1
|
Jeffries NE, Sadreyev D, Trull EC, Chetal K, Yvanovich EE, Mansour MK, Sadreyev RI, Sykes DB. Deferasirox, an iron chelator, impacts myeloid differentiation by modulating NF-kB activity via mitochondrial ROS. Br J Haematol 2024. [PMID: 39327763 DOI: 10.1111/bjh.19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
The iron chelator deferasirox (DFX) is effective in the treatment of iron overload. In certain patients with myelodysplastic syndrome, DFX can also provide a dramatic therapeutic benefit, improving red blood cell production and decreasing transfusion requirements. Nuclear Factor-kappa B (NF-kB) signalling has been implicated as a potential mechanism behind this phenomenon, with studies focusing on the effect of DFX on haematopoietic progenitors. Here, we examine the phenotypic and transcriptional effects of DFX throughout myeloid cell maturation in both murine and human model systems. The effect of DFX depends on the stage of differentiation, with effects on mitochondrial reactive oxygen species (ROS) production and NF-kB pathway regulation that vary between progenitors and neutrophils. DFX triggers a greater increase in mitochondrial ROS production in neutrophils and this phenomenon is mitigated when cells are cultured in hypoxic conditions. Single-cell transcriptomic profiling revealed that DFX decreases the expression of NF-kB and MYC (c-Myc) targets in progenitors and decreases the expression of PU.1 (SPI1) gene targets in neutrophils. Together, these data suggest a role of DFX in impairing terminal maturation of band neutrophils.
Collapse
Affiliation(s)
- Nathan E Jeffries
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Sadreyev
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth C Trull
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emma E Yvanovich
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K Mansour
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pan T, Ji Y, Liu H, Tang B, Song K, Wan X, Yao W, Sun G, Wang J, Sun Z. Impact of Iron overload and Iron Chelation with deferasirox on outcomes of patients with severe aplastic anemia after allogeneic hematopoietic stem cell transplantation. Transplant Cell Ther 2023:S2666-6367(23)01254-X. [PMID: 37116582 DOI: 10.1016/j.jtct.2023.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Patients suffering from severe aplastic anemia (SAA) need frequent blood transfusions during allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, these transfusions can result in an excess of iron in the body tissues, which can negatively impact the success of the transplant. OBJECTIVES This study aimed to examine the impact of pre-transplant iron overload (IO) on the outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with severe aplastic anemia (SAA). It also investigated whether iron chelation (IC) therapy was necessary to enhance transplantation outcomes in SAA patients by providing guidelines for determining when excess iron should be chelated. STUDY DESIGN The study consisted of two parts: Cohort 1, which was retrospective and conducted from April 2012 to December 2018, divided SAA patients receiving their first allo-HSCT into two groups based on their pre-transplant serum ferritin (SF) levels: the iron overload (IO) group (SF >1000 ng/ml, n=17) and the non-IO group (SF ≤ 1000 ng/ml, n=48). Cohort 2 was a prospective clinical trial conducted from January 2019 to July 2020. It involved SAA patients diagnosed with IO who were treated with iron chelation (IC) therapy using deferasirox (DFX) at a dose of 10-30 mg/kg. Patients were separated into two groups based on their pre-transplant SF levels: the IC success (ICsuccess) group (SF ≤ 1000 ng/ml, n=18) and the IC failure (ICfailure) group (SF >1000 ng/ml, n=28) groups. All participants were evaluated for the correlation between pre-transplant SF levels and transplantation outcomes. A P-value of less than 0.05 was considered statistically significant. RESULTS There was no significant difference in the speed of engraftment for the three lineages or in the incidence of 100-day grade II-IV acute graft-versus-host disease (aGVHD), grade III-IV aGVHD, or 3-year chronic GVHD between the two groups in both cohorts. However, in cohort 1, it was noteworthy that 1-year OS (83.3% vs. 41.2%, p < 0.001) and 3-year OS (83.3% vs. 35.3%, p < 0.001) were significantly worse in the IO group. Furthermore, 180-day TRM (14.6% vs. 47.1%, p = 0.005) and 1-year TRM (16.7% vs. 52.9%, p = 0.002) were significantly higher in the IO group. The IO group was significantly associated with inferior 3-year OS in both univariate and multivariate analyses. In cohort 2, it was found that 1-year OS (42.9% vs. 88.9%, p = 0.003) and 3-year OS (42.9% vs. 83.3%, p = 0.007) were significantly better in the ICsuccess group, while 180-day TRM (11.1% vs. 39.3%, p = 0.040) and 1-year TRM (11.1% vs. 57.1%, p = 0.003) were significantly lower in the ICsuccess group. These differences were confirmed in both univariate and multivariate analyses. CONCLUSIONS The study involving two cohorts showed that pre-HSCT iron overload has a negative impact on transplantation outcomes in SAA patients. Chelating excess iron with a serum ferritin level below 1000 ng/ml was found to be necessary and could potentially improve the outcomes.
Collapse
Affiliation(s)
- Tianzhong Pan
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanping Ji
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huilan Liu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baolin Tang
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaidi Song
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Wan
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Yao
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guangyu Sun
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jian Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China; Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Iron overload-induced oxidative stress in myelodysplastic syndromes and its cellular sequelae. Crit Rev Oncol Hematol 2021; 163:103367. [PMID: 34058341 DOI: 10.1016/j.critrevonc.2021.103367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
The myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders. MDS patients often require red blood cell transfusions, resulting in iron overload (IOL). IOL increases production of reactive oxygen species (ROS), oxygen free radicals. We review and illustrate how IOL-induced ROS influence cellular activities relevant to MDS pathophysiology. ROS damage lipids, nucleic acids in mitochondrial and nuclear DNA, structural proteins, transcription factors and enzymes. Cellular consequences include decreased metabolism and tissue and organ dysfunction. In hematopoietic stem cells (HSC), consequences of ROS include decreased glycolysis, shifting the cell from anaerobic to aerobic metabolism and causing HSC to exit the quiescent state, leading to HSC exhaustion or senescence. ROS oxidizes DNA bases, resulting in accumulation of mutations. Membrane oxidation alters fluidity and permeability. In summary, evidence indicates that IOL-induced ROS alters cellular signaling pathways resulting in toxicity to organs and hematopoietic cells, in keeping with adverse clinical outcomes in MDS.
Collapse
|
4
|
Kono M, Matsuhiroya S, Obuchi A, Takahashi T, Imoto S, Kawano S, Saigo K. Deferasirox, an iron-chelating agent, alleviates acute lung inflammation by inhibiting neutrophil activation and extracellular trap formation. J Int Med Res 2021; 48:300060520951015. [PMID: 32938287 PMCID: PMC7503029 DOI: 10.1177/0300060520951015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Reactive oxygen species (ROS) production by neutrophils induces pulmonary endothelial cell damage and results in acute lung injury (ALI). We previously reported that deferasirox (DFS), an iron-chelating agent, inhibits the ROS production and neutrophil extracellular trap (NET) formation induced by phorbol myristate acetate and formylmethionylleucylphenylalanine in vitro. In the present study, we investigated the effects of DFS in vivo using a mouse model of lipopolysaccharide (LPS)-induced ALI. METHODS After DFS administration for 7 days, ALI was induced in mice by LPS via intratracheal administration. RESULTS LPS treatment induced neutrophil invasion in the lung tissues, along with NET formation and a significant increase in the quantity of double-stranded DNA in the bronchoalveolar lavage fluid, while pre-administered DFS inhibited these phenomena. However, alteration of neutrophil morphology in the cytoplasm in terms of shape and vacuolization was not inhibited by the pre-administration of DFS, possibly through ROS production. CONCLUSIONS DFS suppressed neutrophil invasion into lung tissues and reduced the double-stranded DNA content released by the neutrophils. These results suggest that DFS can potentially be used to prevent diseases related to neutrophil activation including ALI, thrombosis, and vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Mari Kono
- Scientific Research, Scientific Affairs, Sysmex Corporation, Kobe, Japan
| | - Shiori Matsuhiroya
- Scientific Research, Scientific Affairs, Sysmex Corporation, Kobe, Japan
| | - Ayako Obuchi
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Japan
| | | | - Shion Imoto
- Department of Health Science, Kobe Tokiwa University, Kobe, Japan
| | - Seiji Kawano
- Integrated Clinical Education Center, Kobe University Hospital, Kobe, Japan
| | - Katsuyasu Saigo
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Japan
| |
Collapse
|
5
|
Scheinberg P. Acquired severe aplastic anaemia: how medical therapy evolved in the 20th and 21st centuries. Br J Haematol 2021; 194:954-969. [PMID: 33855695 DOI: 10.1111/bjh.17403] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
The progress in aplastic anaemia (AA) management is one of success. Once an obscure entity resulting in death in most affected can now be successfully treated with either haematopoietic stem cell transplantation (HSCT) or immunosuppressive therapy (IST). The mechanisms that underly the diminution of haematopoietic stem cells (HSCs) are now better elucidated, and include genetics and immunological alterations. Advances in supportive care with better antimicrobials, safer blood products and iron chelation have greatly impacted AA outcomes. Working somewhat 'mysteriously', anti-thymocyte globulin (ATG) forms the base for both HSCT and IST protocols. Efforts to augment immunosuppression potency have not, unfortunately, led to better outcomes. Stimulating HSCs, an often-sought approach, has not been effective historically. The thrombopoietin receptor agonists (Tpo-RA) have been effective in stimulating early HSCs in AA despite the high endogenous Tpo levels. Dosing, timing and best combinations with Tpo-RAs are being defined to improve HSCs expansion in AA with minimal added toxicity. The more comprehensive access and advances in HSCT and IST protocols are likely to benefit AA patients worldwide. The focus of this review will be on the medical treatment advances in AA.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Haematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| |
Collapse
|
6
|
Votavova H, Urbanova Z, Kundrat D, Dostalova Merkerova M, Vostry M, Hruba M, Cermak J, Belickova M. Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients. Pharmaceuticals (Basel) 2021; 14:ph14010041. [PMID: 33430232 PMCID: PMC7825690 DOI: 10.3390/ph14010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.
Collapse
Affiliation(s)
- Hana Votavova
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Zuzana Urbanova
- First Faculty of Medicine, Charles University, Katerinská 32, 121 08 Prague, Czech Republic;
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic;
| | - David Kundrat
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Michaela Dostalova Merkerova
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Martin Vostry
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Monika Hruba
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
- First Faculty of Medicine, Charles University, Katerinská 32, 121 08 Prague, Czech Republic;
| | - Jaroslav Cermak
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic;
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
- Correspondence: ; Tel.: +420-221-977-305
| |
Collapse
|
7
|
Controversies on the Consequences of Iron Overload and Chelation in MDS. Hemasphere 2020; 4:e357. [PMID: 32647792 PMCID: PMC7306315 DOI: 10.1097/hs9.0000000000000357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many patients with MDS are prone to develop systemic and tissue iron overload in part as a consequence of disease-immanent ineffective erythropoiesis. However, chronic red blood cell transfusions, which are part of the supportive care regimen to correct anemia, are the major source of iron overload in MDS. Increased systemic iron levels eventually lead to the saturation of the physiological systemic iron carrier transferrin and the occurrence of non-transferrin-bound iron (NTBI) together with its reactive fraction, the labile plasma iron (LPI). NTBI/LPI-mediated toxicity and tissue iron overload may exert multiple detrimental effects that contribute to the pathogenesis, complications and eventually evolution of MDS. Until recently, the evidence supporting the use of iron chelation in MDS was based on anecdotal reports, uncontrolled clinical trials or prospective registries. Despite not fully conclusive, these and more recent studies, including the TELESTO trial, unravel an overall adverse action of iron overload and therapeutic benefit of chelation, ranging from improved hematological outcome, reduced transfusion dependence and superior survival of iron-loaded MDS patients. The still limited and somehow controversial experimental and clinical data available from preclinical studies and randomized trials highlight the need for further investigation to fully elucidate the mechanisms underlying the pathological impact of iron overload-mediated toxicity as well as the effect of classic and novel iron restriction approaches in MDS. This review aims at providing an overview of the current clinical and translational debated landscape about the consequences of iron overload and chelation in the setting of MDS.
Collapse
|
8
|
Genome-wide transcriptomics leads to the identification of deregulated genes after deferasirox therapy in low-risk MDS patients. THE PHARMACOGENOMICS JOURNAL 2020; 20:664-671. [DOI: 10.1038/s41397-020-0154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
|
9
|
Activity of eltrombopag in severe aplastic anemia. Blood Adv 2019; 2:3054-3062. [PMID: 30425070 DOI: 10.1182/bloodadvances.2018020248] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Since the approval of horse antithymocyte globulin (ATG) decades ago, there was a long hiatus in therapies with activity in severe aplastic anemia (SAA). This scenario changed in 2014 when eltrombopag, a thrombopoietin receptor agonist, was approved for SAA after an insufficient response to initial immunosuppressive therapy (IST). The basis for this approval was the observation of single-agent activity of eltrombopag in this patient population, where 40% to 50% recovered blood counts at times involving >1 lineage. The achievement of transfusion independence confirmed the clinical benefit of this approach. Increase in marrow cellularity and CD34+ cells suggested a recovery to a more functioning bone marrow. Further in its development, eltrombopag was associated with standard horse ATG plus cyclosporine in first line, producing increases in overall (at about 90%) and complete response rates (at about 40%) and leading to transfusion independence and excellent survival. Interestingly, best results were observed when all drugs were started simultaneously. The cumulative incidence of clonal cytogenetic abnormalities to date has compared favorably with the vast experience with IST alone in SAA. Longer follow-up will help in define these long-term risks. In this review, the development of eltrombopag in SAA will be discussed.
Collapse
|
10
|
Iron chelation by deferasirox confers protection against concanavalin A-induced liver fibrosis: A mechanistic approach. Toxicol Appl Pharmacol 2019; 382:114748. [PMID: 31499193 DOI: 10.1016/j.taap.2019.114748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Hepatic iron overload is one of the causative factors for chronic liver injury and fibrosis. The present study aimed to investigate the potential antifibrotic effect of the iron chelator; deferasirox (DFX) in experimentally-induced liver fibrosis in rats. Male Sprague-Dawley rats were administered concanavalin A (Con A) and/or DFX for 6 consecutive weeks. Con A injection induced significant hepatotoxicity as was evident by the elevated transaminases activity, and decreased albumin level. Also, it disturbed the iron homeostasis through increasing C/EBP homologous protein (CHOP), decreasing phosphorylated cAMP responsive element binding protein(P-CREB) and hepcidin levels leading to significant serum and hepatic iron overload. In addition, it induced an imbalance in the oxidative status of the liver via upregulating NADPH oxidase 4 (NOX4), together with a marked decrease in anti-oxidant enzymes' activities. As a consequence, upregulation of nuclear factor-kappa b (NF-κB) and the downstream inflammatory mediators was observed. Those events all together precipitated in initiation of liver fibrosis as confirmed by the elevation of alpha-smooth muscle actin (α-SMA) and liver collagen content. Co-treatment with DFX protected against experimentally-induced liver fibrosis in rats via its iron chelating, anti-oxidant, and anti-inflammatory properties. These findings imply that DFX can attenuate the progression of liver fibrosis.
Collapse
|
11
|
Leitch HA, Gattermann N. Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: Clinical data, potential mechanisms, and outstanding questions. Crit Rev Oncol Hematol 2019; 141:54-72. [DOI: 10.1016/j.critrevonc.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/25/2018] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
|
12
|
Nomani H, Bayat G, Sahebkar A, Fazelifar AF, Vakilian F, Jomezade V, Johnston TP, Mohammadpour AH. Atrial fibrillation in β‐thalassemia patients with a focus on the role of iron‐overload and oxidative stress: A review. J Cell Physiol 2018; 234:12249-12266. [DOI: 10.1002/jcp.27968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Golnaz Bayat
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Farjam Fazelifar
- Department of Pacemaker and Electrophysiology Rajaie Cardiovascular, Medical and Research center, Iran University of Medical Sciences Tehran Iran
| | - Farveh Vakilian
- Atherosclerotic Research Center Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Vahid Jomezade
- Department of Surgery Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences School of Pharmacy, University of Missouri‐Kansas City Kansas City Missouri
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
13
|
Scheinberg P. Activity of eltrombopag in severe aplastic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:450-456. [PMID: 30504345 PMCID: PMC6245975 DOI: 10.1182/asheducation-2018.1.450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since the approval of horse antithymocyte globulin (ATG) decades ago, there was a long hiatus in therapies with activity in severe aplastic anemia (SAA). This scenario changed in 2014 when eltrombopag, a thrombopoietin receptor agonist, was approved for SAA after an insufficient response to initial immunosuppressive therapy (IST). The basis for this approval was the observation of single-agent activity of eltrombopag in this patient population, where 40% to 50% recovered blood counts at times involving >1 lineage. The achievement of transfusion independence confirmed the clinical benefit of this approach. Increase in marrow cellularity and CD34+ cells suggested a recovery to a more functioning bone marrow. Further in its development, eltrombopag was associated with standard horse ATG plus cyclosporine in first line, producing increases in overall (at about 90%) and complete response rates (at about 40%) and leading to transfusion independence and excellent survival. Interestingly, best results were observed when all drugs were started simultaneously. The cumulative incidence of clonal cytogenetic abnormalities to date has compared favorably with the vast experience with IST alone in SAA. Longer follow-up will help in define these long-term risks. In this review, the development of eltrombopag in SAA will be discussed.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, Sao Paulo, Brazil
| |
Collapse
|
14
|
Tury S, Assayag F, Bonin F, Chateau-Joubert S, Servely JL, Vacher S, Becette V, Caly M, Rapinat A, Gentien D, de la Grange P, Schnitzler A, Lallemand F, Marangoni E, Bièche I, Callens C. The iron chelator deferasirox synergises with chemotherapy to treat triple-negative breast cancers. J Pathol 2018; 246:103-114. [PMID: 29876931 DOI: 10.1002/path.5104] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
To ensure their high proliferation rate, tumor cells have an iron metabolic disorder causing them to have increased iron needs, making them more susceptible to iron deprivation. This vulnerability could be a therapeutic target. In breast cancers, the development of new therapeutic approaches is urgently needed for patients with triple-negative tumors, which frequently relapse after chemotherapy and suffer from a lack of targeted therapies. In this study, we demonstrated that deferasirox (DFX) synergises with standard chemotherapeutic agents such as doxorubicin, cisplatin and carboplatin to inhibit cell proliferation and induce apoptosis and autophagy in triple-negative breast cancer (TNBC) cells. Moreover, the combination of DFX with doxorubicin and cyclophosphamide delayed recurrences in breast cancer patient-derived xenografts without increasing the side-effects of chemotherapies alone or altering the global iron storage of mice. Antitumor synergy of DFX and doxorubicin seems to involve downregulation of the phosphoinositide 3-kinase and nuclear factor-κB pathways. Iron deprivation in combination with chemotherapy could thus help to improve the effectiveness of chemotherapy in TNBC patients without increasing toxicity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandrine Tury
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - Franck Assayag
- Laboratory of Preclinical Investigations, Translational Research Department, Curie Institute, PSL Research University Paris, France
| | - Florian Bonin
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | | | - Jean-Luc Servely
- BioPôle Alfort, National Veterinary School of Alfort, Maisons-Alfort, France.,PHASE Department, INRA, Paris, France
| | - Sophie Vacher
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - Véronique Becette
- Department of Biopathology, Curie Institute, René Huguenin Hospital, Saint-Cloud, France
| | - Martial Caly
- Department of Biopathology, Curie Institute, PSL Research University, Paris, France
| | - Audrey Rapinat
- Genomics Platform, Translational Research Department, Curie Institute, PSL Research University, Paris, France
| | - David Gentien
- Genomics Platform, Translational Research Department, Curie Institute, PSL Research University, Paris, France
| | | | - Anne Schnitzler
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - François Lallemand
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigations, Translational Research Department, Curie Institute, PSL Research University Paris, France
| | - Ivan Bièche
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France.,EA7331, Paris Descartes University, Sorbonne Paris Cité, Faculty of Pharmaceutical and Biological Sciences, Paris, France
| | - Céline Callens
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| |
Collapse
|
15
|
Wu D, Wen X, Liu W, Hu H, Ye B, Zhou Y. Comparison of the effects of deferasirox, deferoxamine, and combination of deferasirox and deferoxamine on an aplastic anemia mouse model complicated with iron overload. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1081-1091. [PMID: 29760547 PMCID: PMC5937503 DOI: 10.2147/dddt.s161086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background and aim Iron overload is commonly observed during the course of aplastic anemia (AA), which is believed to aggravate hematopoiesis, cause multiple organ dysfunction, lead to disease progression, and impair quality of life. Deferasirox (DFX) and deferoxamine (DFO) are among the most common iron chelation agents available in the clinical setting. The aim of this study was to investigate if the combination therapy with DFX and DFO is superior in hematopoietic recovery and iron chelation. Methods Briefly, we developed a composite mouse model with AA and iron overload that was consequently treated with DFX, DFO, or with a combination of both agents. The changes in peripheral hemogram, marrow apoptosis, and its related protein expressions were compared during the process of iron chelation, while the iron depositions in liver and bone marrow and its regulator were also detected. Results The obtained results showed that compared to DFX, DFO has a better effect in protecting the bone marrow from apoptosis-induced failure. The combination of DFO and DFX accelerated the chelation of iron, while their efficiency on further hemogram improvement appeared limited. Conclusion To sum up, our data suggest that single treatment with DFO may be a better choice for improving the hematopoiesis during the gradual chelation treatment irrespective of the convenience of oral DFX, while the combination treatment should be considered for urgent reduction of the iron burden.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaowen Wen
- Department of Internal Medicine, Central Hospital of Jinhua Affiliated to Zhejiang University, Jinhua, Zhejiang, People's Republic of China
| | - Wenbin Liu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huijin Hu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Rose C, Lenoir C, Gyan E, Hacini M, Amé S, Corront B, Beyne-Rauzy O, Adiko D, Loppinet E, Ali-Ammar N, Laribi K, Wattel E, Dreyfus F, Roué CS, Cheze S. Prospective evaluation of the effect of deferasirox on hematologic response in transfusion-dependent patients with low-risk MDS and iron overload. Eur J Haematol 2018; 101:165-173. [PMID: 29719933 DOI: 10.1111/ejh.13088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To assess the reduction of transfusions rate in transfusion-dependent patients with low-risk myelodysplastic syndrome (MDS) with iron overload treated with deferasirox. METHODS Prospective observational study. Primary endpoint was reduction in transfusion requirements (RTR) at 3 months, (assessed on 8-week period). Secondary endpoints were hematologic improvement according to International Working Group (IWG) 2006 criteria at 3, 6, and 12 months. RESULTS Fifty-seven patients were evaluable. After 3 months of chelation, no effect was seen on transfusion requirement (5.9 packed red blood cells (PRBC) vs 5.8 before chelation). According to the Kaplan-Meier analysis, the probability of RTR at 3, 6, and 12 months was assessed as 3.5%, 9.1%, and 18.7%, respectively. Median duration of RTR was 182 days. However, during the 12-month follow-up after deferasirox initiation, 17 patients (31.5%) achieved minor erythroid response [HI-E] according to IWG criteria, 10 of whom having achieved Hb improvement at month 12. CONCLUSION After 3 months of treatment, deferasirox had no impact on transfusion requirement in regularly transfused patients with low-risk MDS. However, deferasirox could induce 31% of erythroid response during the 12-month follow-up period thus suggesting that iron chelation therapy with deferasirox may induce an effect on hematopoiesis in a subset of patients with MDS and iron overload.
Collapse
Affiliation(s)
- Christian Rose
- Hospital Saint Vincent de Paul, Catholic University of Lille, Lille, France
| | | | - Emmanuel Gyan
- Hospital Bretonneau, University of Tours, Tours, France
| | | | - Shanti Amé
- Hospital Hautepierre, University of Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | - Eric Wattel
- Hospital Lyon-Sud, University of Lyon, Pierre-Bénite, France
| | | | | | - Stephane Cheze
- Hospital Côte de Nacre, University of Caen, Caen, France
| |
Collapse
|
17
|
Iron toxicity - Its effect on the bone marrow. Blood Rev 2018; 32:473-479. [PMID: 29699840 DOI: 10.1016/j.blre.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/22/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Excess iron can be extremely toxic for the body and may cause organ damage in the absence of iron chelation therapy. Preclinical studies on the role of free iron on bone marrow function have shown that iron toxicity leads to the accumulation of reactive oxygen species, affects the expression of genes coding for proteins that regulate hematopoiesis, and disrupts hematopoiesis. These effects could be partially attenuated by iron-chelation treatment with deferasirox, suggesting iron toxicity may have a negative impact on the hematopoietic microenvironment. Iron toxicity is of concern in transfusion-dependent patients. Importantly, iron chelation with deferasirox can cause the loss of transfusion dependency and may induce hematological responses, although the mechanisms through which deferasirox exerts this action are currently unknown. This review will focus on the possible mechanisms of toxicity of free iron at the bone marrow level and in the bone marrow microenvironment.
Collapse
|
18
|
Scheinberg P. Developing role of eltrombopag in the treatment of aplastic anemia. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1438260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| |
Collapse
|
19
|
Unraveling the mechanisms behind iron overload and ineffective hematopoiesis in myelodysplastic syndromes. Leuk Res 2017; 62:108-115. [DOI: 10.1016/j.leukres.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
|
20
|
Kono M, Saigo K, Yamamoto S, Shirai K, Iwamoto S, Uematsu T, Takahashi T, Imoto S, Hashimoto M, Minami Y, Wada A, Takenokuchi M, Kawano S. Iron-chelating agent, deferasirox, inhibits neutrophil activation and extracellular trap formation. Clin Exp Pharmacol Physiol 2017; 43:915-20. [PMID: 27333499 DOI: 10.1111/1440-1681.12612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 01/19/2023]
Abstract
Iron-chelating agents, which are frequently prescribed to transfusion-dependent patients, have various useful biological effects in addition to chelation. Reactive oxygen species (ROS) produced by neutrophils can cause pulmonary endothelial cell damage, which can lead to acute lung injury (ALI). We previously reported that deferasirox (DFS), an iron-chelating agent, inhibits phorbol myristate acetate (PMA) or formyl-methionyl-leucyl-phenylalanine (fMLP)-induced ROS production in neutrophils, in vitro. Here, we investigate whether DFS inhibits vacuolization in neutrophils and neutrophil extracellular trap (NET) formation. Human neutrophils were incubated with DFS and stimulated with PMA or fMLP. Human neutrophils were separated from heparinized peripheral blood using density gradient centrifugation, and subsequently incubated with DFS. After 10 minutes, neutrophils were stimulated by PMA or fMLP. Vacuole formation was observed by electron microscopy. For observing NET formations using microscopes, immunohistological analyses using citrullinated histone H3 and myeloperoxidase antibodies, and SYTOX Green (an impermeable DNA detection dye) staining, were conducted. NET formation was measured as the quantity of double-stranded DNA (dsDNA), using the AccuBlue Broad Range dsDNA Quantitation Kit. DFS (50 μmol/L) inhibited vacuole formation in the cytoplasm and NET formation. Additionally, 5-100 μmol/L concentration of DFS inhibited the release of dsDNA in a dose-independent manner. We demonstrate that DFS inhibits not only ROS production but also vacuolization and NET formation in neutrophils. These results suggest the possibility of protective effects of DFS against NET-related adverse effects, including ALI and thrombosis.
Collapse
Affiliation(s)
- Mari Kono
- Scientific Research, Scientific Affairs, Sysmex Corporation, Kobe, Japan
| | - Katsuyasu Saigo
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Shiori Yamamoto
- Scientific Research, Scientific Affairs, Sysmex Corporation, Kobe, Japan
| | - Kohei Shirai
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Shuta Iwamoto
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Tomoko Uematsu
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Japan
| | | | - Shion Imoto
- Department of Health Science, Kobe Tokiwa University, Kobe, Japan
| | | | | | - Atsushi Wada
- Scientific Research, Scientific Affairs, Sysmex Corporation, Kobe, Japan
| | - Mariko Takenokuchi
- Faculty of Pharmacological Sciences, Himeji Dokkyo University, Himeji, Japan
| | | |
Collapse
|
21
|
de Matos AG, Ribeiro Junior HL, de Paula Borges D, Okubo BM, de Sousa JC, Barbosa MC, de Castro MF, Gonçalves RP, Pinheiro RF, Magalhães SMM. Interleukin-8 and nuclear factor kappa B are increased and positively correlated in myelodysplastic syndrome. Med Oncol 2017; 34:168. [PMID: 28856536 DOI: 10.1007/s12032-017-1023-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/09/2017] [Indexed: 11/27/2022]
Abstract
The pathogenesis of myelodysplastic syndromes (MDS) is complex and depends on the interaction between aberrant hematopoietic cells and their microenvironment, probably including aberrations in cytokines and their signaling pathways. To evaluate interleukin-8 (IL-8) plasma levels and nuclear factor kappa B (NF-kB) in patients with MDS and to test possible correlation between IL-8 and NF-Kb, a total of 45 individuals were analyzed: 25 consecutive adult de novo MDS patients and 20 sex and age-matched healthy elderly volunteers. IL-8 analysis was performed by ELISA and activity of NF-kB by chemiluminescent assay. MDS patients showed higher level of IL-8 when compared to controls (p = 0.006). Patients aged 75 and above showed even higher levels (p = 0.035). NF-kB activity was significantly elevated in MDS patients when compared to controls (p < 0.0001) and higher in patients older than 75 years (p = 0.047). NF-kB activity was associated with higher serum ferritin (p = 0.042) and higher percentage of blasts (p = 0.028). A significant positive correlation between IL-8 and NF-kB was demonstrated (r = 0.480; p = 0.015). Many pathways involved in pathophysiology of MDS have been recently described, suggesting that an inflammatory process may act as a pathogenic driver. In this study, significantly elevated levels of IL-8 and NF-kB were demonstrated in MDS patients, with positive association of NF-kB with some markers of poor prognosis. A positive correlation between IL-8 and NF-kB suggests they cooperate as part of a complex networking of immune and inflammatory factors involved in MDS.
Collapse
Affiliation(s)
- Anacélia Gomes de Matos
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, R. Coronel Nunes de Melo, 1000 - 2° andar, Rodolfo Teófilo, Fortaleza, CE, CEP 60430-275, Brazil
| | - Howard Lopes Ribeiro Junior
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, R. Coronel Nunes de Melo, 1000 - 2° andar, Rodolfo Teófilo, Fortaleza, CE, CEP 60430-275, Brazil
| | - Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, R. Coronel Nunes de Melo, 1000 - 2° andar, Rodolfo Teófilo, Fortaleza, CE, CEP 60430-275, Brazil
| | - Bruno Memória Okubo
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Brazil
| | - Juliana Cordeiro de Sousa
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Brazil.
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Brazil.
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil.
- Center for Research and Drug Development (NPDM), Federal University of Ceará, R. Coronel Nunes de Melo, 1000 - 2° andar, Rodolfo Teófilo, Fortaleza, CE, CEP 60430-275, Brazil.
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, R. Coronel Nunes de Melo, 1000 - 2° andar, Rodolfo Teófilo, Fortaleza, CE, CEP 60430-275, Brazil
| |
Collapse
|
22
|
Musto P, Maurillo L, Simeon V, Poloni A, Finelli C, Balleari E, Ricco A, Rivellini F, Cortelezzi A, Tarantini G, Villani O, Mansueto G, Milella MR, Scapicchio D, Marziano G, Breccia M, Niscola P, Sanna A, Clissa C, Voso MT, Fenu S, Venditti A, Santini V, Angelucci E, Levis A. Iron-chelating therapy with deferasirox in transfusion-dependent, higher risk myelodysplastic syndromes: a retrospective, multicentre study. Br J Haematol 2017; 177:741-750. [PMID: 28419408 DOI: 10.1111/bjh.14621] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/27/2016] [Indexed: 01/19/2023]
Abstract
Iron chelation is controversial in higher risk myelodysplastic syndromes (HR-MDS), outside the allogeneic transplant setting. We conducted a retrospective, multicentre study in 51 patients with transfusion-dependent, intermediate-to-very high risk MDS, according to the revised international prognostic scoring system, treated with the oral iron chelating agent deferasirox (DFX). Thirty-six patients (71%) received azacitidine concomitantly. DFX was given at a median dose of 1000 mg/day (range 375-2500 mg) for a median of 11 months (range 0·4-75). Eight patients (16%) showed grade 2-3 toxicities (renal or gastrointestinal), 4 of whom (8%) required drug interruption. Median ferritin levels decreased from 1709 μg/l at baseline to 1100 μg/l after 12 months of treatment (P = 0·02). Seventeen patients showed abnormal transaminase levels at baseline, which improved or normalized under DFX treatment in eight cases. One patient showed a remarkable haematological improvement. At a median follow up of 35·3 months, median overall survival was 37·5 months. The results of this first survey of DFX in HR-MDS are comparable, in terms of safety and efficacy, with those observed in lower-risk MDS. Though larger, prospective studies are required to demonstrate real clinical benefits, our data suggest that DFX is feasible and might be considered in a selected cohort of HR-MDS patients.
Collapse
Affiliation(s)
- Pellegrino Musto
- Scientific Direction, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Luca Maurillo
- Haematology, Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Vittorio Simeon
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Antonella Poloni
- Haematology Clinic, Department of Clinic and Molecular Sciences, "Università Politecnica delle Marche", Ancona, Italy
| | - Carlo Finelli
- "Seràgnoli Institute of Haematology", University School of Medicine, Bologna, Italy
| | - Enrico Balleari
- Department of Haematology and Oncology, IRCCS AOU San Martino - IST, Genova, Italy
| | - Alessandra Ricco
- Department of Emergency and Organ Transplantation, Haematology Section, University of Bari, Bari, Italy
| | | | - Agostino Cortelezzi
- Department of Oncology and Haemato-Oncology, University of Milan and Haematology Unit, "Fondazione IRCCS Ca' Granda, Ospedale Maggiore" Policlinico, Milan, Italy
| | | | - Oreste Villani
- Department of Onco-Haematology, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero in Vulture (Pz), Italy
| | - Giovanna Mansueto
- Department of Onco-Haematology, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero in Vulture (Pz), Italy
| | - Maria R Milella
- Pharmacy Unit, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Daniele Scapicchio
- Management Control Unit, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Gioacchino Marziano
- Scientific Direction, IRCCS-CROB, "Referral Cancer Centre of Basilicata", Rionero In Vulture (Pz), Italy
| | - Massimo Breccia
- Department of Cellular Biotechnologies and Haematology, "La Sapienza" University, Rome, Italy
| | | | - Alessandro Sanna
- Haematology, University of Florence, AOU Careggi, Florence, Italy
| | - Cristina Clissa
- Haematology and Haematopoietic Stem Cell Transplant Centre, AORMN, Pesaro, Italy
| | - Maria T Voso
- Haematology, Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Susanna Fenu
- Haematology, "San Giovanni" Hospital, Rome, Italy
| | - Adriano Venditti
- Haematology, Department of Biomedicine and Prevention, "Tor Vergata" University, Rome, Italy
| | - Valeria Santini
- Haematology, University of Florence, AOU Careggi, Florence, Italy
| | - Emanuele Angelucci
- Department of Haematology and Oncology, IRCCS AOU San Martino - IST, Genova, Italy
| | - Alessandro Levis
- FISM, Fondazione Italiana Sindromi Mielodisplastiche, Alessandria, Italy
| |
Collapse
|
23
|
Kostos L, Chai KL, Tam CS, Bazargan A. The positive effect of deferasirox on erythropoiesis in a patient with a dual diagnosis of myelofibrosis and diffuse large B-cell lymphoma. Leuk Lymphoma 2017; 58:2720-2723. [DOI: 10.1080/10428194.2017.1281414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Louise Kostos
- Department of Haematology, St Vincent’s Hospital, Melbourne, Australia
| | - Khai Li Chai
- Department of Haematology, St Vincent’s Hospital, Melbourne, Australia
| | - Constantine S. Tam
- Department of Haematology, St Vincent’s Hospital, Melbourne, Australia
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Parkville, Victoria, Australia
| | - Ali Bazargan
- Department of Haematology, St Vincent’s Hospital, Melbourne, Australia
| |
Collapse
|
24
|
González N, Prieto I, del Puerto-Nevado L, Portal-Nuñez S, Ardura JA, Corton M, Fernández-Fernández B, Aguilera O, Gomez-Guerrero C, Mas S, Moreno JA, Ruiz-Ortega M, Sanz AB, Sanchez-Niño MD, Rojo F, Vivanco F, Esbrit P, Ayuso C, Alvarez-Llamas G, Egido J, García-Foncillas J, Ortiz A. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget 2017; 8:18456-18485. [PMID: 28060743 PMCID: PMC5392343 DOI: 10.18632/oncotarget.14472] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023] Open
Abstract
Worldwide deaths from diabetes mellitus (DM) and colorectal cancer increased by 90% and 57%, respectively, over the past 20 years. The risk of colorectal cancer was estimated to be 27% higher in patients with type 2 DM than in non-diabetic controls. However, there are potential confounders, information from lower income countries is scarce, across the globe there is no correlation between DM prevalence and colorectal cancer incidence and the association has evolved over time, suggesting the impact of additional environmental factors. The clinical relevance of these associations depends on understanding the mechanism involved. Although evidence is limited, insulin use has been associated with increased and metformin with decreased incidence of colorectal cancer. In addition, colorectal cancer shares some cellular and molecular pathways with diabetes target organ damage, exemplified by diabetic kidney disease. These include epithelial cell injury, activation of inflammation and Wnt/β-catenin pathways and iron homeostasis defects, among others. Indeed, some drugs have undergone clinical trials for both cancer and diabetic kidney disease. Genome-wide association studies have identified diabetes-associated genes (e.g. TCF7L2) that may also contribute to colorectal cancer. We review the epidemiological evidence, potential pathophysiological mechanisms and therapeutic implications of the association between DM and colorectal cancer. Further studies should clarify the worldwide association between DM and colorectal cancer, strengthen the biological plausibility of a cause-and-effect relationship through characterization of the molecular pathways involved, search for specific molecular signatures of colorectal cancer under diabetic conditions, and eventually explore DM-specific strategies to prevent or treat colorectal cancer.
Collapse
Affiliation(s)
- Nieves González
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Isabel Prieto
- Radiation Oncology, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Laura del Puerto-Nevado
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Sergio Portal-Nuñez
- Bone and Mineral Metabolism laboratory, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Juan Antonio Ardura
- Bone and Mineral Metabolism laboratory, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Marta Corton
- Genetics, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | - Oscar Aguilera
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | - Sebastián Mas
- Nephrology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | | | - Ana Belen Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
- REDINREN, Madrid, Spain
| | | | - Federico Rojo
- Pathology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | - Pedro Esbrit
- Bone and Mineral Metabolism laboratory, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Carmen Ayuso
- Genetics, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | | | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz-UAM, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Nephrology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
- REDINREN, Madrid, Spain
| | | |
Collapse
|
25
|
Zhao W, Zhang Y, Zhang P, Yang J, Zhang L, He A, Zhang W, Hideto T. High programmed death 1 expression on T cells in aplastic anemia. Immunol Lett 2017; 183:44-51. [DOI: 10.1016/j.imlet.2017.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
|
26
|
Rationale for the Successful Management of EDTA Chelation Therapy in Human Burden by Toxic Metals. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8274504. [PMID: 27896275 PMCID: PMC5118545 DOI: 10.1155/2016/8274504] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Abstract
Exposure to environmental and occupational toxicants is responsible for adverse effects on human health. Chelation therapy is the only procedure able to remove toxic metals from human organs and tissue, aiming to treat damage related to acute and/or chronic intoxication. The present review focuses on the most recent evidence of the successful use of the chelating agent ethylenediaminetetraacetic acid (EDTA). Assessment of toxic-metal presence in humans, as well as the rationale of EDTA therapy in cardiovascular and neurodegenerative diseases, is reported.
Collapse
|
27
|
Grenier D, Chen H, Ben Lagha A, Fournier-Larente J, Morin MP. Dual Action of Myricetin on Porphyromonas gingivalis and the Inflammatory Response of Host Cells: A Promising Therapeutic Molecule for Periodontal Diseases. PLoS One 2015; 10:e0131758. [PMID: 26121135 PMCID: PMC4487256 DOI: 10.1371/journal.pone.0131758] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/07/2015] [Indexed: 12/16/2022] Open
Abstract
Periodontitis that affects the underlying structures of the periodontium, including the alveolar bone, is a multifactorial disease, whose etiology involves interactions between specific bacterial species of the subgingival biofilm and the host immune components. In the present study, we investigated the effects of myricetin, a flavonol largely distributed in fruits and vegetables, on growth and virulence properties of Porphyromonas gingivalis as well as on the P. gingivalis-induced inflammatory response in host cells. Minimal inhibitory concentration values of myricetin against P. gingivalis were in the range of 62.5 to 125 μg/ml. The iron-chelating activity of myricetin may contribute to the antibacterial activity of this flavonol. Myricetin was found to attenuate the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including proteinases (rgpA, rgpB, and kgp) and adhesins (fimA, hagA, and hagB). Myricetin dose-dependently prevented NF-κB activation in a monocyte model. Moreover, it inhibited the secretion of IL-6, IL-8 and MMP-3 by P. gingivalis-stimulated gingival fibroblasts. In conclusion, our study brought clear evidence that the flavonol myricetin exhibits a dual action on the periodontopathogenic bacterium P. gingivalis and the inflammatory response of host cells. Therefore, myricetin holds promise as a therapeutic agent for the treatment/prevention of periodontitis.
Collapse
Affiliation(s)
- Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| | - Huangqin Chen
- Department of Stomatology, Hubei University of Science and Technology, Xianning City, Hubei Province, China
| | - Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| | - Jade Fournier-Larente
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| | - Marie-Pierre Morin
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Dessì C, Leoni G, Moi P, Danjou F, Follesa I, Foschini ML, Morittu M, Zappu A, Defraia E, Bina P, Cunico A, Civolani A, Podda RA, Origa R. Thalassemia major between liver and heart: Where we are now. Blood Cells Mol Dis 2015; 55:82-8. [DOI: 10.1016/j.bcmd.2015.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/29/2015] [Indexed: 02/08/2023]
|