1
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
4
|
Danesi R, Fogli S, Indraccolo S, Del Re M, Dei Tos AP, Leoncini L, Antonuzzo L, Bonanno L, Guarneri V, Pierini A, Amunni G, Conte P. Druggable targets meet oncogenic drivers: opportunities and limitations of target-based classification of tumors and the role of Molecular Tumor Boards. ESMO Open 2021; 6:100040. [PMID: 33540286 PMCID: PMC7859305 DOI: 10.1016/j.esmoop.2020.100040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic landscape of cancer is changing rapidly due to the growing number of approved drugs capable of targeting specific genetic alterations. This aspect, together with the development of noninvasive methods for the assessment of somatic mutations in the peripheral blood of patients, generated a growing interest toward a new tumor-agnostic classification system based on ‘predictive’ biomarkers. The current review article discusses this emerging alternative approach to the classification of cancer and its implications for the selection of treatments. It is suggested that different types of cancers sharing the same molecular profiles could benefit from the same targeted drugs. Although recent clinical trials have demonstrated that this approach cannot be generalized, there are also specific examples that demonstrate the clinical utility of this alternative vision. In this rapidly evolving scenario, a multidisciplinary approach managed by institutional Molecular Tumor Boards is fundamental to interpret the biological and clinical relevance of genetic alterations and the complexity of their relationship with treatment response. The identification of oncogenic drivers offers the opportunity to develop target-specific drugs. The inhibition of crucial pathways realizes the principle of druggable target to exploit cancer vulnerability. The approval of new anticancer agents based on target-based concept represents a paradigm shift in cancer therapy. However, only few drugs have been approved so far on an agnostic basis and the concept of biomarker cannot be generalized. Tumor Molecular Boards will have an increasing role in the identification of new therapeutic options in selected patients.
Collapse
Affiliation(s)
- R Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Indraccolo
- Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A P Dei Tos
- Department of Medicine, School of Medicine, University of Padua, Padua, Italy
| | - L Leoncini
- Department of Medical Biotechnology, Anatomic Pathology Division, University of Siena, Siena, Italy
| | - L Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - L Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - V Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - A Pierini
- Integrated Access, Roche, Monza, Italy
| | - G Amunni
- Institute for the Study, Prevention and Oncology Network (ISPRO), Florence, Italy.
| | - P Conte
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Phillips TJ, Michot JM, Ribrag V. Can Next-Generation PI3K Inhibitors Unlock the Full Potential of the Class in Patients With B-Cell Lymphoma? CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:8-20.e3. [PMID: 33132100 DOI: 10.1016/j.clml.2020.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Although outcomes after first-line therapy for patients with indolent or aggressive non-Hodgkin lymphoma (NHL) are continually improving, relapse is still common. Current treatment options for patients with relapsed or refractory disease have limited efficacy, and various targeted therapies are under investigation to help improve outcomes in this patient population. The phosphatidylinositol 3-kinase (PI3K) pathway was identified as being involved in hematologic malignancies, leading to significant research for potential therapeutic agents. This has led to 3 PI3K inhibitors (idelalisib, copanlisib, and duvelisib) being approved for the treatment of patients with relapsed or refractory follicular lymphoma who have received at least 2 prior systemic therapies, with reported response rates of 40% to 59%. With potential class-specific and PI3K isoform-related toxicities that may limit clinical utility, the safety of the approved PI3K inhibitors has been carefully evaluated to weigh the risk/benefit ratio of therapy. Currently, there are no approved PI3K inhibitors for patients with aggressive NHL. A number of newer PI3K inhibitors are in clinical development for the treatment of relapsed or refractory NHL, aiming to improve treatment benefit for patients. We discuss a number of attributes that are important to increase the therapeutic potential of newer PI3K inhibitors. More promising results may come from combination trials with these newer PI3K inhibitors, developed to limit toxicities (including long-term adverse events), and other antitumor agents.
Collapse
Affiliation(s)
| | | | - Vincent Ribrag
- Institut de Cancérologie Gustave Roussy, Villejuif, France.
| |
Collapse
|
6
|
Tarantelli C, Lupia A, Stathis A, Bertoni F. Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma? Int J Mol Sci 2020; 21:E1060. [PMID: 32033478 PMCID: PMC7037719 DOI: 10.3390/ijms21031060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma patients), are also observed in the very few clinical studies performed in patients that are affected by relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three compounds still in clinical development and those with a clinical program stopped or put on hold.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Antonio Lupia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
| |
Collapse
|
7
|
Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur J Med Chem 2019; 183:111718. [DOI: 10.1016/j.ejmech.2019.111718] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
8
|
Crisci S, Amitrano F, Saggese M, Muto T, Sarno S, Mele S, Vitale P, Ronga G, Berretta M, Di Francia R. Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology. ACTA ACUST UNITED AC 2019; 55:medicina55080414. [PMID: 31357735 PMCID: PMC6723645 DOI: 10.3390/medicina55080414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells' inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. Thus, it outlines the up-to-date anticancer drugs suitable for targeted therapies and the most recent finding in pharmacogenomics related to drug response. Besides, a summary assessment of the genotyping costs has been discussed. Targeted therapy seems to be an effective and less toxic therapeutic approach in onco-hematology. The identification of individual PG profile should be a new resource for oncologists to make treatment decisions for the patients to minimize the toxicity and or inefficacy of therapy. This could allow the clinicians to evaluate benefits and restrictions, regarding costs and applicability, of the most suitable pharmacological approach for performing a tailor-made therapy.
Collapse
Affiliation(s)
- Stefania Crisci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Filomena Amitrano
- Gruppo Oncologico Ricercatori Italiano GORI ONLUS, Pordenone 33100, Italy
| | - Mariangela Saggese
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Tommaso Muto
- Hematology and Cellular Immunology (Clinical Biochemistry) A.O. dei Colli Monaldi Hospital, Naples 80131, Italy
| | - Sabrina Sarno
- Anatomia Patologica, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Sara Mele
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Pasquale Vitale
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Giuseppina Ronga
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO National Cancer Institute, Aviano (PN) 33081, Italy
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), Ancona 60125, Italy.
| |
Collapse
|
9
|
Batsios G, Viswanath P, Subramani E, Najac C, Gillespie AM, Santos RD, Molloy AR, Pieper RO, Ronen SM. PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci Rep 2019; 9:10521. [PMID: 31324855 PMCID: PMC6642106 DOI: 10.1038/s41598-019-47021-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/09/2019] [Indexed: 02/08/2023] Open
Abstract
70-90% of low-grade gliomas and secondary glioblastomas are characterized by mutations in isocitrate dehydrogenase 1 (IDHmut). IDHmut produces the oncometabolite 2-hydroxyglutarate (2HG), which drives tumorigenesis in these tumors. The phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway represents an attractive therapeutic target for IDHmut gliomas, but noninvasive indicators of drug target modulation are lacking. The goal of this study was therefore to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers associated with IDHmut glioma response to the dual PI3K/(mTOR) inhibitor XL765. 1H-MRS of two cell lines genetically modified to express IDHmut showed that XL765 induced a significant reduction in several intracellular metabolites including 2HG. Importantly, examination of an orthotopic IDHmut tumor model showed that enhanced animal survival following XL765 treatment was associated with a significant in vivo 1H-MRS detectable reduction in 2HG but not with significant inhibition in tumor growth. Further validation is required, but our results indicate that 2HG could serve as a potential noninvasive MRS-detectable metabolic biomarker of IDHmut glioma response to PI3K/mTOR inhibition.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, 1450 3rd Street, University of California, 94143, San Francisco, CA, United States
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States. .,Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158, San Francisco, CA, United States.
| |
Collapse
|
10
|
Tang X, Xie C, Jiang Z, Li A, Cai S, Hou C, Wang J, Liang Y, Ma D. Rituximab (anti-CD20)-modified AZD-2014-encapsulated nanoparticles killing of B lymphoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1063-1073. [PMID: 30198340 DOI: 10.1080/21691401.2018.1478844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mTOR signal pathway is often highly activated in B-cell non-Hodgkin's lymphoma (NHL) and promotes cancer progression and chemo-resistance. Therefore, the pathways of mTOR are an important target for drug development in this disease. In the current study, we developed a rituximab (anti-CD20)-modified mTOR inhibitor, AZD-2014, loaded into nanoparticles (Ab-NPs-AZD-2014) for trial of its anti-NHL effect. In a cultured NHL cell line, Ab-NPs-AZD-2014 inhibited cancer cell growth, induced cell apoptosis, and blocked activation of mTORC1 and mTORC2 in Raji cells. These results indicate that antibody modification and nanomaterial loading of AZD-2014 with anti-CD20 significantly improved efficacy of AZD-2014 against NHL cells. This approach may ultimately deserve testing in therapy against NHL.
Collapse
Affiliation(s)
- Xiaolong Tang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Chunmei Xie
- b Department of Laboratory Medicine , Guangzhou 8th People's Hospital, Guangzhou Medical University , Guangzhou , China
| | - Zhenyou Jiang
- c Departments of Microbiology and Immunology , Jinan University , Guangzhou , China
| | - Amin Li
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Shiyu Cai
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Changhao Hou
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Jian Wang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yong Liang
- d Huai'an Hospital Afliated of Xuzhou Medical College and Huai'an Second Hospital , Huai'an , China
| | - Dong Ma
- e Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| |
Collapse
|
11
|
Bhatti M, Ippolito T, Mavis C, Gu J, Cairo MS, Lim MS, Hernandez-Ilizaliturri F, Barth MJ. Pre-clinical activity of targeting the PI3K/Akt/mTOR pathway in Burkitt lymphoma. Oncotarget 2018; 9:21820-21830. [PMID: 29774105 PMCID: PMC5955151 DOI: 10.18632/oncotarget.25072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Though outcomes for pediatric Burkitt lymphoma (BL) have improved significantly in recent decades with intensive multi-agent chemotherapy and the addition of rituximab, chemotherapy resistance remains a significant impediment to cure following relapse. Activation of the PI3K/AKT pathway has been implicated in Burkitt lymphomagenesis and increased PI3K/AKT activation has been associated with worse outcomes in adults with aggressive B-cell non-Hodgkin lymphoma (B-NHL). Inhibitors of the PI3K/AKT pathway have been approved for the treatment of refractory indolent B-NHL and continue to be investigated for treatment of aggressive B-NHLs. We investigated the activation of the PI3K/AKT pathway in a cell line model of resistant BL and the ability to target this pathway with small molecule inhibitors in BL cell lines. We found that cell lines resistant to rituximab and chemotherapy exhibited increased activation of PI3K/AKT and that inhibition of AKT or PI3K results in in vitro anti-lymphoma activity. To investigate the role of PI3K/AKT activation on the efficacy of cytotoxic chemotherapy, we exposed cells to inhibitors in combination with chemotherapy and noted a synergistic increase in response to chemotherapy. Overall these findings highlight the role of PI3K/AKT in chemotherapy resistance in BL cells and may represent a tractable therapeutic target.
Collapse
Affiliation(s)
- Maria Bhatti
- Department of Pediatric Hematology/Oncology, University at Buffalo, Buffalo, NY, USA.,Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Thomas Ippolito
- Department of Pediatric Hematology/Oncology, University at Buffalo, Buffalo, NY, USA
| | - Cory Mavis
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Juan Gu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mitchell S Cairo
- Department of Pediatrics, Medicine, Pathology, Microbiology and Immunology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Matthew J Barth
- Department of Pediatric Hematology/Oncology, University at Buffalo, Buffalo, NY, USA.,Department of Pediatrics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
12
|
The role of mTOR-mediated signaling in the regulation of cellular migration. Immunol Lett 2018; 196:74-79. [PMID: 29408410 DOI: 10.1016/j.imlet.2018.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration. Recent attention has focused on the aberrant activation of the PI3K/mTOR pathway in B cell malignancies and there is growing evidence for its involvement in disease pathogenesis, due to its location downstream of other established novel drug targets that intercept B cell receptor (BCR) signals. Shared pharmacological features of BCR signal inhibitors include a striking "lymphocyte redistribution" effect whereby patients experience a sharp increase in lymphocyte count on initiation of therapy followed by a steady decline. Chronic lymphocytic leukemia (CLL) serves as a paradigm for migration studies as lymphocytes are among the most widely travelled cells in the body, a product of their role in immunological surveillance. The subversion of normal lymphocyte movement in CLL is being elucidated; this review aims to describe the migration impairment which occurs as part of the wider context of cancer cell migration defects, with a focus on the role of mTOR in mediating migration effects downstream of BCR ligation and other microenvironmental signals.
Collapse
|
13
|
Salles G, Barrett M, Foà R, Maurer J, O'Brien S, Valente N, Wenger M, Maloney DG. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther 2017; 34:2232-2273. [PMID: 28983798 PMCID: PMC5656728 DOI: 10.1007/s12325-017-0612-x] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 10/31/2022]
Abstract
Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue. FUNDING F. Hoffmann-La Roche Ltd., Basel, Switzerland.
Collapse
Affiliation(s)
- Gilles Salles
- Hématologie, Hospices Civils de Lyon and Université de Lyon, Pierre-Bénite, Lyon, France.
| | | | - Robin Foà
- Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | | | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA, USA
| | | | | | | |
Collapse
|