1
|
Lichtman MA. Clonal hematopoiesis and acquired genetic abnormalities of the red cell: An historical review. Blood Cells Mol Dis 2024; 104:102801. [PMID: 37951089 DOI: 10.1016/j.bcmd.2023.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Several syndromes affecting the red cell that mimic those induced by germline mutations may result from a somatic mutation that accompanies a myeloid malignancy. These syndromes are most notable in cases of myelodysplastic syndrome, but they are not limited to any one category of myeloid neoplasm. Their occurrence in males exceed the male predominance that is evident in myeloid neoplasms. The syndromes include disorders of globin chain synthesis (α- and β-thalassemia), heme synthesis (erythropoietic porphyria and erythropoietic uroporphyria), red cell membrane structure (elliptocytosis and spherocytosis), red cell enzyme activity (pyruvate kinase deficiency, glucose-6-phosphate dehydrogenase deficiency) and lowered expression of red cell ABO blood group antigens. This historical review describes the path to uncovering these acquired syndromes and their causal somatic mutations, where known. These syndromes often go unrecognized because of the dominant concern of the primary neoplasm. They may add to the healthcare needs of the patient.
Collapse
Affiliation(s)
- Marshall A Lichtman
- Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA 14642-0001.
| |
Collapse
|
2
|
Lichtman MA, Sham R. Acquired elliptocytosis in chronic myeloid neoplasms: An enigmatic relationship to acquired red cell membrane protein and genetic abnormalities. Blood Cells Mol Dis 2023; 103:102778. [PMID: 37379758 DOI: 10.1016/j.bcmd.2023.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Nineteen reports of 41 cases of acquired red cell elliptocytosis associated with a chronic myeloid neoplasm are described. Although the majority of cases have an abnormality of the long arm of chromosome 20, del(q20), several cases do not. Moreover, in one case a specific qualitative abnormality of red cell protein band 4.1(4.1R) was reported; however, several subsequent cases could find no abnormality of a red cell membrane protein or found a different abnormality, usually quantitative. Thus, this striking red cell phenotypic feature, acquired elliptocytosis, seen in myelodysplastic syndrome and other chronic myeloproliferative diseases, closely simulating the red cell phenotype of hereditary elliptocytosis, has an unexplained genetic basis, presumably as the result of an acquired mutation(s) in some chronic myeloid neoplasms.
Collapse
Affiliation(s)
- Marshall A Lichtman
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 706, Rochester, NY 14642-0001, USA.
| | - Ronald Sham
- Division of Hematology and Oncology, Rochester General Hospital, Rochester Regional Health, Rochester, NY 14621, USA
| |
Collapse
|
3
|
Jajosky R, Patel SR, Wu SC, Patel K, Covington M, Vallecillo-Zúniga M, Ayona D, Bennett A, Luckey CJ, Hudson KE, Hendrickson JE, Eisenbarth SC, Josephson CD, Zerra PE, Stowell SR, Arthur CM. Prior immunization against an intracellular antigen enhances subsequent red blood cell alloimmunization in mice. Blood 2023; 141:2642-2653. [PMID: 36638335 PMCID: PMC10356576 DOI: 10.1182/blood.2022016588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Antibodies against red blood cell (RBC) alloantigens can increase morbidity and mortality among transfusion recipients. However, alloimmunization rates can vary dramatically, as some patients never generate alloantibodies after transfusion, whereas others not only become alloimmunized but may also be prone to generating additional alloantibodies after subsequent transfusion. Previous studies suggested that CD4 T-cell responses that drive alloantibody formation recognize the same alloantigen engaged by B cells. However, because RBCs express numerous antigens, both internally and externally, it is possible that CD4 T-cell responses directed against intracellular antigens may facilitate subsequent alloimmunization against a surface RBC antigen. Here, we show that B cells can acquire intracellular antigens from RBCs. Using a mouse model of donor RBCs expressing 2 distinct alloantigens, we demonstrate that immune priming to an intracellular antigen, which would not be detected by any currently used RBC compatibility assays, can directly influence alloantibody formation after exposure to a subsequent distinct surface RBC alloantigen. These findings suggest a previously underappreciated mechanism whereby transfusion recipient responders may exhibit an increased rate of alloimmunization because of prior immune priming toward intracellular antigens.
Collapse
Affiliation(s)
- Ryan Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Seema R. Patel
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Kashyap Patel
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Mischa Covington
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Mary Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Diyoly Ayona
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| | - Ashley Bennett
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - C. John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY
| | | | - Stephanie C. Eisenbarth
- Center for Human Immunology, Department of Medicine, Northwestern University School of Medicine, Chicago, IL
| | - Cassandra D. Josephson
- Cancer and Blood Disorders Institute and Blood Bank/Transfusion Medicine Division, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Patricia E. Zerra
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
- Center for Transfusion Medicine and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Connie M. Arthur
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, National Center for Functional Glycomics, Harvard School of Medicine, Boston, MA
| |
Collapse
|
4
|
Vrignaud C, Mikdar M, Duval R, Reininger L, Damaraju VL, Sawyer M, Colin Y, Le Van Kim C, Gelly JC, Etchebest C, Peyrard T, Azouzi S. Molecular and structural characterization of a novel high-prevalence antigen of the Augustine blood group system. Transfusion 2023; 63:610-618. [PMID: 36744388 DOI: 10.1111/trf.17268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND An antibody directed against a high-prevalence red blood cell (RBC) antigen was detected in a 67-year-old female patient of North African ancestry with a history of a single pregnancy and blood transfusion. So far, the specificity of the proband's alloantibody remained unknown in our immunohematology reference laboratory. STUDY DESIGN AND METHODS Whole-exome sequencing (WES) was performed on the proband's DNA. The reactivity to the SLC29A1-encoded ENT1 adenosine transporter was investigated by flow cytometry analyses of ENT1-expressing HEK293 cells, and RBCs from Augustine-typed individuals. Erythrocyte protein expression level, nucleoside-binding capacity, and molecular structure of the proband's ENT1 variant were further explored by western blot, flow cytometry, and molecular dynamics calculations, respectively. RESULTS A missense variant was identified in the SLC29A1 gene, which encodes the Augustine blood group system. It arises from homozygosity for a rare c.242A > G missense mutation that results in a nonsynonymous p.Asn81Ser substitution within the large extracellular loop of ENT1. Flow cytometry analyses demonstrated that the proband's antibody was reactive against HEK-293 cells transfected with control but not proband's SLC29A1 cDNA. Consistent with this finding, proband's antibody was found to be reactive with At(a-) (AUG:-2), but not AUG:-1 (null phenotype) RBCs. Data from structural analysis further supported that the proband's p.Asn81Ser variation does not alter ENT1 binding of its specific inhibitor NBMPR. CONCLUSION Our study provides evidence for a novel high-prevalence antigen, AUG4 (also called ATAM after the proband's name) in the Augustine blood group system, encoded by the rare SLC29A1 variant allele AUG*04 (c.242A > G, p.Asn81Ser).
Collapse
Affiliation(s)
| | | | - Romain Duval
- Université de Paris Cité, Inserm, BIGR, Paris, France
- Centre National de Référence pour les Groupes Sanguins, Établissement Français de Sang (EFS), Paris, France
| | - Luc Reininger
- Université de Paris Cité, Inserm, BIGR, Paris, France
| | - Vijaya L Damaraju
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Yves Colin
- Université de Paris Cité, Inserm, BIGR, Paris, France
| | | | | | | | - Thierry Peyrard
- Université de Paris Cité, Inserm, BIGR, Paris, France
- Centre National de Référence pour les Groupes Sanguins, Établissement Français de Sang (EFS), Paris, France
| | - Slim Azouzi
- Université de Paris Cité, Inserm, BIGR, Paris, France
- Centre National de Référence pour les Groupes Sanguins, Établissement Français de Sang (EFS), Paris, France
| |
Collapse
|
5
|
Mikdar M, González-Menéndez P, Cai X, Zhang Y, Serra M, Dembele AK, Boschat AC, Sanquer S, Chhuon C, Guerrera IC, Sitbon M, Hermine O, Colin Y, Le Van Kim C, Kinet S, Mohandas N, Xia Y, Peyrard T, Taylor N, Azouzi S. The equilibrative nucleoside transporter ENT1 is critical for nucleotide homeostasis and optimal erythropoiesis. Blood 2021; 137:3548-3562. [PMID: 33690842 PMCID: PMC8225918 DOI: 10.1182/blood.2020007281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.
Collapse
Affiliation(s)
- Mahmoud Mikdar
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Pedro González-Menéndez
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Marion Serra
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Abdoul K Dembele
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | | | - Sylvia Sanquer
- INSERM UMR S1124, Université de Paris, Service de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform 3P5-Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform 3P5-Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS, Paris, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Olivier Hermine
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Université de Paris, UMR 8147, CNRS, Paris, France
| | - Yves Colin
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Caroline Le Van Kim
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Sandrina Kinet
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | | | - Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School at Houston, Houston, TX
| | - Thierry Peyrard
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| | - Naomi Taylor
- Laboratoire d'Excellence (GR-Ex), Paris, France
- Institut de Génétique Moléculaire de Montpellier, Universite Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - Slim Azouzi
- Université de Paris, Unité Mixte de Recherche (UMR) S1134, Biologie Intégrée du Globule Rouge, INSERM, Paris, France
- Centre National de Référence pour les Groupes Sanguins (CNRGS), Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d'Excellence (GR-Ex), Paris, France
| |
Collapse
|
6
|
Thomson-Luque R, Bautista JM. Home Sweet Home: Plasmodium vivax-Infected Reticulocytes-The Younger the Better? Front Cell Infect Microbiol 2021; 11:675156. [PMID: 34055670 PMCID: PMC8162270 DOI: 10.3389/fcimb.2021.675156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
After a century of constant failure to produce an in vitro culture of the most widespread human malaria parasite Plasmodium vivax, recent advances have highlighted the difficulties to provide this parasite with a healthy host cell to invade, develop, and multiply under in vitro conditions. The actual level of understanding of the heterogeneous populations of cells—framed under the name ‘reticulocytes’—and, importantly, their adequate in vitro progression from very immature reticulocytes to normocytes (mature erythrocytes) is far from complete. The volatility of its individual stability may suggest the reticulocyte as a delusory cell, particularly to be used for stable culture purposes. Yet, the recent relevance gained by a specific subset of highly immature reticulocytes has brought some hope. Very immature reticulocytes are characterized by a peculiar membrane harboring a plethora of molecules potentially involved in P. vivax invasion and by an intracellular complexity dynamically changing upon its quick maturation into normocytes. We analyze the potentialities offered by this youngest reticulocyte subsets as an ideal in vitro host cell for P. vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Chauvet M, Chhuon C, Lipecka J, Dechavanne S, Dechavanne C, Lohezic M, Ortalli M, Pineau D, Ribeil JA, Manceau S, Le Van Kim C, Luty AJF, Migot-Nabias F, Azouzi S, Guerrera IC, Merckx A. Sickle Cell Trait Modulates the Proteome and Phosphoproteome of Plasmodium falciparum-Infected Erythrocytes. Front Cell Infect Microbiol 2021; 11:637604. [PMID: 33842387 PMCID: PMC8024585 DOI: 10.3389/fcimb.2021.637604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, β-adducin, β-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.
Collapse
Affiliation(s)
- Margaux Chauvet
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Joanna Lipecka
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Sébastien Dechavanne
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Margherita Ortalli
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Damien Pineau
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Antoine Ribeil
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandra Manceau
- Laboratoire d'Excellence GR-Ex, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Le Van Kim
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Slim Azouzi
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Anaïs Merckx
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
8
|
Overexpression of miR-669m inhibits erythroblast differentiation. Sci Rep 2020; 10:13554. [PMID: 32782283 PMCID: PMC7419302 DOI: 10.1038/s41598-020-70442-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs), one of small non-coding RNAs, regulate many cell functions through their post-transcriptionally downregulation of target genes. Accumulated studies have revealed that miRNAs are involved in hematopoiesis. In the present study, we investigated effects of miR-669m overexpression on hematopoiesis in mouse in vivo, and found that erythroid differentiation was inhibited by the overexpression. Our bioinformatic analyses showed that candidate targets of miR-669m which are involved in the erythropoiesis inhibition are A-kinase anchoring protein 7 (Akap7) and X-linked Kx blood group (Xk) genes. These two genes were predicted as targets of miR-669m by two different in silico methods and were upregulated in late erythroblasts in a public RNA-seq data, which was confirmed with qPCR. Further, miR-669m suppressed luciferase reporters for 3′ untranslated regions of Akap7 and Xk genes, which supports these genes are direct targets of miR-669m. Physiologically, miR-669m was not expressed in the erythroblast. In conclusion, using miR-669m, we found Akap7 and Xk, which may be involved in erythroid differentiation, implying that manipulating these genes could be a therapeutic way for diseases associated with erythropoiesis dysfunction.
Collapse
|
9
|
Lack of the multidrug transporter MRP4/ABCC4 defines the PEL-negative blood group and impairs platelet aggregation. Blood 2020; 135:441-448. [PMID: 31826245 DOI: 10.1182/blood.2019002320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
The rare PEL-negative phenotype is one of the last blood groups with an unknown genetic basis. By combining whole-exome sequencing and comparative global proteomic investigations, we found a large deletion in the ABCC4/MRP4 gene encoding an ATP-binding cassette (ABC) transporter in PEL-negative individuals. The loss of PEL expression on ABCC4-CRISPR-Cas9 K562 cells and its overexpression in ABCC4-transfected cells provided evidence that ABCC4 is the gene underlying the PEL blood group antigen. Although ABCC4 is an important cyclic nucleotide exporter, red blood cells from ABCC4null/PEL-negative individuals exhibited a normal guanosine 3',5'-cyclic monophosphate level, suggesting a compensatory mechanism by other erythroid ABC transporters. Interestingly, PEL-negative individuals showed an impaired platelet aggregation, confirming a role for ABCC4 in platelet function. Finally, we showed that loss-of-function mutations in the ABCC4 gene, associated with leukemia outcome, altered the expression of the PEL antigen. In addition to ABCC4 genotyping, PEL phenotyping could open a new way toward drug dose adjustment for leukemia treatment.
Collapse
|
10
|
|
11
|
Feng G, Guo K, Yan Q, Ye Y, Shen M, Ruan S, Qiu S. Expression of Protein 4.1 Family in Breast Cancer: Database Mining for 4.1 Family Members in Malignancies. Med Sci Monit 2019; 25:3374-3389. [PMID: 31063460 PMCID: PMC6524556 DOI: 10.12659/msm.914085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The protein 4.1 family is a family of cytoskeletal proteins that play an important role in maintaining normal cell morphology and cell adhesion, migration, division, and intercellular signaling. The main aim of this study was to explore the prognostic significance of the protein 4.1 family in breast cancer (BC) patients and to provide new biomarkers and therapeutic targets for the diagnosis and treatment of BC. MATERIAL AND METHODS The expression of 4.1 family members in various tumor types was compared to normal controls using the ONCOMINE and GOBO databases. The prognostic significance of the 4.1 family in BC patients was determined by Kaplan-Meier Plotter. RESULTS EPB41L2 (4.1G) was expressed at higher levels in normal tissues compared with BC patients for all 4.1 family members. In survival analysis, 4.1G and EPB41 (4.1R) mRNA high expressions were associated with better survival in BC patients. Moreover, 4.1G high expression was significantly associated with longer overall survival (OS) in luminal A and protracted relapse-free survival (RFS) in luminal B subtype BC patients who received Tamoxifen treatment. In addition, high expression of each 4.1 family member also showed better prognostic value in different molecular subtypes of BC. CONCLUSIONS These results indicate that the protein 4.1 family can be regarded as novel biomarkers and potential therapeutic targets for BC. Further research is needed to explore the detailed biological functions.
Collapse
Affiliation(s)
- Guan Feng
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Kaibo Guo
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Qingying Yan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Ye Ye
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, P.R. China
| | - Minhe Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Shengliang Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
12
|
Jaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev 2018. [PMID: 29540278 DOI: 10.1016/j.tmrv.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antigens of the Gerbich blood group system are expressed on glycophorin C (GPC) and glycophorin D (GPD), minor sialoglycoproteins of human erythrocytes. GPC and GPD help maintain erythrocyte shape of and contributes to the stability of its membrane. There are six high-prevalence Gerbich antigens: Ge2, Ge3, Ge4, GEPL (GE10), GEAT (GE11), GETI (GE12) and five low-prevalence Gerbich antigens: Wb (GE5), Lsa (GE6), Ana (GE7), Dha (GE8), GEIS (GE9). Some Gerbich antigens (Ge4, Wb, Dha, GEAT) are expressed only on GPC, two (Ge2, Ana) are expressed only on GPD, while others (Ge3, Lsa, GEIS, GEPL, GETI) are expressed on both GPC and GPD. Antibodies recognizing GPC/GPD may arise naturally (so-called "naturally-occurring RBC antibodies") or as the result of alloimmunization, and some of them may be clinically relevant. Gerbich antibodies usually do not cause serious hemolytic transfusion reactions (HTR); autoantibodies of anti-Ge2- or anti-Ge3 specificity can cause autoimmune hemolytic anemia (AIHA).
Collapse
Affiliation(s)
- Ewa Jaskiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland.
| | - Thierry Peyrard
- Institut National de la Transfusion Sanguine (INTS), Département Centre National de Référence pour les Groupes Sanguins (CNRGS), Paris, France; UMR_S1134 Inserm Université Paris Diderot, Paris, France; Laboratoire d'Excellence GR-Ex, Institut Imagine, Paris, France
| | - Radoslaw Kaczmarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agata Zerka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marlena Jodlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Czerwinski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland
| |
Collapse
|
13
|
DARC extracellular domain remodeling in maturating reticulocytes explains Plasmodium vivax tropism. Blood 2017; 130:1441-1444. [PMID: 28754683 DOI: 10.1182/blood-2017-03-774364] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
Plasmodium vivax is the most prevalent parasite species that causes malaria in humans and exclusively infects reticulocytes. Reticulocyte infection is facilitated by P vivax Duffy binding protein (DBP), which utilizes DARC (Duffy antigen receptor for chemokines) as an entry point. However, the selective tropism of P vivax for transferrin receptor (CD71)-positive reticulocytes remained unexplained, given the constitutive expression of DARC during reticulocyte maturation. CD71/RNA double staining of reticulocytes enriched from adult peripheral blood reveals 4 distinct reticulocyte populations: CD71high/RNAhigh (∼0.016%), CD71low/RNAhigh (∼0.059%), CD71neg/RNAhigh (∼0.37%), CD71neg/RNAlow (∼0.55%), and erythrocytes CD71neg/RNAneg (∼99%). We hypothesized that selective association of DBP with a small population of immature reticulocytes could explain the preference of P vivax for reticulocytes. Binding of specific monoclonal anti-DARC antibodies and recombinant DBP to CD71high/RNAhigh reticulocytes was significantly higher compared with other reticulocyte populations and erythrocytes. Interestingly, the total DARC protein throughout reticulocyte maturation was constant. The data suggest that selective exposure of the DBP binding site within DARC is key to the preferential binding of DBP to immature reticulocytes, which is the potential mechanism underlying the preferential infection of a reticulocyte subset by P vivax.
Collapse
|