1
|
Mesquita FP, Lima LB, da Silva EL, Souza PFN, de Moraes MEA, Burbano RMR, Montenegro RC. A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy. Curr Protein Pept Sci 2024; 25:539-552. [PMID: 38424421 DOI: 10.2174/0113892037291318240130103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Luina Benevides Lima
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Emerson Lucena da Silva
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | | | - Rommel Mario Rodrigues Burbano
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil
| |
Collapse
|
2
|
Zhang Q, Basappa J, Wang HY, Nunez-Cruz S, Lobello C, Wang S, Liu X, Chekol S, Guo L, Ziober A, Nejati R, Shestov A, Feldman M, Glickson JD, Turner SD, Blair IA, Van Dang C, Wasik MA. Chimeric kinase ALK induces expression of NAMPT and selectively depends on this metabolic enzyme to sustain its own oncogenic function. Leukemia 2023; 37:2436-2447. [PMID: 37773266 PMCID: PMC11152057 DOI: 10.1038/s41375-023-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
As we show in this study, NAMPT, the key rate-limiting enzyme in the salvage pathway, one of the three known pathways involved in NAD synthesis, is selectively over-expressed in anaplastic T-cell lymphoma carrying oncogenic kinase NPM1::ALK (ALK + ALCL). NPM1::ALK induces expression of the NAMPT-encoding gene with STAT3 acting as transcriptional activator of the gene. Inhibition of NAMPT affects ALK + ALCL cells expression of numerous genes, many from the cell-signaling, metabolic, and apoptotic pathways. NAMPT inhibition also functionally impairs the key metabolic and signaling pathways, strikingly including enzymatic activity and, hence, oncogenic function of NPM1::ALK itself. Consequently, NAMPT inhibition induces cell death in vitro and suppresses ALK + ALCL tumor growth in vivo. These results indicate that NAMPT is a novel therapeutic target in ALK + ALCL and, possibly, other similar malignancies. Targeting metabolic pathways selectively activated by oncogenic kinases to which malignant cells become "addicted" may become a novel therapeutic approach to cancer, alternative or, more likely, complementary to direct inhibition of the kinase enzymatic domain. This potential therapy to simultaneously inhibit and metabolically "starve" oncogenic kinases may not only lead to higher response rates but also delay, or even prevent, development of drug resistance, frequently seen when kinase inhibitors are used as single agents.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cosimo Lobello
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengchun Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Nejati
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Shestov
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry D Glickson
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi Van Dang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
4
|
Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, Gavande NS. PROTAC'ing oncoproteins: targeted protein degradation for cancer therapy. Mol Cancer 2023; 22:62. [PMID: 36991452 PMCID: PMC10061819 DOI: 10.1186/s12943-022-01707-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 03/31/2023] Open
Abstract
Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design.
Collapse
Affiliation(s)
- Jeremy M Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Deepti S Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Evan Malin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Hussein Kansou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Pathological and Molecular Features of Nodal Peripheral T-Cell Lymphomas. Diagnostics (Basel) 2022; 12:diagnostics12082001. [PMID: 36010351 PMCID: PMC9407466 DOI: 10.3390/diagnostics12082001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are uncommon neoplasms derived from mature T cells or NK cells. PTCLs comprise numerous disease entities, with over 30 distinct entities listed in the latest WHO classification. They predominantly affect adults and elderly people and usually exhibit an aggressive clinical course with poor prognosis. According to their presentation, PTCLs can be divided into nodal, extranodal or cutaneous, and leukemic types. The most frequent primary sites of PTCLs are lymph nodes, with over half of cases showing nodal presentation. Nodal PTCLs include ALK-positive and ALK-negative anaplastic large cell lymphoma; nodal T-cell lymphoma with T follicular helper cell origin; and PTCL, not otherwise specified. Adult T-cell leukemia/lymphoma also frequently affects lymph nodes. Recent pathological and molecular findings in nodal PTCLs have profoundly advanced the identification of tumor signatures and the refinement of the classification. Therefore, the therapies and pathological diagnosis of nodal PTCLs are continually evolving. This paper aims to provide a summary and update of the pathological and molecular features of nodal PTCLs, which will be helpful for diagnostic practice.
Collapse
|
6
|
Zhang Q, Wang HY, Nayak A, Nunez-Cruz S, Slupianek A, Liu X, Basappa J, Fan JS, Chekol S, Nejati R, Bogusz AM, Turner SD, Swaminathan K, Wasik MA. Induction of Transcriptional Inhibitor HES1 and the Related Repression of Tumor-Suppressor TXNIP Are Important Components of Cell-Transformation Program Imposed by Oncogenic Kinase NPM-ALK. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1186-1198. [PMID: 35640677 PMCID: PMC9379685 DOI: 10.1016/j.ajpath.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
This study reports that hairy and enhancer of split homolog-1 (HES1), known to repress gene transcription in progenitor cells of several cell lineages, was strongly expressed in cells and tissues of T-cell lymphoma expressing the oncogenic chimeric tyrosine kinase nucleophosmin (NPM)-anaplastic lymphoma kinase [ALK; ALK+ T-cell lymphoma (TCL)]. The structural analysis of the Orange domain of HES1 indicated that HES1 formed a highly stable homodimer. Of note, repression of HES1 expression led to inhibition of ALK+ TCL cell growth in vivo. The expression of the HES1 gene was induced by NPM-ALK through activation of STAT3, which bound to the gene's promoter and induced the gene's transcription. NPM-ALK also directly phosphorylated HES1 protein. In turn, HES1 up-regulated and down-regulated in ALK+ TCL cells, the expression of numerous genes, protein products of which are involved in key cell functions, such as cell proliferation and viability. Among the genes inhibited by HES1 was thioredoxin-interacting protein (TXNIP), encoding a protein implicated in promotion of cell death in various types of cells. Accordingly, ALK+ TCL cells and tissues lacked expression of TXNIP, and its transcription was co-inhibited by HES1 and STAT3 in an NPM-ALK-dependent manner. Finally, the induced expression of TXNIP induced massive apoptotic cell death of ALK+ TCL cells. The results reveal a novel NPM-ALK-controlled pro-oncogenic regulatory network and document an important role of HES and TXNIP in the NPM-ALK-driven oncogenesis, with the former protein displaying oncogenic and the latter tumor suppressor properties.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anindita Nayak
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artur Slupianek
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Agata M Bogusz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Wang X, Hu Y, Zou X, Wang P, Yue H, Guo M, Li Z, Gong P. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel ALK inhibitors. Bioorg Med Chem 2022; 66:116794. [PMID: 35576654 DOI: 10.1016/j.bmc.2022.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
To overcome drug resistance caused by ALK kinase mutations especially G1202R, two series of novel 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety were designed, synthesized and evaluated for their biological activities. Among all the target compounds, B10 efficiently inhibited the proliferation of ALK-positive Karpas299 and H2228 cells both with IC50 values of 0.07 μM. In addition, B10 exhibited remarkable enzymatic inhibitory potency with IC50 values of 4.59 nM, 2.07 nM and 5.95 nM toward ALKWT, ALKL1196M and ALKG1202R, respectively. Furthermore, B10 induced apoptosis in H2228 cell and caused cell cycle arrest in G2/M phase. Ultimately, the binding modes of B10 with ALKWT and ALKG1202R were ideally established, which further confirmed the structural basis in accordance with the SARs analysis. These results indicated that B10 was a potent ALK inhibitor for ALKG1202R mutation treatment and deserved for further investigation.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yiran Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinyu Zou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Pengfei Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hao Yue
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Mingzhang Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zefei Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
8
|
Sheikh IN, Elgehiny A, Ragoonanan D, Mahadeo KM, Nieto Y, Khazal S. Management of Aggressive Non-Hodgkin Lymphomas in the Pediatric, Adolescent, and Young Adult Population: An Adult vs. Pediatric Perspective. Cancers (Basel) 2022; 14:2912. [PMID: 35740580 PMCID: PMC9221186 DOI: 10.3390/cancers14122912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a broad entity which comprises a number of different types of lymphomatous malignancies. In the pediatric and adolescent population, the type and prognosis of NHL varies by age and gender. In comparison to adults, pediatric and adolescent patients generally have better outcomes following treatment for primary NHL. However, relapsed/refractory (R/R) disease is associated with poorer outcomes in many types of NHL such as diffuse large B cell lymphoma and Burkitt lymphoma. Newer therapies have been approved in the use of primary NHL in the pediatric and adolescent population such as Rituximab and other therapies such as chimeric antigen receptor T-cell (CAR T-cell) therapy are under investigation for the treatment of R/R NHL. In this review, we feature the characteristics, diagnosis, and treatments of the most common NHLs in the pediatric and adolescent population and also highlight the differences that exist between pediatric and adult disease. We then detail the areas of treatment advances such as immunotherapy with CAR T-cells, brentuximab vedotin, and blinatumomab as well as cell cycle inhibitors and describe areas where further research is needed. The aim of this review is to juxtapose established research regarding pediatric and adolescent NHL with recent advancements as well as highlight treatment gaps where more investigation is needed.
Collapse
Affiliation(s)
- Irtiza N. Sheikh
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Amr Elgehiny
- Department of Pediatrics, McGovern Medical School, The University of Texas at Houston Health Science Center, Houston, TX 77030, USA;
| | - Dristhi Ragoonanan
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Kris M. Mahadeo
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Yago Nieto
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sajad Khazal
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| |
Collapse
|
9
|
Cho J, Yoon SE, Kim SJ, Ko YH, Kim WS. Comparison of tumor mutation burden of 300 various non-Hodgkin lymphomas using panel based massively parallel sequencing. BMC Cancer 2021; 21:972. [PMID: 34461835 PMCID: PMC8404326 DOI: 10.1186/s12885-021-08695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Tumor mutation burden is an emerging biomarker for immunotherapy. Although several clinical trials for immunotherapy in lymphoma have been carried out, the mutation burden of various lymphomas is not well known yet. Thus, the objective of this study was to compare tumor mutation burden of various non-Hodgkin lymphomas using panel based massively parallel sequencing. METHODS We conducted 405 gene panel based massively parallel sequencing of 300 non-Hodgkin lymphomas and investigate the number of SNV/Indel in each lymphoma. RESULTS The number of SNV/Indel was higher in mature B-cell lymphoma than in mature T- and NK-cell lymphoma. (P < 0.001) The number of SNV/Indel in primary mediastinal large B-cell lymphoma and primary diffuse large B-cell lymphoma of the central nervous system was the highest, which was significantly higher than that in diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS).(P = 0.030 and P = 0.008, respectively) The SNV/Indel number in EBV-positive DLBCL NOS was significantly lower than that in DLBCL NOS. (P = 0.048) Peripheral T-cell lymphoma, NOS showed no significant difference in the number of SNV/Indel from extranodal NK/T-cell lymphoma, nasal type (P = 0.942) or angioimmunoblastic T-cell lymphoma (P = 0.739). The number of SNV/Indel in anaplastic large cell lymphoma, ALK-positive was significantly lower than that in anaplastic large cell lymphoma, ALK-negative (P = 0.049). It was the lowest among all the lymphomas considered. CONCLUSION Various lymphomas have different mutation burdens. Thus, tumor mutation burden can be used as a promising biomarker for immunotherapy in lymphomas.
Collapse
Affiliation(s)
- Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Young Hyeh Ko
- Department of Pathology, Korea University Guro hospital, #148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
- Department of Pathology, Hanyang University hospital, #222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
10
|
Merlio JP, Kadin ME. Cytokines, Genetic Lesions and Signaling Pathways in Anaplastic Large Cell Lymphomas. Cancers (Basel) 2021; 13:4256. [PMID: 34503066 PMCID: PMC8428234 DOI: 10.3390/cancers13174256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
ALCL is a tumor of activated T cells and possibly innate lymphoid cells with several subtypes according to clinical presentation and genetic lesions. On one hand, the expression of transcription factors and cytokine receptors triggers signaling pathways. On the other hand, ALCL tumor cells also produce many proteins including chemokines, cytokines and growth factors that affect patient symptoms. Examples are accumulation of granulocytes stimulated by IL-8, IL-17, IL-9 and IL-13; epidermal hyperplasia and psoriasis-like skin lesions due to IL-22; and fever and weight loss in response to IL-6 and IFN-γ. In this review, we focus on the biology of the main ALCL subtypes as the identification of signaling pathways and ALCL-derived cytokines offers opportunities for targeted therapies.
Collapse
Affiliation(s)
- Jean-Philippe Merlio
- Tumor Biology and Tumor Bank Laboratory, Centre Hospitalier et Universitaire de Bordeaux, 33600 Pessac, France
- INSERM U1053, University Bordeaux, 33000 Bordeaux, France
| | - Marshall E. Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
- Department of Dermatology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
11
|
Tesena P, Kingkaw A, Vongsangnak W, Pitikarn S, Phaonakrop N, Roytrakul S, Kovitvadhi A. Preliminary Study: Proteomic Profiling Uncovers Potential Proteins for Biomonitoring Equine Melanocytic Neoplasm. Animals (Basel) 2021; 11:1913. [PMID: 34199079 PMCID: PMC8300200 DOI: 10.3390/ani11071913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/12/2023] Open
Abstract
Equine melanocytic neoplasm (EMN) is a cutaneous neoplasm and is mostly observed in aged grey horses. This preliminary study aimed to identify potential proteins to differentiate normal, mild and severe EMN from serum proteomic profiling. Serum samples were collected from 25 grey horses assigned to three groups: normal (free of EMN; n = 10), mild (n = 6) and severe EMN (n = 9). To explore the differences in proteins between groups, proteomic profiling and analysis were employed. Accordingly, 8241 annotated proteins out of 8725 total proteins were compared between normal and EMN groups and inspected based on differentially expressed proteins (DEPs). Through DEP analysis, 95 significant DEPs differed between normal and EMN groups. Among these DEPs, 41 significant proteins were categorised according to protein functions. Based on 41 significant proteins, 10 were involved in metabolism and 31 in non-metabolism. Interestingly, phospholipid phosphatase6 (PLPP6) and ATPase subunit alpha (Na+/K+-ATPase) were considered as potential proteins uniquely expressed in mild EMN and related to lipid and energy metabolism, respectively. Non-metabolism-related proteins (BRCA1, phosphorylase B kinase regulatory subunit: PHKA1, tyrosine-protein kinase receptor: ALK and rho-associated protein kinase: ROCK1) correlated to melanoma development differed among all groups. The results of our study provide a foundation for early EMN biomonitoring and prevention.
Collapse
Affiliation(s)
- Parichart Tesena
- Graduate Student in Animal Health and Biomedical Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom 73170, Thailand
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Surakiet Pitikarn
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Drieux F, Ruminy P, Sater V, Marchand V, Fataccioli V, Lanic MD, Viennot M, Viailly PJ, Sako N, Robe C, Dupuy A, Vallois D, Veresezan L, Poullot E, Picquenot JM, Bossard C, Parrens M, Lemonnier F, Jardin F, de Leval L, Gaulard P. Detection of Gene Fusion Transcripts in Peripheral T-Cell Lymphoma Using a Multiplexed Targeted Sequencing Assay. J Mol Diagn 2021; 23:929-940. [PMID: 34147695 DOI: 10.1016/j.jmoldx.2021.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022] Open
Abstract
The genetic basis of peripheral T-cell lymphoma (PTCL) is complex and encompasses several recurrent fusion transcripts discovered over the past years by means of massive parallel sequencing. However, there is currently no affordable and rapid technology for their simultaneous detection in clinical samples. Herein, we developed a multiplex ligation-dependent RT-PCR-based assay, followed by high-throughput sequencing, to detect 33 known PTCL-associated fusion transcripts. Anaplastic lymphoma kinase (ALK) fusion transcripts were detected in 15 of 16 ALK-positive anaplastic large-cell lymphomas. The latter case was further characterized by a novel SATB1_ALK fusion transcript. Among 239 other PTCLs, representative of nine entities, non-ALK fusion transcripts were detected in 24 samples, mostly of follicular helper T-cell (TFH) derivation. The most frequent non-ALK fusion transcript was ICOS_CD28 in nine TFH-PTCLs, one PTCL not otherwise specified, and one adult T-cell leukemia/lymphoma, followed by VAV1 rearrangements with multiple partners (STAP2, THAP4, MYO1F, and CD28) in five samples (three PTCL not otherwise specified and two TFH-PTCLs). The other rearrangements were CTLA4_CD28 (one TFH-PTCL), ITK_SYK (two TFH-PTCLs), ITK_FER (one TFH-PTCL), IKZF2_ERBB4 (one TFH-PTCL and one adult T-cell leukemia/lymphoma), and TP63_TBL1XR1 (one ALK-negative anaplastic large-cell lymphoma). All fusions detected by our assay were validated by conventional RT-PCR and Sanger sequencing in 30 samples with adequate material. The simplicity and robustness of this targeted multiplex assay make it an attractive tool for the characterization of these heterogeneous diseases.
Collapse
Affiliation(s)
- Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, Rouen, France; Pathology Department, Centre Henri Becquerel, Rouen, France; INSERM U955, Université Paris-Est, Créteil, France
| | | | | | | | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | | | - Nouhoum Sako
- INSERM U955, Université Paris-Est, Créteil, France
| | | | | | - David Vallois
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Elsa Poullot
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | - Marie Parrens
- Pathology Department, Hôpital Haut-Lévêque, Bordeaux, France
| | - François Lemonnier
- INSERM U955, Université Paris-Est, Créteil, France; Hematology Department, Lymphoma Unit, Henri Mondor Hospital, Public Assistance Hospital of Paris, Créteil, France
| | | | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
13
|
Sun X, Fang X, Jiang Y. Successful combination of crizotinib and hematopoietic stem cell transplantation in relapsed ALK-positive ALCL. Indian J Cancer 2020; 58:108-111. [PMID: 33402581 DOI: 10.4103/ijc.ijc_961_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We report a case wherein a combination of crizotinib and hematopoietic stem cell transplantation (HSCT) cured a 20-year-old woman with relapsed and refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK-positive ALCL). Although she received cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide (CHOPE) as the first-line chemotherapy from the beginning, the disease progressed rapidly with the emergence of bone marrow invasion and hemophagocytic syndrome. Vincristine, idarubicin, l-asparaginase, and prednisone (VILP) chemotherapy was not effective. Therefore, the patient received off-label use of crizotinib (an ALK inhibitor) and her condition improved rapidly. Subsequently, she received allogeneic hematopoietic stem cell transplantation (allo-HSCT) and achieved complete remission (CR) a month later. Later, crizotinib was used as a maintenance treatment for 3 months and discontinued because of adverse reactions. Our patient has been in CR for 3 years.
Collapse
Affiliation(s)
- Xue Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Discovery of 2-aminopyridines bearing a pyridone moiety as potent ALK inhibitors to overcome the crizotinib-resistant mutants. Eur J Med Chem 2019; 183:111734. [DOI: 10.1016/j.ejmech.2019.111734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/03/2023]
|
15
|
Ismail S, Haydar M, Ghanem A, Alkadi S, Al-Shehabi Z. Pediatric mediastinal ALK- negative anaplastic large cell lymphoma (Hodgkin-like pattern) in a 13-year-old girl: a case report and review of literature. Oxf Med Case Reports 2019; 2019:omz077. [PMID: 31772744 PMCID: PMC6735755 DOI: 10.1093/omcr/omz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 07/07/2019] [Indexed: 11/14/2022] Open
Abstract
Anaplastic large-cell Lymphoma (ALCL) is a rare type of non-Hodgkin lymphoma that is characterized by an entity of large neoplastic cells labeled by the Ki-1 antibody. It constitutes ~2% of all lymphoid neoplasms and is divided into two main categories: anaplastic large-cell kinase (ALK)+ALCL and ALK-ALCL that is recognized by the absence of ALK expression and mostly affects men at older ages. Thus, in this report we present a rare case of ALK-negative ALCL (ALK-ALCL) that was described and diagnosed in a 13-year-old girl in the mediastinum. Highlighting the rarity of manifestation at younger ages and the importance of using immunohistochemical staining in the differential diagnosis of this lymphoid neoplasm.
Collapse
Affiliation(s)
- Sawsan Ismail
- Department of Pathology, Faculty of Medicine, Tishreen University, Lattakia, Syria
| | - Mariana Haydar
- Department of Pediatrics, Pediatrics and Obstetrics Hospital, Lattakia, Syria
| | - Abdulmoniem Ghanem
- Department of Pediatrics, Faculty of Medicine, Tishreen University, Lattakia, Syria
| | - Sulman Alkadi
- Department of Thoracic Surgery, Faculty of Medicine, Tishreen University, Lattakia, Syria
| | - Zuheir Al-Shehabi
- Department of Pathology, Faculty of Medicine, Tishreen University, Lattakia, Syria
| |
Collapse
|
16
|
Irshaid L, Xu ML. ALCL by any other name: the many facets of anaplastic large cell lymphoma. Pathology 2019; 52:100-110. [PMID: 31706671 DOI: 10.1016/j.pathol.2019.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) encompass a group of CD30(+) non-Hodgkin T-cell lymphomas. While the different subtypes of ALCLs may share overlapping clinical patient demographics as well as histological and immunohistochemical phenotypes, these tumours can drastically differ in clinical behaviour and genetic profiles. Currently, four distinct ALCL entities are recognised in the 2016 WHO classification: anaplastic lymphoma kinase (ALK)(+), ALK(-), primary cutaneous and breast implant-associated. ALK(+) ALCL demonstrates a spectrum of cell cytology ranging from small to large lymphoma cells and characteristic 'hallmark' cells. ALK(+) ALCL consistently demonstrates ALK gene rearrangements and carries a favourable prognosis. ALK(-) ALCL morphologically and immunohistochemically mimics ALK(+) ALCL but lacks the ALK gene rearrangement. ALK(-) ALCLs are associated with variable prognoses depending on specific gene rearrangements; while DUSP22-rearranged cases have favourable outcomes similar to ALK(+) ALCLs, cases with p63 rearrangements carry a dismal prognosis and 'triple-negative' cases (those lacking ALK, DUSP22 and TP63 rearrangements) have an intermediate prognosis. Primary cutaneous ALCL presents as a skin lesion, lacks the ALK gene translocation and carries a favourable prognosis, similar or superior to ALK(+) ALCL. Breast implant-associated ALCL presents as a seroma with a median of 8-10 years after implant placement, lacks the ALK gene translocation and has an overall favourable but variable prognosis, depending on extent of disease at diagnosis and treatment. In this review, we present the clinical, pathological and genetic features of the ALCLs with emphasis on practical points and differential diagnoses for practising pathologists.
Collapse
Affiliation(s)
- Lina Irshaid
- Department of Pathology, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, United States
| | - Mina L Xu
- Department of Pathology, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
17
|
Lie S, Banks P, Lawless C, Lydall D, Petersen J. The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biol 2019; 8:rsob.180015. [PMID: 29720420 PMCID: PMC5990653 DOI: 10.1098/rsob.180015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.
Collapse
Affiliation(s)
- Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Peter Banks
- High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia .,South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia
| |
Collapse
|
18
|
Reed DR, Hall RD, Gentzler RD, Volodin L, Douvas MG, Portell CA. Treatment of Refractory ALK Rearranged Anaplastic Large Cell Lymphoma With Alectinib. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:e247-e250. [PMID: 30992232 DOI: 10.1016/j.clml.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 03/03/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel R Reed
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA.
| | - Richard D Hall
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Ryan D Gentzler
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Leonid Volodin
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Michael G Douvas
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Craig A Portell
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| |
Collapse
|
19
|
Cayrol F, Sterle HA, Díaz Flaqué MC, Barreiro Arcos ML, Cremaschi GA. Non-genomic Actions of Thyroid Hormones Regulate the Growth and Angiogenesis of T Cell Lymphomas. Front Endocrinol (Lausanne) 2019; 10:63. [PMID: 30814977 PMCID: PMC6381017 DOI: 10.3389/fendo.2019.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell lymphomas (TCL) are a heterogeneous group of aggressive clinical lymphoproliferative disorders with considerable clinical, morphological, immunophenotypic, and genetic variation, including ~10-15% of all lymphoid neoplasms. Several evidences indicate an important role of the non-neoplastic microenvironment in promoting both tumor growth and dissemination in T cell malignancies. Thus, dysregulation of integrin expression and activity is associated with TCL survival and proliferation. We found that thyroid hormones acting via the integrin αvβ3 receptor are crucial factors in tumor microenvironment (TME) affecting the pathophysiology of TCL cells. Specifically, TH-activated αvβ3 integrin signaling promoted TCL proliferation and induced and an angiogenic program via the up-regulation of the vascular endothelial growth factor (VEGF). This was observed both on different TCL cell lines representing the different subtypes of human hematological malignancy, and in preclinical models of TCL tumors xenotransplanted in immunodeficient mice as well. Moreover, development of solid tumors by inoculation of murine TCLs in syngeneic hyperthyroid mice, showed increased tumor growth along with increased expression of cell cycle regulators. The genomic or pharmacological inhibition of integrin αvβ3 decreased VEGF production, induced TCL cell death and decreased in vivo tumor growth and angiogenesis. Here, we review the non-genomic actions of THs on TCL regulation and their contribution to TCL development and evolution. These actions not only provide novel new insights on the endocrine modulation of TCL, but also provide a potential molecular target for its treatment.
Collapse
Affiliation(s)
- Florencia Cayrol
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Helena A Sterle
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Celeste Díaz Flaqué
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Laura Barreiro Arcos
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Wang R, Li L, Duan A, Li Y, Liu X, Miao Q, Gong J, Zhen Y. Crizotinib enhances anti-CD30-LDM induced antitumor efficacy in NPM-ALK positive anaplastic large cell lymphoma. Cancer Lett 2019; 448:84-93. [PMID: 30742941 DOI: 10.1016/j.canlet.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Combining antibody-drug conjugates (ADCs) with targeted small-molecule inhibitors can enhance antitumor effects beyond those attainable with monotherapy. In this study, we investigated the therapeutic combination of a CD30-targeting ADC (anti-CD30-lidamycin [LDM]) with a small-molecule inhibitor (crizotinib) of nucleophosmin-anaplastic lymphoma kinase NPM-ALK in CD30+/ALK+ anaplastic large cell lymphoma (ALCL). In vitro, anti-CD30-LDM showed strong synergistic antiproliferative activity when combined with crizotinib. Furthermore, treatment with anti-CD30-LDM plus crizotinib resulted in a stronger induction of cell apoptosis than monotherapy with either treatment. Western blot analysis revealed that ERK1/2 phosphorylation was increased in response to anti-CD30-LDM-induced DNA damage. Interestingly, the addition of crizotinib inhibited the expression of phosphorylated ERK1/2 and further augmented anti-CD30-LDM-mediated apoptosis, providing a potential synergistic mechanism for DNA-damaging agents combined with NPM-ALK inhibitors. In Karpas299 and SU-DHL-1 xenograft models, anti-CD30-LDM plus crizotinib was more effective in inhibiting tumor growth than either treatment alone. This research demonstrated for the first time that the combination of anti-CD30-LDM and crizotinib exhibits a synergistic inhibitory effect in tumor cells. These results provide scientific support for future clinical evaluations of anti-CD30-LDM, or other DNA-damaging agents, combined with NPM-ALK inhibitors.
Collapse
Affiliation(s)
- Rong Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liang Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Aijun Duan
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiujun Liu
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingfang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yongsu Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Immunohistochemical and selected genetic reflex testing of all uterine leiomyosarcomas and STUMPs for ALK gene rearrangement may provide an effective screening tool in identifying uterine ALK-rearranged mesenchymal tumors. Virchows Arch 2018; 473:583-590. [DOI: 10.1007/s00428-018-2428-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023]
|
22
|
PATRI, a Genomics Data Integration Tool for Biomarker Discovery. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2012078. [PMID: 30065933 PMCID: PMC6051285 DOI: 10.1155/2018/2012078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022]
Abstract
The availability of genomic datasets in association with clinical, phenotypic, and drug sensitivity information represents an invaluable source for potential therapeutic applications, supporting the identification of new drug sensitivity biomarkers and pharmacological targets. Drug discovery and precision oncology can largely benefit from the integration of treatment molecular discriminants obtained from cell line models and clinical tumor samples; however this task demands comprehensive analysis approaches for the discovery of underlying data connections. Here we introduce PATRI (Platform for the Analysis of TRanslational Integrated data), a standalone tool accessible through a user-friendly graphical interface, conceived for the identification of treatment sensitivity biomarkers from user-provided genomics data, associated with information on sample characteristics. PATRI streamlines a translational analysis workflow: first, baseline genomics signatures are statistically identified, differentiating treatment sensitive from resistant preclinical models; then, these signatures are used for the prediction of treatment sensitivity in clinical samples, via random forest categorization of clinical genomics datasets and statistical evaluation of the relative phenotypic features. The same workflow can also be applied across distinct clinical datasets. The ease of use of the PATRI tool is illustrated with validation analysis examples, performed with sensitivity data for drug treatments with known molecular discriminants.
Collapse
|
23
|
Ricciuti B, De Giglio A, Mecca C, Arcuri C, Marini S, Metro G, Baglivo S, Sidoni A, Bellezza G, Crinò L, Chiari R. Precision medicine against ALK-positive non-small cell lung cancer: beyond crizotinib. Med Oncol 2018; 35:72. [PMID: 29666949 DOI: 10.1007/s12032-018-1133-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements represent the molecular driver of a subset of non-small cell lung cancers (NSCLCs). Despite the initial response, virtually all ALK-positive patients develop an acquired resistance to the ALK inhibitor crizotinib, usually within 12 months. Several next-generation ALK inhibitors have been developed in order to overcome crizotinib limitation, providing an unprecedented survival for this subset of patients. The aim of this review to summarize the current knowledge on ALK tyrosine kinase inhibitors (TKIs) in the treatment of advanced ALK-positive NSCLC, focusing on the role of novel ALK inhibitors in this setting. In addition, we will discuss their role in the pharmacological management of ALK-positive brain metastasis. Next-generation ALK inhibitors showed an impressive clinical activity in ALK-positive NSCLC, also against the sanctuary site of CNS. Sequential therapy with ALK TKIs appears to be effective in patients who fail a first ALK TKI and translates in clinically meaningful benefit. However, these agents display different activity profiles against crizotinib resistance mutation; therefore re-genotyping the disease at progression in order to administer the right TKI to the right patient is going to be necessary to correctly tailor the treatment. To avoid repeated invasive procedure, noninvasive methods to detect and monitor ALK rearrangement are under clinical investigation.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy.
| | - Andrea De Giglio
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Sabrina Marini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Angelo Sidoni
- Division of Pathology and Histology, Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Guido Bellezza
- Division of Pathology and Histology, Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola FC, Italy
| | - Rita Chiari
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| |
Collapse
|
24
|
Du X, Shao Y, Qin H, Tai Y, Gao H. ALK-rearrangement in non-small-cell lung cancer (NSCLC). Thorac Cancer 2018; 9:423-430. [PMID: 29488330 PMCID: PMC5879058 DOI: 10.1111/1759-7714.12613] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
The ALK gene encodes a transmembrane tyrosine kinase receptor. ALK is physiologically expressed in the nervous system during embryogenesis, but its expression decreases postnatally. ALK first emerged in the field of oncology in 1994 when it was identified to fuse to NPM1 in anaplastic large-cell lymphoma. Since then, ALK has been associated with other types of cancers, including non-small-cell lung cancer (NSCLC). More than 19 different ALK fusion partners have been discovered in NSCLC, including EML4, KIF5B, KLC1, and TPR. Most of these ALK fusions in NSCLC patients respond well to the ALK inhibitor, crizotinib. In this paper, we reviewed fusion partner genes with ALK, detection methods for ALK-rearrangement (ALK-R), and the ALK-tyrosine kinase inhibitor, crizotinib, used in NSCLC patients.
Collapse
Affiliation(s)
- Xue Du
- Department of Pathology, Cancer Center of People's Liberation Army of ChinaAffiliated Hospital of Academy of Military Medical SciencesBeijingChina
| | - Yun Shao
- Department of Pathology, Cancer Center of People's Liberation Army of ChinaAffiliated Hospital of Academy of Military Medical SciencesBeijingChina
| | - Hai‐Feng Qin
- Department of Lung Cancer, Cancer Center of People's Liberation Army of ChinaAffiliated Hospital of Academy of Military Medical SciencesBeijingChina
| | - Yan‐Hong Tai
- Department of Pathology, Cancer Center of People's Liberation Army of ChinaAffiliated Hospital of Academy of Military Medical SciencesBeijingChina
| | - Hong‐Jun Gao
- Department of Lung Cancer, Cancer Center of People's Liberation Army of ChinaAffiliated Hospital of Academy of Military Medical SciencesBeijingChina
| |
Collapse
|
25
|
Treatment Options for Paediatric Anaplastic Large Cell Lymphoma (ALCL): Current Standard and beyond. Cancers (Basel) 2018; 10:cancers10040099. [PMID: 29601554 PMCID: PMC5923354 DOI: 10.3390/cancers10040099] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 01/22/2023] Open
Abstract
Anaplastic Lymphoma Kinase (ALK)-positive Anaplastic Large Cell Lymphoma (ALCL), remains one of the most curable cancers in the paediatric setting; multi-agent chemotherapy cures approximately 65–90% of patients. Over the last two decades, major efforts have focused on improving the survival rate by intensification of combination chemotherapy regimens and employing stem cell transplantation for chemotherapy-resistant patients. More recently, several new and ‘renewed’ agents have offered the opportunity for a change in the paradigm for the management of both chemo-sensitive and chemo-resistant forms of ALCL. The development of ALK inhibitors following the identification of the EML4-ALK fusion gene in Non-Small Cell Lung Cancer (NSCLC) has opened new possibilities for ALK-positive ALCL. The uniform expression of CD30 on the cell surface of ALCL has given the opportunity for anti-CD30 antibody therapy. The re-evaluation of vinblastine, which has shown remarkable activity as a single agent even in the face of relapsed disease, has led to the consideration of a revised approach to frontline therapy. The advent of immune therapies such as checkpoint inhibition has provided another option for the treatment of ALCL. In fact, the number of potential new agents now presents a real challenge to the clinical community that must prioritise those thought to offer the most promise for the future. In this review, we will focus on the current status of paediatric ALCL therapy, explore how new and ‘renewed’ agents are re-shaping the therapeutic landscape for ALCL, and identify the strategies being employed in the next generation of clinical trials.
Collapse
|
26
|
Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T, Ciardiello F, Morgillo F. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer 2018; 17:30. [PMID: 29455642 PMCID: PMC5817803 DOI: 10.1186/s12943-018-0776-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) gene activation is involved in the carcinogenesis process of several human cancers such as anaplastic large cell lymphoma, lung cancer, inflammatory myofibroblastic tumors and neuroblastoma, as a consequence of fusion with other oncogenes (NPM, EML4, TIM, etc) or gene amplification, mutation or protein overexpression. ALK is a transmembrane tyrosine kinase receptor that, upon ligand binding to its extracellular domain, undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. When activated in cancer it represents a target for specific inhibitors, such as crizotinib, ceritinib, alectinib etc. which use has demonstrated significant effectiveness in ALK-positive patients, in particular ALK-positive non- small cell lung cancer. Several mechanisms of resistance to these inhibitors have been described and new strategies are underway to overcome the limitations of current ALK inhibitors.
Collapse
Affiliation(s)
- Carminia Maria Della Corte
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Giuseppe Viscardi
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Raimondo Di Liello
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Morena Fasano
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Erika Martinelli
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Experimental and Internal Medicine "F. Magrassi", University of Campania "Luigi Vanvitelli", via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
27
|
Dehuri P, Bhandary C, Gochhait D, Srinivas BH, Basu D, Siddaraju N. Cytology of cerebrospinal fluid involvement in systemic anaplastic large-cell lymphoma. Cytopathology 2018; 29:303-305. [DOI: 10.1111/cyt.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 12/27/2022]
Affiliation(s)
- P. Dehuri
- Department of Pathology; JIPMER; Puducherry India
| | - C. Bhandary
- Department of Pathology; JIPMER; Puducherry India
| | - D. Gochhait
- Department of Pathology; JIPMER; Puducherry India
| | | | - D. Basu
- Department of Pathology; JIPMER; Puducherry India
| | - N. Siddaraju
- Department of Pathology; JIPMER; Puducherry India
| |
Collapse
|
28
|
Wang R, Li L, Zhang S, Li Y, Wang X, Miao Q, Zhen Y. A novel enediyne-integrated antibody-drug conjugate shows promising antitumor efficacy against CD30 + lymphomas. Mol Oncol 2018; 12:339-355. [PMID: 29316337 PMCID: PMC5830626 DOI: 10.1002/1878-0261.12166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 01/26/2023] Open
Abstract
CD30 is a 120-kDa type I transmembrane glycoprotein belonging to the tumor necrosis factor receptor superfamily. Overexpression of CD30 has been reported in Hodgkin's lymphoma (HL) and anaplastic large-cell lymphoma (ALCL). CD30-targeted treatment with antibody-drug conjugates (ADCs) can lead to promising clinical benefit. Lidamycin (LDM), consisting of an apoprotein LDP and an active enediyne chromophore AE, is a member of the enediyne antibiotic family and one of the most potent antitumor agents. AE and LDP can be dissociated and reconstituted under certain conditions in vitro. LDM is an ideal payload for the preparation of ADCs. In this study, we show the generation, production, and antitumor activity of anti-CD30-LDM, a novel ADC which consists of the intact anti-CD30 antibody and LDM. First, the anti-CD30-LDP fusion protein was constructed and expressed in CHO/dhFr- cells. Anti-CD30-LDP showed specific and high-affinity binding to CD30 and could be internalized into target cells. It also exhibited excellent tumor-targeting capability in vivo. Next, anti-CD30-LDM was prepared by assembling the enediyne molecule AE to the fusion protein anti-CD30-LDP. Anti-CD30-LDM was highly cytotoxic to HL and ALCL cell lines, with IC50 values of 5-50 pm. It can also induce cell apoptosis and G2/M cell cycle arrest. In the Karpas299 xenograft model, the tumor growth was inhibited by 87.76% in mice treated with anti-CD30-LDM and with no discernible adverse effects. Taken together, anti-CD30-LDM shows attractive tumor-targeting capability and antitumor efficacy both in vitro and in vivo and could be a promising candidate for the treatment of CD30+ lymphomas.
Collapse
Affiliation(s)
- Rong Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shenghua Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaofei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Qingfang Miao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Hassler MR, Pulverer W, Lakshminarasimhan R, Redl E, Hacker J, Garland GD, Merkel O, Schiefer AI, Simonitsch-Klupp I, Kenner L, Weisenberger DJ, Weinhaeusel A, Turner SD, Egger G. Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genome-wide DNA Methylation Profiling. Cell Rep 2017; 17:596-608. [PMID: 27705804 PMCID: PMC6066089 DOI: 10.1016/j.celrep.2016.09.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/29/2016] [Accepted: 09/04/2016] [Indexed: 01/06/2023] Open
Abstract
Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK−) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK− ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.
Collapse
Affiliation(s)
- Melanie R Hassler
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Walter Pulverer
- Health & Environment Department, Molecular Diagnostics, Austrian Institute of Technology (AIT), 1190 Vienna, Austria
| | - Ranjani Lakshminarasimhan
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California-Los Angeles, Los Angeles, CA 90089, USA
| | - Elisa Redl
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Hacker
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gavin D Garland
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Ana-Iris Schiefer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, 1210 Vienna, Austria; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California-Los Angeles, Los Angeles, CA 90089, USA
| | - Andreas Weinhaeusel
- Health & Environment Department, Molecular Diagnostics, Austrian Institute of Technology (AIT), 1190 Vienna, Austria
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge CB2 0QQ, UK.
| |
Collapse
|
30
|
Abstract
Anaplastic Large Cell Lymphoma (ALCL) is a clinical and biological heterogeneous disease including systemic ALK positive and ALK negative entities. Whereas ALK positive ALCLs are molecularly characterized and readily diagnosed, specific immunophenotypic or genetic features to define ALK negative ALCL are missing, and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) can be controversial. In recent years, great advances have been made in dissecting the heterogeneity of ALK negative ALCLs and in providing new diagnostic and treatment options for these patients. A new revision of the World Health Organization (WHO) classification promoted ALK negative ALCL to a definite entity that includes cytogenetic subsets with prognostic implications. However, a further understanding of the genetic landscape of ALK negative ALCL is required to dictate more effective therapeutic strategies specifically tailored for each subgroup of patients.
Collapse
|
31
|
van der Krogt JA, Bempt MV, Ferreiro JF, Mentens N, Jacobs K, Pluys U, Doms K, Geerdens E, Uyttebroeck A, Pierre P, Michaux L, Devos T, Vandenberghe P, Tousseyn T, Cools J, Wlodarska I. Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with the variant RNF213-, ATIC- and TPM3-ALK fusions is characterized by copy number gain of the rearranged ALK gene. Haematologica 2017; 102:1605-1616. [PMID: 28659337 PMCID: PMC5685221 DOI: 10.3324/haematol.2016.146571] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by 2p23/ALK aberrations, including the classic t(2;5)(p23;q35)/NPM1-ALK rearrangement present in ~80% of cases and several variant t(2p23/ALK) occurring in the remaining cases. The ALK fusion partners play a key role in the constitutive activation of the chimeric protein and its subcellular localization. Using various molecular technologies, we have characterized ALK fusions in eight recently diagnosed anaplastic large cell lymphoma cases with cytoplasmic-only ALK expression. The identified partner genes included EEF1G (one case), RNF213/ALO17 (one case), ATIC (four cases) and TPM3 (two cases). Notably, all cases showed copy number gain of the rearranged ALK gene, which is never observed in NPM1-ALK-positive lymphomas. We hypothesized that this could be due to lower expression levels and/or lower oncogenic potential of the variant ALK fusions. Indeed, all partner genes, except EEF1G, showed lower expression in normal and malignant T cells, in comparison with NPM1. In addition, we investigated the transformation potential of endogenous Npm1-Alk and Atic-Alk fusions generated by clustered regularly interspaced short palindromic repeats/Cas9 genome editing in Ba/F3 cells. We found that Npm1-Alk has a stronger transformation potential than Atic-Alk, and we observed a subclonal gain of Atic-Alk after a longer culture period, which was not observed for Npm1-Alk. Taken together, our data illustrate that lymphomas driven by the variant ATIC-ALK fusion (and likely by RNF213-ALK and TPM3-ALK), but not the classic NPM1-ALK, require an increased dosage of the ALK hybrid gene to compensate for the relatively low and insufficient expression and signaling properties of the chimeric gene.
Collapse
Affiliation(s)
| | - Marlies Vanden Bempt
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | | - Nicole Mentens
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | - Kris Jacobs
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | | | | - Ellen Geerdens
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | | - Pascal Pierre
- Department of Hematology, Cliniques Sud Luxembourg, Arlon, Belgium
| | | | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, Belgium
| | - Peter Vandenberghe
- Center for Human Genetics, KU Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research KU Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Belgium.,Center for Cancer Biology, VIB, Leuven, Belgium
| | | |
Collapse
|
32
|
Roussel H, De Guillebon E, Biard L, Mandavit M, Gibault L, Fabre E, Antoine M, Hofman P, Beau-Faller M, Blons H, Danel C, Barthes FLP, Gey A, Granier C, Wislez M, Laurent-Puig P, Oudard S, Bruneval P, Badoual C, Cadranel J, Tartour E. Composite biomarkers defined by multiparametric immunofluorescence analysis identify ALK-positive adenocarcinoma as a potential target for immunotherapy. Oncoimmunology 2017; 6:e1286437. [PMID: 28507793 DOI: 10.1080/2162402x.2017.1286437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors have been successfully developed for non-small cell lung carcinoma (NSCLC) displaying chromosomal rearrangements of the ALK gene, but unfortunately resistance invariably occurs. Blockade of the PD-1-PD-L1/2 inhibitory pathway constitutes a breakthrough for the treatment of NSCLC. Some predictive biomarkers of clinical response to this therapy are starting to emerge, such as PD-L1 expression by tumor/stromal cells and infiltration by CD8+ T cells expressing PD-1. To more effectively integrate all of these potential biomarkers of clinical response to immunotherapy, we have developed a multiparametric immunofluorescence technique with automated immune cell counting to comprehensively analyze the tumor microenvironment of ALK-positive adenocarcinoma (ADC). When analyzed as either a continuous or a dichotomous variable, the mean number of tumor cells expressing PD-L1 (p = 0.012) and the percentage of tumor cells expressing PD-L1 were higher in ALK-positive ADC than in EGFR-mutated ADC or WT (non-EGFR-mutated and non-KRAS-mutated) NSCLC. A very strong correlation between PD-L1 expression on tumor cells and intratumoral infiltration by CD8+ T cells was observed, suggesting that an adaptive mechanism may partly regulate this expression. A higher frequency of tumors combining positive PD-L1 expression and infiltration by intratumoral CD8+ T cells or PD-1+CD8+ T cells was also observed in ALK-positive lung cancer patients compared with EGFR-mutated (p = 0.03) or WT patients (p = 0.012). These results strongly suggest that a subgroup of ALK-positive lung cancer patients may constitute good candidates for anti-PD-1/-PD-L1 therapies.
Collapse
Affiliation(s)
- Hélène Roussel
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Eléonore De Guillebon
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Lucie Biard
- Department of Biostatistics and Medical Information, Hôpital Saint Louis, Paris, France
| | - Marion Mandavit
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Laure Gibault
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Elisabeth Fabre
- Department of Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Martine Antoine
- Department of Pathology, Hôpital Tenon, Paris, France.,GRC04 Théranoscan, Université P&M Curie, Paris, France
| | - Paul Hofman
- Department of Pathology, Hôpital Pasteur, Nice, France
| | - Michèle Beau-Faller
- Department of Biochemistry and Molecular Biology, Hôpital de Hautepierre Strasbourg, Strasbourg, France
| | - Hélène Blons
- Department of Biochemistry and Molecular BiologyINSERM UMR-S 1147, Hôpital Européen Georges Pompidou, Paris, France
| | - Claire Danel
- Department of Pathology Pompidou, Hôpital Bichat, Paris, France
| | | | - Alain Gey
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service d'Immunologie biologique, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Clémence Granier
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Service d'Immunologie biologique, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Marie Wislez
- GRC04 Théranoscan, Université P&M Curie, Paris, France.,Department of Pneumology, Hôpital Tenon, APHP, Paris, France
| | - Pierre Laurent-Puig
- Department of Biochemistry and Molecular BiologyINSERM UMR-S 1147, Hôpital Européen Georges Pompidou, Paris, France
| | - Stéphane Oudard
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Patrick Bruneval
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Cécile Badoual
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jacques Cadranel
- GRC04 Théranoscan, Université P&M Curie, Paris, France.,Department of Pneumology, Hôpital Tenon, APHP, Paris, France
| | - Eric Tartour
- INSERM U970, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Service d'Immunologie biologique, Hôpital Européen Georges Pompidou, APHP, Paris, France
| |
Collapse
|
33
|
Zhao Z, Verma V, Zhang M. Anaplastic lymphoma kinase: Role in cancer and therapy perspective. Cancer Biol Ther 2016; 16:1691-701. [PMID: 26529396 DOI: 10.1080/15384047.2015.1095407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is correlated with oncogenesis in different types of cancers, such as anaplastic large cell lymphoma, lung cancer, neuroblastoma, and even breast cancer, by abnormal fusion of ALK or non-fusion ALK activation. ALK is a receptor tyrosine kinase, with a single transmembrane domain, that plays an important role in development. Upon ligand binding to the extracellular domain, the receptor undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. In recent years, ALK inhibitors have been developed for cancer treatment. These inhibitors target ALK activity and show effectiveness in ALK-positive non-small cell lung cancer. However, acquired treatment resistance makes the future of this therapy unclear; new strategies are underway to overcome the limitations of current ALK inhibitors.
Collapse
Affiliation(s)
- Zhihong Zhao
- a Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Vivek Verma
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Mutian Zhang
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| |
Collapse
|
34
|
Miles RR, Shah RK, Frazer JK. Molecular genetics of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2016; 173:582-96. [PMID: 26969846 DOI: 10.1111/bjh.14011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular genetic abnormalities are ubiquitous in non-Hodgkin lymphoma (NHL), but genetic changes are not yet used to define specific lymphoma subtypes. Certain recurrent molecular genetic abnormalities in NHL underlie molecular pathogenesis and/or are associated with prognosis or represent potential therapeutic targets. Most molecular genetic studies of B- and T-NHL have been performed on adult patient samples, and the relevance of many of these findings for childhood, adolescent and young adult NHL remains to be demonstrated. In this review, we focus on NHL subtypes that are most common in young patients and emphasize features actually studied in younger NHL patients. This approach highlights what is known about NHL genetics in young patients but also points to gaps that remain, which will require cooperative efforts to collect and share biological specimens for genomic and genetic analyses in order to help predict outcomes and guide therapy in the future.
Collapse
Affiliation(s)
- Rodney R Miles
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Rikin K Shah
- Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Kimble Frazer
- E.L. and Thelma Gaylord Chair in Pediatric Oncology, Jimmy Everest Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
35
|
Wu J, Savooji J, Liu D. Second- and third-generation ALK inhibitors for non-small cell lung cancer. J Hematol Oncol 2016; 9:19. [PMID: 26951079 PMCID: PMC4782349 DOI: 10.1186/s13045-016-0251-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022] Open
Abstract
Crizotinib as the first-generation ALK inhibitor has shown significant activity in ALK-mutated non-small cell lung cancer (NSCLC). Second- and third-generation ALK inhibitors are entering clinical applications for ALK+ NSCLC. In addition, a third-generation ALK inhibitor, lorlatinib (PF-06463922), was reported to resensitize NSCLC to crizotinib. This review provided a summary of clinical development of alectinib, ceritinib, brigatinib (AP26113), and lorlatinib.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - John Savooji
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Delong Liu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
36
|
Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas. Pharmacol Res 2016; 109:55-63. [PMID: 26855318 DOI: 10.1016/j.phrs.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/29/2022]
Abstract
Thyroid hormones (THs) are important regulators of metabolism, differentiation and cell proliferation. They can modify the physiology of human and murine T cell lymphomas (TCL). These effects involve genomic mechanisms, mediated by specific nuclear receptors (TR), as well as nongenomic mechanisms, that lead to the activation of different signaling pathways through the activation of a membrane receptor, the integrin αvβ3. Therefore, THs are able to induce the survival and growth of TCL. Specifically, the signaling induced by THs through the integrin αvβ3 activates proliferative and angiogenic programs, mediated by the regulation of the vascular endothelial growth factor (VEGF). The genomic or pharmacologic inhibition of integrin αvβ3 reduces the production of VEGF and induces cell death both in vitro and in xenograft models of human TCL. Here we review the mechanisms involved in the modulation of the physiology of TCL induced by THs, the analysis of the interaction between genomic and nongenomic actions of THs and their contribution to T cell lymphomagenesis. These actions of THs suggest a novel mechanism for the endocrine modulation of the physiopathology of TCL and they provide a potential molecular target for its treatment.
Collapse
|
37
|
Xue W, Sheng Y, Weng X, Zhu Y, Zhao Y, Xu P, Fei X, Chen X, Wang L, Zhao W. Clinical characteristics and prognostic factors of patients with mature T-cell lymphoid malignancies: a single-institution study of 225 cases. Front Med 2015; 9:468-77. [DOI: 10.1007/s11684-015-0419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022]
|
38
|
Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood 2015; 127:221-32. [PMID: 26463425 DOI: 10.1182/blood-2014-12-614503] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 10/06/2015] [Indexed: 11/20/2022] Open
Abstract
Anaplastic large-cell lymphoma (ALCL) is a clinical and biological heterogeneous disease that includes systemic anaplastic lymphoma kinase (ALK)-positive and ALK-negative entities. To discover biomarkers and/or genes involved in ALK-negative ALCL pathogenesis, we applied the cancer outlier profile analysis algorithm to a gene expression profiling data set including 249 cases of T-cell non-Hodgkin lymphoma and normal T cells. Ectopic coexpression of ERBB4 and COL29A1 genes was detected in 24% of ALK-negative ALCL patients. RNA sequencing and 5' RNA ligase-mediated rapid amplification of complementary DNA ends identified 2 novel ERBB4-truncated transcripts displaying intronic transcription start sites. By luciferase assays, we defined that the expression of ERBB4-aberrant transcripts is promoted by endogenous intronic long terminal repeats. ERBB4 expression was confirmed at the protein level by western blot analysis and immunohistochemistry. Lastly, we demonstrated that ERBB4-truncated forms show oncogenic potentials and that ERBB4 pharmacologic inhibition partially controls ALCL cell growth and disease progression in an ERBB4-positive patient-derived tumorgraft model. In conclusion, we identified a new subclass of ALK-negative ALCL characterized by aberrant expression of ERBB4-truncated transcripts carrying intronic 5' untranslated regions.
Collapse
|
39
|
ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol 2015; 28:904-12. [PMID: 25857825 DOI: 10.1038/modpathol.2015.49] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 01/06/2023]
Abstract
Epithelioid benign fibrous histiocytoma, also known as 'epithelioid cell histiocytoma,' has traditionally been considered a morphologic variant of cutaneous fibrous histiocytoma (dermatofibroma). In addition to its characteristic epithelioid cytomorphology, several phenotypic differences suggest that epithelioid fibrous histiocytoma may differ biologically from other variants. Recently, ALK rearrangement was described in two cases of epithelioid fibrous histiocytoma and separately in two cases reported as 'atypical' fibrous histiocytoma (with epithelioid features), with corresponding ALK expression detectable by immunohistochemistry. The goals of this study were to determine the frequency of ALK expression by immunohistochemistry in epithelioid fibrous histiocytoma, to determine its value for the diagnosis of epithelioid fibrous histiocytoma among variants and other histologic mimics, and to evaluate ALK gene rearrangement in epithelioid fibrous histiocytoma. ALK protein expression was evaluated in whole tissue sections from 33 epithelioid fibrous histiocytomas, 41 other cases of fibrous histiocytoma (11 conventional and 10 each cellular, atypical, and aneurysmal types), 10 cutaneous syncytial myoepitheliomas, and 5 atypical fibroxanthomas, using a mouse anti-ALK monoclonal antibody. Fluorescence in situ hybridization (FISH) was performed using break-apart probes. In total, 29/33 (88%) cases of epithelioid fibrous histiocytoma showed diffuse cytoplasmic ALK expression. Staining was moderate to strong in intensity in all cases except one, which showed diffuse weak expression. All other tumor types were negative for ALK expression. FISH demonstrated ALK rearrangement in all ALK-immunoreactive cases evaluated (n=13), and not in one ALK expression-negative epithelioid fibrous histiocytoma successfully examined. In conclusion, the majority of epithelioid fibrous histiocytomas demonstrate ALK expression and ALK gene rearrangement. ALK expression is not seen in other variants of fibrous histiocytoma, providing a useful diagnostic tool to distinguish epithelioid fibrous histiocytoma from most histologic mimics. The expression of ALK suggests that epithelioid fibrous histiocytoma is a biologically distinct tumor type, unrelated to conventional fibrous histiocytoma and histologic variants.
Collapse
|