1
|
Masui K, Cavenee WK, Mischel PS, Shibata N. The metabolomic landscape plays a critical role in glioma oncogenesis. Cancer Sci 2022; 113:1555-1563. [PMID: 35271755 PMCID: PMC9128185 DOI: 10.1111/cas.15325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022] Open
Abstract
Cancer cells depend on metabolic reprogramming for survival, undergoing profound shifts in nutrient sensing, nutrient uptake and flux through anabolic pathways, in order to drive nucleotide, lipid, and protein synthesis and provide key intermediates needed for those pathways. Although metabolic enzymes themselves can be mutated, including to generate oncometabolites, this is a relatively rare event in cancer. Usually, gene amplification, overexpression, and/or downstream signal transduction upregulate rate‐limiting metabolic enzymes and limit feedback loops, to drive persistent tumor growth. Recent molecular‐genetic advances have revealed discrete links between oncogenotypes and the resultant metabolic phenotypes. However, more comprehensive approaches are needed to unravel the dynamic spatio‐temporal regulatory map of enzymes and metabolites that enable cancer cells to adapt to their microenvironment to maximize tumor growth. Proteomic and metabolomic analyses are powerful tools for analyzing a repertoire of metabolic enzymes as well as intermediary metabolites, and in conjunction with other omics approaches could provide critical information in this regard. Here, we provide an overview of cancer metabolism, especially from an omics perspective and with a particular focus on the genomically well characterized malignant brain tumor, glioblastoma. We further discuss how metabolomics could be leveraged to improve the management of patients, by linking cancer cell genotype, epigenotype, and phenotype through metabolic reprogramming.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
2
|
Gill EL, Patel K, Rakheja D. Oncometabolites and their role in cancer. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Quantitation of 2-hydroxyglutarate in human plasma via LC–MS/MS using a surrogate analyte approach. Bioanalysis 2020; 12:1149-1159. [DOI: 10.4155/bio-2020-0131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: 2-Hydroxyglutarate (2-HG) is a target engagement biomarker in patients after treatment with inhibitors of mutated isocitrate dehydrogenase (mIDH). Accurate measurement of 2-HG is critical for monitoring the inhibition effectiveness of the inhibitors. Materials & methods: Human plasma samples were spiked with stable isotope labelled internal standard, processed by protein precipitation, and analyzed using LC–MS/MS. This method was validated following regulatory guidance and has been successfully applied in a clinical study for mIDH inhibition. Results: An LC–MS/MS method with a surrogate analyte approach was developed and validated to measure 2-HG in human plasma with acceptable intra- and inter-assay accuracy and precision. Conclusion: A sensitive and robust LC–MS/MS method was developed and validated for measuring 2-HG in human plasma.
Collapse
|
4
|
Thomas X, Elhamri M, Heiblig M. Emerging pharmacotherapies for elderly acute myeloid leukemia patients. Expert Rev Hematol 2020; 13:619-643. [PMID: 32311298 DOI: 10.1080/17474086.2020.1758058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a disease mainly seen in the elderly, for which treatment is undergoing rapid changes. Although recent studies have supported the survival benefit of induction chemotherapy in fit patients and that of hypomethylating agents (HMAs) in non-induction candidates, treatment of this patient age population remains a significant challenge for the treating oncologist. AREAS COVERED In this review, we will examine effectiveness and safety outcomes of upcoming novel treatment strategies in elderly (≥60 years old) patients with AML, highlight the current literature and ongoing trials able to maximize therapeutic options in this heterogeneous patient population. EXPERT OPINION Current developments including new chemotherapeutic strategies and combinations of HMAs with novel drugs targeting epigenetic or immunomodulatory pathways are underway to improve patient survival and quality of life.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud University Hospital , Pierre Bénite, France
| | - Mohamed Elhamri
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud University Hospital , Pierre Bénite, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud University Hospital , Pierre Bénite, France
| |
Collapse
|
5
|
Brown TJ, Patel PA, Oliver D, Churchill H, Monaghan SA, Collins RH. Next-Generation Sequencing Directs Therapy and Delineates a Clonal Relationship in Mast Cell Sarcoma and Acute Myeloid Leukemia. JCO Precis Oncol 2019; 3:1-6. [DOI: 10.1200/po.18.00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Prapti A. Patel
- The University of Texas Southwestern Medical Center, Dallas, TX
| | - Dwight Oliver
- The University of Texas Southwestern Medical Center, Dallas, TX
| | - Hywyn Churchill
- The University of Texas Southwestern Medical Center, Dallas, TX
| | | | | |
Collapse
|
6
|
Brunner AM, Neuberg DS, Wander SA, Sadrzadeh H, Ballen KK, Amrein PC, Attar E, Hobbs GS, Chen YB, Perry A, Connolly C, Joseph C, Burke M, Ramos A, Galinsky I, Yen K, Yang H, Straley K, Agresta S, Adamia S, Borger DR, Iafrate A, Graubert TA, Stone RM, Fathi AT. Isocitrate dehydrogenase 1 and 2 mutations, 2-hydroxyglutarate levels, and response to standard chemotherapy for patients with newly diagnosed acute myeloid leukemia. Cancer 2019; 125:541-549. [PMID: 30422308 DOI: 10.1002/cncr.31729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) cells harboring mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) produce the oncometabolite 2-hydroxyglutarate (2HG). This study prospectively evaluated the 2HG levels, IDH1/2 mutational status, and outcomes of patients receiving standard chemotherapy for newly diagnosed AML. METHODS Serial samples of serum, urine, and bone marrow aspirates were collected from patients newly diagnosed with AML, and 2HG levels were measured with mass spectrometry. Patients with baseline serum 2HG levels greater than 1000 ng/mL or marrow pellet 2HG levels greater than 1000 ng/2 × 106 cells, which suggested the presence of an IDH1/2 mutation, underwent serial testing. IDH1/2 mutations and estimated variant allele frequencies were identified. AML characteristics were compared with the Wilcoxon test and Fisher's exact test. Disease-free survival and overall survival (OS) were evaluated with log-rank tests and Cox regression. RESULTS Two hundred and two patients were treated for AML; 51 harbored IDH1/2 mutations. IDH1/2-mutated patients had significantly higher 2HG levels in serum, urine, bone marrow aspirates, and aspirate cell pellets than wild-type patients. A serum 2HG level greater than 534.5 ng/mL was 98.8% specific for the presence of an IDH1/2 mutation. Patients with IDH1/2-mutated AML treated with 7+3-based induction had a 2-year event-free survival (EFS) rate of 44% and a 2-year OS rate of 57%. There was no difference in complete remission rates, EFS, or OS between IDH1/2-mutated and wild-type patients. Decreased serum 2HG levels on day 14 as a proportion of the baseline were significantly associated with improvements in EFS (P = .047) and OS (P = .019) in a multivariate analysis. CONCLUSIONS Among patients with IDH1/2-mutated AML, 2HG levels are highly specific for the mutational status at diagnosis, and they have prognostic relevance in patients receiving standard chemotherapy.
Collapse
Affiliation(s)
| | | | - Seth A Wander
- Massachusetts General Hospital, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | - Eyal Attar
- Massachusetts General Hospital, Boston, Massachusetts.,Agios Pharmaceuticals, Cambridge, Massachusetts
| | | | - Yi-Bin Chen
- Massachusetts General Hospital, Boston, Massachusetts
| | - Ashley Perry
- Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - Meghan Burke
- Massachusetts General Hospital, Boston, Massachusetts
| | - Aura Ramos
- Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - Hua Yang
- Agios Pharmaceuticals, Cambridge, Massachusetts
| | | | - Sam Agresta
- Agios Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | | | | | - Amir T Fathi
- Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Abstract
Isocitrate dehydrogenases (IDHs) are enzymes involved in multiple metabolic and epigenetic cellular processes. Mutations in IDH1 or IDH2 are detected in approximately 20% of patients with acute myeloid leukemia (AML) and induce amino acid changes in conserved residues resulting in neomorphic enzymatic function and production of an oncometabolite, 2-hydroxyglutarate (R-2-HG). This leads to DNA hypermethylation, aberrant gene expression, cell proliferation and abnormal differentiation. IDH mutations diversely affect prognosis of patients with AML based on the location of the mutation and other co-occurring genomic abnormalities. Recently, novel therapies specifically targeting mutant IDH have opened new avenues of therapy for these patients. In the present review, we will provide an overview of the biological, clinical and therapeutic implications of IDH mutations in AML.
Collapse
Affiliation(s)
- Guillermo Montalban-Bravo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
8
|
Collins RRJ, Patel K, Putnam WC, Kapur P, Rakheja D. Oncometabolites: A New Paradigm for Oncology, Metabolism, and the Clinical Laboratory. Clin Chem 2017; 63:1812-1820. [PMID: 29038145 DOI: 10.1373/clinchem.2016.267666] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pediatric clinical laboratories commonly measure tricarboxylic acid cycle intermediates for screening, diagnosis, and monitoring of specific inborn errors of metabolism, such as organic acidurias. In the past decade, the same tricarboxylic acid cycle metabolites have been implicated and studied in cancer. The accumulation of these metabolites in certain cancers not only serves as a biomarker but also directly contributes to cellular transformation, therefore earning them the designation of oncometabolites. CONTENT D-2-hydroxyglutarate, L-2-hydroxyglutarate, succinate, and fumarate are the currently recognized oncometabolites. They are structurally similar and share metabolic proximity in the tricarboxylic acid cycle. As a result, they promote tumorigenesis in cancer cells through similar mechanisms. This review summarizes the currently understood common and distinct biological features of these compounds. In addition, we will review the current laboratory methodologies that can be used to quantify these metabolites and their downstream targets. SUMMARY Oncometabolites play an important role in cancer biology. The metabolic pathways that lead to the production of oncometabolites and the downstream signaling pathways that are activated by oncometabolites represent potential therapeutic targets. Clinical laboratories have a critical role to play in the management of oncometabolite-associated cancers through development and validation of sensitive and specific assays that measure oncometabolites and their downstream effectors. These assays can be used as screening tools and for follow-up to measure response to treatment, as well as to detect minimal residual disease and recurrence.
Collapse
Affiliation(s)
- Rebecca R J Collins
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - Khushbu Patel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX
| | - William C Putnam
- Office of Clinical and Translational Research, Texas Tech University Health Sciences Center, Dallas, TX
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX; .,Department of Pathology and Laboratory Medicine, Children's Health, Dallas, TX.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Showalter MR, Hatakeyama J, Cajka T, VanderVorst K, Carraway KL, Fiehn O. Replication Study: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. eLife 2017; 6. [PMID: 28653623 PMCID: PMC5487214 DOI: 10.7554/elife.26030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
In 2016, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Fiehn et al., 2016), that described how we intended to replicate selected experiments from the paper "The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate" (Ward et al., 2010). Here, we report the results of those experiments. We found that cells expressing R172K mutant IDH2 did not display isocitrate-dependent NADPH production above vector control levels, in contrast to the increased production observed with wild-type IDH2. Conversely, expression of R172K mutant IDH2 resulted in increased alpha-ketoglutarate-dependent consumption of NADPH compared to wild-type IDH2 or vector control. These results are similar to those reported in the original study (Figure 2; Ward et al., 2010). Further, expression of R172K mutant IDH2 resulted in increased 2HG levels within cells compared to the background levels observed in wild-type IDH2 and vector control, similar to the original study (Figure 3D; Ward et al., 2010). In primary human AML samples, the 2HG levels observed in samples with mutant IDH1 or IDH2 status were higher than those observed in samples without an IDH mutation, similar to what was observed in the original study (Figure 5C; Ward et al., 2010). Finally, we report meta-analyses for each result.
Collapse
Affiliation(s)
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, University of California, California, United States.,University of California Davis Comprehensive Cancer Center, University of California, California, United States
| | - Tomas Cajka
- West Coast Metabolomics Center, University of California, Davis, United States
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, University of California, California, United States.,University of California Davis Comprehensive Cancer Center, University of California, California, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, University of California, California, United States.,University of California Davis Comprehensive Cancer Center, University of California, California, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, United States
| | | |
Collapse
|
10
|
Jones PM, Boriack R, Struys EA, Rakheja D. Measurement of Oncometabolites D-2-Hydroxyglutaric Acid and L-2-Hydroxyglutaric Acid. Methods Mol Biol 2017; 1633:219-234. [PMID: 28735490 DOI: 10.1007/978-1-4939-7142-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe a liquid chromatography-tandem mass spectrometry assay for measurement of D-2-hydroxyglutaric acid and L-2-hydroxyglutaric acid. These metabolites are increased in specific inborn errors of metabolism and are now recognized as oncometabolites. The measurement of D-2-hydroxyglutarate in peripheral blood may be used as a biomarker for screening and follow-up of patients with IDH-mutated acute myeloid leukemia.
Collapse
Affiliation(s)
- Patricia M Jones
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pathology and Laboratory Medicine, Children's Health, Children's Medical Center, Dallas, TX, USA
| | - Richard Boriack
- Department of Pathology and Laboratory Medicine, Children's Health, Children's Medical Center, Dallas, TX, USA
| | - Eduard A Struys
- Metabolic Unit, Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pathology and Laboratory Medicine, Children's Health, Children's Medical Center, Dallas, TX, USA. .,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|