantation among children with nonmalignancies: A nationwide study in the United States from 2000 to 2012. Pediatr Blood Cancer 2019; 66:e27626. [PMID: 30740860 DOI: 10.1002/pbc.27626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hematopoietic stem cell transplant (HSCT) can cure or alleviate a wide range of nonmalignant childhood conditions. However, few studies have examined longitudinal national trends of frequency or short-term complications of HSCT before 2006 when an HSCT became a reportable procedure by US law. By using a US nationally representative database, we conducted nationwide longitudinal analyses on demographics, in-hospital mortality, and short-term complications in nonmalignant HSCT from 2000 to 2012. PROCEDURE We analyzed 2504 admissions for children < 20 years old who underwent an allogeneic HSCT for a nonmalignant condition by using the Kids' Inpatient Database for the years 2000, 2003, 2006, 2009, and 2012. Changes in in-hospital mortality and other outcomes were assessed over the study period using weighted analyses, which enabled generation of national estimates in each year. RESULTS The number of admissions for HSCT increased from 334 to 667 from 2000 to 2012, respectively; among them, the use of bone marrow decreased (66.5% to 34.1%, P < 0.001). In-hospital mortality declined (13.4% to 7.1%, P = 0.04), as did bacteremia (28.7% to 10.1%, P < 0.001) and vascular catheter infections (18.8% to 8.7%, P = 0.006), but cytomegalovirus infections increased (4.9% to 15.9%, P < 0.001), as did adenovirus infections (1.8% to 6.9%, P < 0.001) from 2000 to 2012. CONCLUSION Population-based analyses demonstrated a substantial expansion of the utilization of HSCT occurred for pediatric nonmalignancies from 2000 to 2012 in the United States, whereas the in-hospital mortality declined by approximately a half. Further research is needed to identify distinct contributing factors.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Maria A Pereda
- Division of Hematology and Oncology, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Natasha Bala
- Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| | - Sairaman Nagarajan
- Division of Allergy and Immunology, Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
19
|
Akyol MU, Alden TD, Amartino H, Ashworth J, Belani K, Berger KI, Borgo A, Braunlin E, Eto Y, Gold JI, Jester A, Jones SA, Karsli C, Mackenzie W, Marinho DR, McFadyen A, McGill J, Mitchell JJ, Muenzer J, Okuyama T, Orchard PJ, Stevens B, Thomas S, Walker R, Wynn R, Giugliani R, Harmatz P, Hendriksz C, Scarpa M. Recommendations for the management of MPS VI: systematic evidence- and consensus-based guidance. Orphanet J Rare Dis 2019; 14:118. [PMID: 31142378 PMCID: PMC6541999 DOI: 10.1186/s13023-019-1080-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Mucopolysaccharidosis (MPS) VI or Maroteaux-Lamy syndrome (253200) is an autosomal recessive lysosomal storage disorder caused by deficiency in N-acetylgalactosamine-4-sulfatase (arylsulfatase B). The heterogeneity and progressive nature of MPS VI necessitates a multidisciplinary team approach and there is a need for robust guidance to achieve optimal management. This programme was convened to develop evidence-based, expert-agreed recommendations for the general principles of management, routine monitoring requirements and the use of medical and surgical interventions in patients with MPS VI. Methods 26 international healthcare professionals from various disciplines, all with expertise in managing MPS VI, and three patient advocates formed the Steering Committee group (SC) and contributed to the development of this guidance. Members from six Patient Advocacy Groups (PAGs) acted as advisors and attended interviews to ensure representation of the patient perspective. A modified-Delphi methodology was used to demonstrate consensus among a wider group of healthcare professionals with expertise and experience managing patients with MPS VI and the manuscript has been evaluated against the validated Appraisal of Guidelines for Research and Evaluation (AGREE II) instrument by three independent reviewers. Results A total of 93 guidance statements were developed covering five domains: (1) general management principles; (2) recommended routine monitoring and assessments; (3) enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT); (4) interventions to support respiratory and sleep disorders; (5) anaesthetics and surgical interventions. Consensus was reached on all statements after two rounds of voting. The greatest challenges faced by patients as relayed by consultation with PAGs were deficits in endurance, dexterity, hearing, vision and respiratory function. The overall guideline AGREE II assessment score obtained for the development of the guidance was 5.3/7 (where 1 represents the lowest quality and 7 represents the highest quality of guidance). Conclusion This manuscript provides evidence- and consensus-based recommendations for the management of patients with MPS VI and is for use by healthcare professionals that manage the holistic care of patients with the intention to improve clinical- and patient-reported outcomes and enhance patient quality of life. It is recognised that the guidance provided represents a point in time and further research is required to address current knowledge and evidence gaps. Electronic supplementary material The online version of this article (10.1186/s13023-019-1080-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Tord D Alden
- Department of Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hernan Amartino
- Child Neurology Department, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Jane Ashworth
- Department of Paediatric Ophthalmology, Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kumar Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth I Berger
- Departments of Medicine and Neuroscience and Physiology, New York University School of Medicine, André Cournand Pulmonary Physiology Laboratory, Bellevue Hospital, New York, NY, USA
| | - Andrea Borgo
- Orthopaedics Clinic, Padova University Hospital, Padova, Italy
| | - Elizabeth Braunlin
- Division of Pediatric Cardiology, University of Minnesota, Minneapolis, MN, USA
| | - Yoshikatsu Eto
- Advanced Clinical Research Centre, Institute of Neurological Disorders, Kanagawa, Japan and Department of Paediatrics/Gene Therapy, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Jeffrey I Gold
- Keck School of Medicine, Departments of Anesthesiology, Pediatrics, and Psychiatry & Behavioural Sciences, Children's Hospital Los Angeles, Department of Anesthesiology Critical Care Medicine, 4650 Sunset Boulevard, Los Angeles, CA, USA
| | - Andrea Jester
- Hand and Upper Limb Service, Department of Plastic Surgery, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Simon A Jones
- Willink Biochemical Genetic Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Cengiz Karsli
- Department of Anesthesiology and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
| | - William Mackenzie
- Department of Orthopedics, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, USA
| | - Diane Ruschel Marinho
- Department of Ophthalmology, UFRGS, and Ophthalmology Service, HCPA, Porto Alegre, Brazil
| | | | - Jim McGill
- Department of Metabolic Medicine, Queensland Children's Hospital, Brisbane, Australia
| | - John J Mitchell
- Division of Pediatric Endocrinology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Joseph Muenzer
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Centre for Child Health and Development, Tokyo, Japan
| | - Paul J Orchard
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Robert Walker
- Department of Paediatric Anaesthesia, Royal Manchester Children's Hospital, Manchester, UK
| | - Robert Wynn
- Department of Paediatric Haematology, Royal Manchester Children's Hospital, Manchester, UK
| | - Roberto Giugliani
- Department of Genetics, UFRGS, and Medical Genetics Service, HCPA, Porto Alegre, Brazil.
| | - Paul Harmatz
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Christian Hendriksz
- Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Maurizio Scarpa
- Center for Rare Diseases at Host Schmidt Kliniken, Wiesbaden, Germany and Department of Paediatrics, University of Padova, Padova, Italy
| | | | | |
Collapse
|
20
|
Duarte RF, Labopin M, Bader P, Basak GW, Bonini C, Chabannon C, Corbacioglu S, Dreger P, Dufour C, Gennery AR, Kuball J, Lankester AC, Lanza F, Montoto S, Nagler A, Peffault de Latour R, Snowden JA, Styczynski J, Yakoub-Agha I, Kröger N, Mohty M. Indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2019. Bone Marrow Transplant 2019; 54:1525-1552. [PMID: 30953028 DOI: 10.1038/s41409-019-0516-2] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
This is the seventh special EBMT report on the indications for haematopoietic stem cell transplantation for haematological diseases, solid tumours and immune disorders. Our aim is to provide general guidance on transplant indications according to prevailing clinical practice in EBMT countries and centres. In order to inform patient decisions, these recommendations must be considered together with the risk of the disease, the risk of the transplant procedure and the results of non-transplant strategies. In over two decades since the first report, the EBMT indications manuscripts have incorporated changes in transplant practice coming from scientific and technical developments in the field. In this same period, the establishment of JACIE accreditation has promoted high quality and led to improved outcomes of patient and donor care and laboratory performance in transplantation and cellular therapy. An updated report with operating definitions, revised indications and an additional set of data with overall survival at 1 year and non-relapse mortality at day 100 after transplant in the commonest standard-of-care indications is presented. Additional efforts are currently underway to enable EBMT member centres to benchmark their risk-adapted outcomes as part of the Registry upgrade Project 2020 against national and/or international outcome data.
Collapse
Affiliation(s)
- Rafael F Duarte
- Hospital Universitario Puerta de Hierro Majadahonda - Universidad Autónoma de Madrid, Madrid, Spain.
| | - Myriam Labopin
- EBMT Paris Study Office, Hopital Saint Antoine, Paris, France
| | - Peter Bader
- Goethe University Hospital, Frankfurt/Main, Germany
| | | | - Chiara Bonini
- Vita-Salute San Raffaele University & Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Christian Chabannon
- Institut Paoli Calmettes & Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | | | - Peter Dreger
- Medizinische Klinik V, Universität Heidelberg, Heidelberg, Germany
| | - Carlo Dufour
- Giannina Gaslini Children's Hospital, Genoa, Italy
| | | | - Jürgen Kuball
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Arnon Nagler
- Chaim Sheva Medical Center, Tel-Hashomer, Israel
| | | | - John A Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Jan Styczynski
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | | | - Mohamad Mohty
- Hopital Saint Antoine, Sorbonne Université, Paris, France
| | | |
Collapse
|
21
|
Ehlert K, Levade T, Di Rocco M, Lanino E, Albert MH, Führer M, Jarisch A, Güngör T, Ayuk F, Vormoor J. Allogeneic hematopoietic cell transplantation in Farber disease. J Inherit Metab Dis 2019; 42:286-294. [PMID: 30815900 DOI: 10.1002/jimd.12043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Farber disease (FD) is a rare, lysosomal storage disorder caused by deficient acid ceramidase activity. FD has long been considered a fatal disorder with death in the first three decades of life resulting either from respiratory insufficiency as a consequence of airway involvement or from progressive neurodegeneration because of nervous system involvement. Peripheral symptoms associated with FD, including inflammatory joint disease, have been described to improve relatively rapidly after hematopoietic cell transplantation (HCT). AIMS To evaluate the disease-specific status and limitations in the long-term follow-up after HCT, investigate genotype/phenotype correlations and the benefit of allogeneic HCT in FD patients with nervous system involvement. PATIENTS AND METHODS Transplant- and disease-related information of ten FD patients was obtained by using a questionnaire, physicians' letters and additional telephone surveys. ASAH1 gene mutations were identified to search for genotype/phenotype correlations. RESULTS After mainly busulfan-based preparative regimens, all patients engrafted with one late graft loss. The inflammatory symptoms resolved completely in all patients. Abnormal neurologic findings were present pre-transplant in 4/10 patients, post-transplant in 6/10 patients. Mutational analyses revealed new mutations in the ASAH1 gene and a broad diversity of phenotypes without a genotype/phenotype correlation. With a median follow-up of 10.4 years, overall survival was 80% with two transplant-related deaths. CONCLUSION Allogeneic HCT leads to complete and persistent resolution of the inflammatory aspects in FD patients. It appears to have no beneficial effect on progression of nervous system involvement. New mutations in the acid ceramidase gene were identified. A genotype/phenotype correlation could not be established.
Collapse
Affiliation(s)
- Karoline Ehlert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Ferdinand, Sauerbruch-Strasse, D-17475 Greifswald, Germany
| | - Thierry Levade
- Cancer Research Centre of Toulouse, INSERM UMR1037, Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
| | - Maja Di Rocco
- Department Unit of Rare Diseases, Gaslini Institute, Genoa, Italy
| | - Edoardo Lanino
- Department Unit of Rare Diseases, Gaslini Institute, Genoa, Italy
| | - Michael H Albert
- Department of Stem Cell Transplantation, Children's Hospital at Dr von Haunersches Kinderspital, University of München, Munich, Germany
| | - Monika Führer
- Department of Pediatric Palliative Care, Children's Hospital at Dr von Haunersches Kinderspita, University of München, Munich, Germany
| | - Andrea Jarisch
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tayfun Güngör
- Department of Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Josef Vormoor
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundations Trust, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Taylor M, Khan S, Stapleton M, Wang J, Chen J, Wynn R, Yabe H, Chinen Y, Boelens JJ, Mason RW, Kubaski F, Horovitz DDG, Barth AL, Serafini M, Bernardo ME, Kobayashi H, Orii KE, Suzuki Y, Orii T, Tomatsu S. Hematopoietic Stem Cell Transplantation for Mucopolysaccharidoses: Past, Present, and Future. Biol Blood Marrow Transplant 2019; 25:e226-e246. [PMID: 30772512 DOI: 10.1016/j.bbmt.2019.02.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Allogenic hematopoietic stem cell transplantation (HSCT) has proven to be a viable treatment option for a selected group of patients with mucopolysaccharidoses (MPS), including those with MPS types I, II, IVA, VI, and VII. Early diagnosis and timely referral to an expert in MPS are critical, followed by a complete examination and evaluation by a multidisciplinary team, including a transplantation physician. Treatment recommendations for MPS are based on multiple biological, sociological, and financial factors, including type of MPS, clinical severity, prognosis, present clinical signs and symptoms (disease stage), age at onset, rate of progression, family factors and expectations, financial burden, feasibility, availability, risks and benefits of available therapies such as HSCT, enzyme replacement therapy (ERT), surgical interventions, and other supportive care. International collaboration and data review are critical to evaluating the therapeutic efficacy and adverse effects of HSCT for MPS. Collaborative efforts to assess HSCT for MPS have been ongoing since the first attempt at HSCT in a patient with MPS reported in 1981. The accumulation of data since then has made it possible to identify early outcomes (ie, transplantation outcomes) and long-term disease-specific outcomes resulting from HSCT. The recent identification of predictive factors and the development of innovative regimens have significantly improved the outcomes of both engraftment failure and transplantation-related mortality. Assessment of long-term outcomes has considered a variety of factors, including type of MPS, type of graft, age at transplantation, and stage of disease progression, among others. Studies on long-term outcomes are considered a key factor in the use of HSCT in patients with MPS. These studies have shown the effects and limitations of HSCT on improving disease manifestations and quality of life. In this review, we summarize the efficacy, side effects, risks, and cost of HSCT for each type of MPS.
Collapse
Affiliation(s)
- Madeleine Taylor
- Department of Biomedical, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware; Deparment of Biological Science, University of Delaware, Newark, Delaware
| | - Shaukat Khan
- Department of Biomedical, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Molly Stapleton
- Department of Biomedical, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware; Deparment of Biological Science, University of Delaware, Newark, Delaware
| | - Jianmin Wang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert Wynn
- Department of Paediatric Haematology and Cell Therapy, University of Manchester, Manchester, United Kingdom
| | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert W Mason
- Department of Biomedical, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware; Deparment of Biological Science, University of Delaware, Newark, Delaware
| | - Francyne Kubaski
- Medical Genetics Service, Hospital de ClÃnicas de Porto Alegre (HCPA), Department of Genetics and Molecular Biology- Program Partnership Graduate in Genetics and Molecular Biology (PPGBM), Federal University of Rio Grande do Sul (UFRGS), and National Institute of Populational Medical Genetics (INAGEMP), Porto Alegre, Brazil
| | - Dafne D G Horovitz
- Medical Genetics Department, National Institute of Women, Children, and Adolescent Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anneliese L Barth
- Medical Genetics Department, National Institute of Women, Children, and Adolescent Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marta Serafini
- Department of Pediatrics, Dulbecco Telethon Institute, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hironori Kobayashi
- Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan
| | - Kenji E Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Department of Biomedical, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware; Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
23
|
Wadhwa A, Chen Y, Holmqvist A, Wu J, Ness E, Parman M, Kung M, Hageman L, Francisco L, Braunlin E, Miller W, Lund T, Armenian S, Arora M, Orchard P, Bhatia S. Late Mortality after Allogeneic Blood or Marrow Transplantation for Inborn Errors of Metabolism: A Report from the Blood or Marrow Transplant Survivor Study-2 (BMTSS-2). Biol Blood Marrow Transplant 2019; 25:328-334. [PMID: 30292746 PMCID: PMC9940306 DOI: 10.1016/j.bbmt.2018.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023]
Abstract
Allogeneic blood or marrow transplantation (BMT) is currently considered the standard of care for patients with specific inborn errors of metabolism (IEM). However, there is a paucity of studies describing long-term survival and cause-specific late mortality after BMT in these patients with individual types of IEM. We studied 273 patients who had survived ≥2 years after allogeneic BMT for IEM performed between 1974 and 2014. The most prevalent IEM in our cohort were X-linked adrenoleukodystrophy (ALD; 37.3%), Hurler syndrome (35.1%), and metachromatic leukodystrophy (MLD; 10.2%). Conditional on surviving ≥2 years after BMT, the overall survival for the entire cohort was 85.5 ± 2.4% at 10 years and 73.5 ± 3.7% at 20 years. The cohort had a 29-fold increased risk of late death compared with an age- and sex-matched cohort from the general US population (95% CI, 22- to 38-fold). The increased relative mortality was highest in the 2- to 5-year period after BMT (standardized mortality ratio [SMR], 207; 95% confidence interval [CI], 130 to 308) and declined with increasing time from BMT, but remained elevated for ≥21 years after BMT (SMR, 9; 95% CI, 4 to 18). Sequelae from the progression of primary disease were the most common causes of late mortality in this cohort (76%). The use of T cell-depleted grafts in patients with ALD and Hurler syndrome was a risk factor for late mortality. Younger age at BMT and use of busulfan and cyclosporine were protective in patients with Hurler syndrome. Our findings demonstrate relatively favorable overall survival in ≥2-year survivors of allogeneic BMT for IEM, although primary disease progression continues to be responsible for the majority of late deaths.
Collapse
Affiliation(s)
- Aman Wadhwa
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna Holmqvist
- Pediatric Oncology and Hematology, Ska ne University Hospital, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jessica Wu
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emily Ness
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mariel Parman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michelle Kung
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liton Francisco
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth Braunlin
- Division of Pediatric Cardiology, University of Minnesota, Minneapolis, Minnesota
| | - Weston Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota,Sangamo Therapeutics, Richmond, California
| | - Troy Lund
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Saro Armenian
- Pediatric Hematology and Oncology, City of Hope, Duarte, California
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Paul Orchard
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Smita Bhatia
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
24
|
Abstract
Enzyme replacement therapy (ERT) is available for mucopolysaccharidosis (MPS) I, MPS II, MPS VI, and MPS IVA. The efficacy of ERT has been evaluated in clinical trials and in many post-marketing studies with a long-term follow-up for MPS I, MPS II, and MPS VI. While ERT is effective in reducing urinary glycosaminoglycans (GAGs) and liver and spleen volume, cartilaginous organs such as the trachea and bronchi, bones and eyes are poorly impacted by ERT probably due to limited penetration in the specific tissue. ERT in the present formulations also does not cross the blood–brain barrier, with the consequence that the central nervous system is not cured by ERT. This is particularly important for severe forms of MPS I and MPS II characterized by cognitive decline. For severe MPS I patients (Hurler), early haematopoietic stem cell transplantation is the gold standard, while still controversial is the role of stem cell transplantation in MPS II. The use of ERT in patients with severe cognitive decline is the subject of debate; the current position of the scientific community is that ERT must be started in all patients who do not have a more effective treatment. Neonatal screening is widely suggested for treatable MPS, and many pilot studies are ongoing. The rationale is that early, possibly pre-symptomatic treatment can improve prognosis. All patients develop anti-ERT antibodies but only a few have drug-related adverse reactions. It has not yet been definitely clarified if high-titre antibodies may, at least in some cases, reduce the efficacy of ERT.
Collapse
Affiliation(s)
- Daniela Concolino
- Department of Medical and Surgical Science, Pediatric Unit, University "Magna Graecia", Catanzaro, Italy
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Parini
- UOS Malattie Metaboliche Rare, Clinica Pediatrica dell'Università Milano Bicocca, Fondazione MBBM, ATS Monza e Brianza, Via Pergolesi 33, 20900, Monza, Italy. .,San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
25
|
Santos Silva E, Klaudel-Dreszler M, Bakuła A, Oliva T, Sousa T, Fernandes PC, Tylki-Szymańska A, Kamenets E, Martins E, Socha P. Early onset lysosomal acid lipase deficiency presenting as secondary hemophagocytic lymphohistiocytosis: Two infants treated with sebelipase alfa. Clin Res Hepatol Gastroenterol 2018; 42:e77-e82. [PMID: 29705274 DOI: 10.1016/j.clinre.2018.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 02/04/2023]
Abstract
Two unrelated infants were diagnosed with and initially treated for hemophagocytic lymphohistiocytosis (HLH), but progressed to cholestasis and liver failure. Early onset lysosomal acid lipase deficiency (EO-LAL-D) was suspected due to lymphocytes with cytoplasmic vacuolation and/or adrenal calcifications and confirmed by enzymatic and genetic analysis. Enzyme replacement therapy with sebelipase alfa was implemented, but both children died, despite initial improvement. Since this inborn error of metabolism progresses rapidly in infants, early diagnosis is crucial, and appropriate treatment should be started as soon as possible. The authors suggest that the diagnosis of EO-LAL-D should be considered in infants with symptoms of HLH.
Collapse
Affiliation(s)
- Ermelinda Santos Silva
- Gastroenterology unit, Pediatrics Division, Child and Adolescent Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Largo da Maternidade, 4050-651 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal.
| | - Maja Klaudel-Dreszler
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland.
| | - Agnieska Bakuła
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland.
| | - Teresa Oliva
- Pediatrics Division, Instituto Português de Oncologia do Porto, Portugal.
| | - Tereza Sousa
- Laboratorial Hematology Division, Instituto Português de Oncologia, Porto, Portugal.
| | - Paula Cristina Fernandes
- Pediatric Intensive Care Division, Child and Adolescent Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Portugal.
| | - Anna Tylki-Szymańska
- Department of Paediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Esmeralda Martins
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal; Metabolic Diseases Unit, Pediatrics Division, Child and Adolescent Department, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Portugal.
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland.
| |
Collapse
|
26
|
Colonetti K, Roesch LF, Schwartz IVD. The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay? Genet Mol Biol 2018; 41:515-532. [PMID: 30235399 PMCID: PMC6136378 DOI: 10.1590/1678-4685-gmb-2017-0235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Research into the influence of the microbiome on the human body has been shedding new light on diseases long known to be multifactorial, such as obesity, mood disorders, autism, and inflammatory bowel disease. Although inborn errors of metabolism (IEMs) are monogenic diseases, genotype alone is not enough to explain the wide phenotypic variability observed in patients with these conditions. Genetics and diet exert a strong influence on the microbiome, and diet is used (alone or as an adjuvant) in the treatment of many IEMs. This review will describe how the effects of the microbiome on the host can interfere with IEM phenotypes through interactions with organs such as the liver and brain, two of the structures most commonly affected by IEMs. The relationships between treatment strategies for some IEMs and the microbiome will also be addressed. Studies on the microbiome and its influence in individuals with IEMs are still incipient, but are of the utmost importance to elucidating the phenotypic variety observed in these conditions.
Collapse
Affiliation(s)
- Karina Colonetti
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luiz Fernando Roesch
- Interdisciplinary Research Center on Biotechnology-CIP-Biotec, Universidade Federal do Pampa, Bagé, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Fu HX, Huang XJ. [Advances in haploidentical hematopoietic stem cell transplantation for non-malignant hematological diseases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:691-696. [PMID: 30180476 PMCID: PMC7342844 DOI: 10.3760/cma.j.issn.0253-2727.2018.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 11/05/2022]
|
28
|
Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis 2018; 13:121. [PMID: 30029679 PMCID: PMC6053731 DOI: 10.1186/s13023-018-0845-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Acid ceramidase (ACDase) deficiency is a spectrum of disorders that includes a rare lysosomal storage disorder called Farber disease (FD) and a rare epileptic disorder called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). Both disorders are caused by mutations in the ASAH1 gene that encodes the lysosomal hydrolase that breaks down the bioactive lipid ceramide. To date, there have been fewer than 200 reported cases of FD and SMA-PME in the literature. Typical textbook manifestations of classical FD include the formation of subcutaneous nodules, accumulation of joint contractures, and development of a hoarse voice. In reality, however, the clinical presentation is much broader. Patients may develop severe pathologies leading to death in infancy or may develop attenuated forms of the disorder wherein they are often misdiagnosed or not diagnosed until adulthood. A clinical variability also exists for SMA-PME, in which patients develop progressive muscle weakness and seizures. Currently, there is no known cure for FD or for SMA-PME. The main treatment is symptom management. In rare cases, treatment may include surgery or hematopoietic stem cell transplantation. Research using disease models has provided insights into the pathology as well as the role of ACDase in the development of these conditions. Recent studies have highlighted possible biomarkers for an effective diagnosis of ACDase deficiency. Ongoing work is being conducted to evaluate the use of recombinant human ACDase (rhACDase) for the treatment of FD. Finally, gene therapy strategies for the treatment of ACDase deficiency are actively being pursued. This review highlights the broad clinical definition and outlines key studies that have improved our understanding of inherited ACDase deficiency-related conditions.
Collapse
Affiliation(s)
- Fabian P. S. Yu
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Samuel Amintas
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
- INSERM UMR1037 CRCT, Université de Toulouse, Toulouse, France
| | - Jeffrey A. Medin
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
29
|
Barth AL, Horovitz DDG. Hematopoietic Stem Cell Transplantation in Mucopolysaccharidosis Type II. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2018. [DOI: 10.1177/2326409818779097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anneliese L. Barth
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira/Fiocruz – Rio de Janeiro, Brazil
| | - Dafne D. G. Horovitz
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira/Fiocruz – Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Chen Y, Xu LP, Zhang XH, Chen H, Wang FR, Liu KY, Qin J, Yang YL, Huang XJ. Busulfan, Fludarabine, and Cyclophosphamide (BFC) conditioning allowed stable engraftment after haplo-identical allogeneic stem cell transplantation in children with adrenoleukodystrophy and mucopolysaccharidosis. Bone Marrow Transplant 2018; 53:770-773. [DOI: 10.1038/s41409-018-0175-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 11/09/2022]
|
31
|
Hu P, Li Y, Nikolaishvili-Feinberg N, Scesa G, Bi Y, Pan D, Moore D, Bongarzone ER, Sands MS, Miller R, Kafri T. Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe's disease: Present convictions and future prospects. J Neurosci Res 2017; 94:1152-68. [PMID: 27638600 PMCID: PMC5027985 DOI: 10.1002/jnr.23847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/11/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
Abstract
Currently, presymtomatic hematopoietic stem and progenitor cell transplantation (HSPCT) is the only therapeutic modality that alleviates Krabbe's disease (KD)‐induced central nervous system damage. However, all HSPCT‐treated patients exhibit severe deterioration in peripheral nervous system function characterized by major motor and expressive language pathologies. We hypothesize that a combination of several mechanisms contribute to this phenomenon, including 1) nonoptimal conditioning protocols with consequent inefficient engraftment and biodistribution of donor‐derived cells and 2) insufficient uptake of donor cell‐secreted galactocerebrosidease (GALC) secondary to a naturally low expression level of the cation‐independent mannose 6‐phosphate‐receptor (CI‐MPR). We have characterized the effects of a busulfan (Bu) based conditioning regimen on the efficacy of HSPCT in prolonging twi mouse average life span. There was no correlation between the efficiency of bone marrow engraftment of donor cells and twi mouse average life span. HSPCT prolonged the average life span of twi mice, which directly correlated with the aggressiveness of the Bu‐mediated conditioning protocols. HSPC transduced with lentiviral vectors carrying the GALC cDNA under control of cell‐specific promoters were efficiently engrafted in twi mouse bone marrow. To facilitate HSPCT‐mediated correction of GALC deficiency in target cells expressing low levels of CI‐MPR, a novel GALC fusion protein including the ApoE1 receptor was developed. Efficient cellular uptake of the novel fusion protein was mediated by a mannose‐6‐phosphate‐independent mechanism. The novel findings described here elucidate some of the cellular mechanisms that impede the cure of KD patients by HSPCT and concomitantly open new directions to enhance the therapeutic efficacy of HSPCT protocols for KD. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yedda Li
- Department of Internal Medicine, Washington University in St. Louis, School of Medicine, St Louis, Missouri
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giuseppe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Yanmin Bi
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Dominic Moore
- Biostatistics Core Facility, UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Mark S Sands
- Department of Internal Medicine, Washington University in St. Louis, School of Medicine, St Louis, Missouri
| | - Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Departments of Pathology and Laboratory Medicine and of Neurology, Neurosciences Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
32
|
Poswar F, Baldo G, Giugliani R. Phase I and II clinical trials for the mucopolysaccharidoses. Expert Opin Investig Drugs 2017; 26:1331-1340. [DOI: 10.1080/13543784.2017.1397130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fabiano Poswar
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Postgraduate Program in Physiology, UFRGS, Porto Alegre, Brazil
- Department of Physiology and Pharmacology, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
- Medical Genetics Service, HCPA, Porto Alegre, Brazil
- Department of Genetics, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
33
|
Giugliani R, Vairo F, Kubaski F, Poswar F, Riegel M, Baldo G, Saute JA. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS. THE LANCET CHILD & ADOLESCENT HEALTH 2017; 2:56-68. [PMID: 30169196 DOI: 10.1016/s2352-4642(17)30087-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
Lysosomal disorders have been an area of interest since intravenous enzyme replacement therapy was successfully introduced for the treatment of Gaucher's disease in the early 1990s. This treatment approach has also been developed for several other lysosomal disorders, including Fabry's disease, Pompe's disease, lysosomal acid lipase deficiency, and five types of mucopolysaccharidosis. Despite the benefits of enzyme replacement therapy, it has limitations-most importantly, its ineffectiveness in treating the neurological components of lysosomal disorders, as only a small proportion of recombinant enzymes can cross the blood-brain barrier. Development of strategies to improve drug delivery to the CNS is now the primary focus in lysosomal disorder research. This Review discusses the neurological manifestations and emerging therapies for the CNS component of these diseases. The therapies in development (which are now in phase 1 or phase 2 clinical trials) might be for specific lysosomal disorders (enzyme replacement therapy via intrathecal or intracerebroventricular routes or with fusion proteins, or gene therapy) or applicable to more than one lysosomal disorder (haemopoietic stem cell transplantation, pharmacological chaperones, substrate reduction therapy, or stop codon readthrough). The combination of early diagnosis with effective therapies should change the outlook for patients with lysosomal disorders with neurological involvement in the next 5-10 years.
Collapse
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariluce Riegel
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Alex Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
34
|
Parini R, Deodato F, Di Rocco M, Lanino E, Locatelli F, Messina C, Rovelli A, Scarpa M. Open issues in Mucopolysaccharidosis type I-Hurler. Orphanet J Rare Dis 2017; 12:112. [PMID: 28619065 PMCID: PMC5472858 DOI: 10.1186/s13023-017-0662-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidosis I-Hurler (MPS I-H) is the most severe form of a metabolic genetic disease caused by mutations of IDUA gene encoding the lysosomal α-L-iduronidase enzyme. MPS I-H is a rare, life-threatening disease, evolving in multisystem morbidity including progressive neurological disease, upper airway obstruction, skeletal deformity and cardiomyopathy. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the gold standard for the treatment of MPS I-H in patients diagnosed and treated before 2–2.5 years of age, having a high rate of success. Beyond the child’s age, other factors influence the probability of treatment success, including the selection of patients, of graft source and the donor type employed. Enzyme replacement therapy (ERT) with human recombinant laronidase has also been demonstrated to be effective in ameliorating the clinical conditions of pre-transplant MPS I-H patients and in improving HSCT outcome, by peri-transplant co-administration. Nevertheless the long-term clinical outcome even after successful HSCT varies considerably, with a persisting residual disease burden. Other strategies must then be considered to improve the outcome of these patients: one is to pursue early pre-symptomatic diagnosis through newborn screening and another one is the identification of novel treatments. In this perspective, even though newborn screening can be envisaged as a future attractive perspective, presently the best path to be pursued embraces an improved awareness of signs and symptoms of the disorder by primary care providers and pediatricians, in order for the patients’ timely referral to a qualified reference center. Furthermore, sensitive new biochemical markers must be identified to better define the clinical severity of the disease at birth, to support clinical judgement during the follow-up and to compare the effects of the different therapies. A prolonged neuropsychological follow-up of post-transplant cognitive development of children and residual disease burden is needed. In this perspective, the reference center must guarantee a multidisciplinary follow-up with an expert team. Diagnostic and interventional protocols of reference centers should be standardized whenever possible to allow comparison of clinical data and evaluation of results. This review will focus on all these critical issues related to the management of MPS I-H.
Collapse
Affiliation(s)
- Rossella Parini
- UOS Malattie Metaboliche Rare, Clinica Pediatrica dell'Università Milano Bicocca, Fondazione MBBM, ASST Monza e Brianza, Monza, Italy.
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maja Di Rocco
- Unit of Rare Diseases, Department of Pediatrics, IRCCS "Giannina Gaslini" Children's Hospital, Genoa, Italy
| | - Edoardo Lanino
- UOSD Centro Trapianto di Midollo Osseo, Dipartimento Ematologia-Oncologia Pediatrica, IRCCS "Giannina Gaslini" Children's Hospital, Genoa, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,University of Pavia, Pavia, Italy
| | - Chiara Messina
- Dipartimento di Pediatria, DAI di Salute della Donna e del Bambino, Azienda Ospedaliera-Università di Padova, Padova, Italy
| | - Attilio Rovelli
- Centro Trapianto di Midollo Osseo, Clinica Pediatrica dell'Università di Milano-Bicocca, Fondazione MBBM, ASST Monza e Brianza, Monza, Italy
| | - Maurizio Scarpa
- Department for the Woman and Child Health, University of Padova, Padova, Italy
| |
Collapse
|
35
|
Grosse SD, Lam WKK, Wiggins LD, Kemper AR. Cognitive outcomes and age of detection of severe mucopolysaccharidosis type 1. Genet Med 2017; 19:975-982. [PMID: 28125077 DOI: 10.1038/gim.2016.223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 11/09/2022] Open
Abstract
The US Secretary of Health and Human Services recommended in February 2016 that mucopolysaccharidosis type 1 (MPS I) be added to the recommended uniform screening panel for state newborn screening programs. One of the key factors in this decision was the evidence suggesting that earlier treatment with hematopoietic cell transplantation (HCT) for the most severe form, Hurler syndrome (MPS IH), would lead to improved cognitive outcomes. Consistent evidence from peer-reviewed studies suggests that transplantation in the first year of life is associated with improved developmental quotient or intelligence quotient and continued cognitive growth, with earlier age of treatment associated with improved outcomes. However, available evidence suggests that cognitive functioning and attention can still lag behind unaffected age-matched children, leading to the need for special education services. Verbal and nonverbal cognitive abilities outcomes may be affected differently by HCT. With the recent addition of MPS I to the recommended uniform screening panel, future work is needed to evaluate the impact of earlier, presymptomatic detection and treatment initiation and other supportive therapies on cognitive outcomes.Genet Med advance online publication 26 January 2017.
Collapse
Affiliation(s)
- Scott D Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wendy K K Lam
- Duke Clinical Translational Science Institute, Duke University, Durham, North Carolina, USA
| | - Lisa D Wiggins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alex R Kemper
- Duke Clinical Translational Science Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
36
|
Peck SH, Casal ML, Malhotra NR, Ficicioglu C, Smith LJ. Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol Genet Metab 2016; 118:232-43. [PMID: 27296532 PMCID: PMC4970936 DOI: 10.1016/j.ymgme.2016.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Skeletal disease is common in MPS patients, with the severity varying both within and between subtypes. Within the spectrum of skeletal disease, spinal manifestations are particularly prevalent. Developmental and degenerative abnormalities affecting the substructures of the spine can result in compression of the spinal cord and associated neural elements. Resulting neurological complications, including pain and paralysis, significantly reduce patient quality of life and life expectancy. Systemic therapies for MPS, such as hematopoietic stem cell transplantation and enzyme replacement therapy, have shown limited efficacy for improving spinal manifestations in patients and animal models. Therefore, there is a pressing need for new therapeutic approaches that specifically target this debilitating aspect of the disease. In this review, we examine how pathological abnormalities affecting the key substructures of the spine - the discs, vertebrae, odontoid process and dura - contribute to the progression of spinal deformity and symptomatic compression of neural elements. Specifically, we review current understanding of the underlying pathophysiology of spine disease in MPS, how the tissues of the spine respond to current clinical and experimental treatments, and discuss future strategies for improving the efficacy of these treatments.
Collapse
Affiliation(s)
- Sun H Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Margret L Casal
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, United States
| | - Neil R Malhotra
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States
| | - Can Ficicioglu
- Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, United States
| | - Lachlan J Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, United States; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
37
|
Lin HY, Chuang CK, Huang YH, Tu RY, Lin FJ, Lin SJ, Chiu PC, Niu DM, Tsai FJ, Hwu WL, Chien YH, Lin JL, Chou YY, Tsai WH, Chang TM, Lin SP. Causes of death and clinical characteristics of 34 patients with Mucopolysaccharidosis II in Taiwan from 1995-2012. Orphanet J Rare Dis 2016; 11:85. [PMID: 27349225 PMCID: PMC4924312 DOI: 10.1186/s13023-016-0471-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis type II (MPS II) is an X-linked recessive, multisystemic lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase. MPS II has a variable age of onset and variable rate of progression. In Asian countries, there is a relatively higher incidence of MPS II compared to other types of MPS. METHODS A retrospective analysis was carried out of 34 Taiwanese MPS II patients who died between 1995 and 2012. The clinical characteristics, medical records, age at death, and cause of death were evaluated to better understand the natural progression of this disease. RESULTS The mean age at death of 31 of the patients with a severe form of the disease with significant cognitive impairment was 13.2 ± 3.2 years, compared with 22.6 ± 4.3 years in the three patients with a mild form of the disease without cognitive involvement (n = 2) or the intermediate form (n = 1) (p < 0.001). The mean ages at onset of symptoms and confirmed diagnosis were 2.5 ± 2.1 and 4.8 ± 3.1 years, respectively (n = 32). Respiratory failure was the leading cause of death (56 %), followed by cardiac failure (18 %), post-traumatic organ failure (3 %), and infection (sepsis) (3 %) (n = 27). Age at onset of symptoms was positively correlated with life expectancy (p < 0.01). Longevity gradually increased over time from 1995 to 2012 (p < 0.05). CONCLUSIONS Respiratory failure and cardiac failure were the two major causes of death in these patients. The life expectancy of Taiwanese MPS II patients has improved in recent decade.
Collapse
Affiliation(s)
- Hsiang-Yu Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, Mackay Memorial Hospital, No. 92, Sec. 2, Chung-Shan North Road, Taipei, 10449, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Medical College, Fu-Jen Catholic University, Taipei, Taiwan
- Institute of Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Hsiu Huang
- Department of Pediatrics, Mackay Memorial Hospital, No. 92, Sec. 2, Chung-Shan North Road, Taipei, 10449, Taiwan
| | - Ru-Yi Tu
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Fang-Ju Lin
- Department of Pediatrics, Mackay Memorial Hospital, No. 92, Sec. 2, Chung-Shan North Road, Taipei, 10449, Taiwan
| | - Shio Jean Lin
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Pao Chin Chiu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Dau-Ming Niu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fuu-Jen Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ju-Li Lin
- Division of Medical Genetics, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Hui Tsai
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Tung-Ming Chang
- Department of Pediatric Neurology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.
- Department of Pediatrics, Mackay Memorial Hospital, No. 92, Sec. 2, Chung-Shan North Road, Taipei, 10449, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| |
Collapse
|
38
|
Efficacy of hematopoietic cell transplantation in metachromatic leukodystrophy: the Dutch experience. Blood 2016; 127:3098-101. [PMID: 27118454 DOI: 10.1182/blood-2016-03-708479] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Lum S, Jones S, Ghosh A, Bigger B, Wynn R. Hematopoietic stem cell transplant for the mucopolysaccharidoses. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1147948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Ginocchio VM, Brunetti-Pierri N. Progress toward improved therapies for inborn errors of metabolism. Hum Mol Genet 2015; 25:R27-35. [PMID: 26443595 DOI: 10.1093/hmg/ddv418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
Because of their prevalence, severity and lack of effective treatments, inborn errors of metabolism need novel and more effective therapeutic approaches. The opportunity for an early treatment coming from expanded newborn screening has made this need even more urgent. To meet this demand, a growing number of novel treatments are entering in the phase of clinical development. Strategies to overcome the detrimental consequences of the enzyme deficiencies responsible for inborn errors of metabolism have been focused on multiple fronts at the levels of the gene, RNA, protein and whole cell. These strategies have been accomplished using a wide spectrum of approaches ranging from small molecules to enzyme replacement therapy, cell and gene therapy. The applications of new technologies in the field of inborn errors of metabolism, such as genome editing, RNA interference and cell reprogramming, along with progress in pre-existing strategies, such as gene therapy or cell transplantation, have tremendous potential for clinical translation.
Collapse
Affiliation(s)
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli (NA) 80078, Italy and Department of Translational Medicine, Federico II University, Naples 80131, Italy
| |
Collapse
|
41
|
Abstract
Stem cell transplantation (SCT) is an established first-line or adjunctive therapy for a variety of neonatal and adult diseases. New evidence in preclinical models as well as a few human studies show the potential utility of SCT in neuroprotection and in the modulation of inflammatory injury in at risk-neonates. This review briefly summarizes current understanding of human stem cell biology during ontogeny and present recent evidence supporting SCT as a viable approach for postinsult neonatal injury.
Collapse
Affiliation(s)
- Momoko Yoshimoto
- Assistant Research Professor, Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044W Walnut Street R4-W116, Indianapolis, IN 46202, Tel: 317-278-0598
| | - Joyce M Koenig
- Pediatrics, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63104, USA; Molecular Microbiology & Immunology, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63106, USA.
| |
Collapse
|
42
|
Hematopoietic Cell Transplantation for Mucopolysaccharidosis Patients Is Safe and Effective: Results after Implementation of International Guidelines. Biol Blood Marrow Transplant 2015; 21:1106-9. [DOI: 10.1016/j.bbmt.2015.02.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
|
43
|
Neverman NJ, Best HL, Hofmann SL, Hughes SM. Experimental therapies in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2292-300. [PMID: 25957554 DOI: 10.1016/j.bbadis.2015.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses represent a group of severe childhood lysosomal storage diseases. With at least 13 identified variants they are the most common cause of inherited neurodegeneration in children. These diseases share common pathological characteristics including motor problems, vision loss, seizures, and cognitive decline, culminating in premature death. Currently, no form of the disease can be treated or cured, with only palliative care to minimise discomfort. This review focuses on current and potentially ground-breaking clinical trials, including small molecule, enzyme replacement, stem cell, and gene therapies, in the development of effective treatments for the various disease subtypes. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Nicole J Neverman
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Hannah L Best
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand
| | - Sandra L Hofmann
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie M Hughes
- Department of Biochemistry, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Batten Animal Research Network (BARN), New Zealand.
| |
Collapse
|
44
|
Milano F, Boelens JJ. Stem cell comparison: what can we learn clinically from unrelated cord blood transplantation as an alternative stem cell source? Cytotherapy 2015; 17:695-701. [PMID: 25795270 DOI: 10.1016/j.jcyt.2015.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/24/2015] [Indexed: 02/01/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is an important therapeutic option for a variety of malignant and non-malignant disorders (NMD). The use of umbilical cord blood transplantation (UCBT) has made HCT available to many more patients. The increased level of human leukocyte antigen disparity that can be tolerated makes UCBT a very attractive alternative source of hematopoietic stem cells; however, the increased risk of early death observed after UCBT remains an obstacle. Novel strategies such as ex vivo stem cell expansion are now becoming part of the standard clinical approach, and preliminary results are extremely encouraging with suggestion of reduction of early transplant-related mortality. Although there are no randomized studies that compare the risks and benefits of UCBT relative to those observed with related and unrelated donors both for malignant and NMD, several retrospective studies have compared outcomes between UCBT and other stem cell sources. In this review, we aim to describe and summarize the findings of the principal studies in this field. We hope that what we can learn from these studies and how we can use this information will improve the outcomes of HCT for patients with malignant and NMD.
Collapse
Affiliation(s)
- Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA.
| | - Jaap Jan Boelens
- University Medical Center Utrecht, Pediatric Blood and Marrow Transplantation Program, Utrecht, The Netherlands; Laboratory Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
45
|
Aronovich EL, Hackett PB. Lysosomal storage disease: gene therapy on both sides of the blood-brain barrier. Mol Genet Metab 2015; 114:83-93. [PMID: 25410058 PMCID: PMC4312729 DOI: 10.1016/j.ymgme.2014.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Most lysosomal storage disorders affect the nervous system as well as other tissues and organs of the body. Previously, the complexities of these diseases, particularly in treating neurologic abnormalities, were too great to surmount. However, based on recent developments there are realistic expectations that effective therapies are coming soon. Gene therapy offers the possibility of affordable, comprehensive treatment associated with these diseases currently not provided by standards of care. With a focus on correction of neurologic disease by systemic gene therapy of mucopolysaccharidoses types I and IIIA, we review some of the major recent advances in viral and non-viral vectors, methods of their delivery and strategies leading to correction of both the nervous and somatic tissues as well as evaluation of functional correction of neurologic manifestations in animal models. We discuss two questions: what systemic gene therapy strategies work best for correction of both somatic and neurologic abnormalities in a lysosomal storage disorder and is there evidence that targeting peripheral tissues (e.g., in the liver) has a future for ameliorating neurologic disease in patients?
Collapse
Affiliation(s)
- Elena L Aronovich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Perry B Hackett
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The role of hematopoietic cell transplantation in non-malignant disorders has increased exponentially with the recognition that multiple diseases can be controlled or cured if engrafted with donor-derived cells. This review provides an overview of advances made in alternative donor transplants for nonmalignant disorders. RECENT FINDINGS Stem cell sources, novel transplant methods, and sophisticated supportive care have simultaneously made giant strides toward improving the safety and efficacy of hematopoietic cell transplantation. This has led to the utilization of marrow, cord, peripheral blood stem cell and haploidentical stem cell sources, and novel reduced toxicity or reduced intensity conditioning regimens to transplant non-malignant disorders such as immune dysfunctions, marrow failure syndromes, metabolic disorders and hemoglobinopathies. Transplant complications such as graft rejection, infections, and graft versus host disease are better combated in this modern era of medicine, achieving better survival with decreased late effects. These aspects of transplant for non-malignant disorders are discussed. SUMMARY This review presents the progress made in the realm of hematopoietic cell transplantation for non-malignant disorders. It advocates the consideration of alternative donor transplants in the absence of human leukocyte antigen matched siblings when indicated by disease severity. The ultimate goal is to provide curative transplant options for more patients that can benefit from this intervention, prior to detrimental outcomes.
Collapse
|