1
|
Giannakoulas A, Nikolaidis M, Amoutzias GD, Giannakoulas N. A comparative analysis of transcriptomics of newly diagnosed multiple myeloma: exploring drug repurposing. Front Oncol 2024; 14:1390105. [PMID: 38690165 PMCID: PMC11058662 DOI: 10.3389/fonc.2024.1390105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Multiple myeloma (MM) is an incurable malignant plasma cell disorder characterized by the infiltration of clonal plasma cells in the bone marrow compartment. Gene Expression Profiling (GEP) has emerged as a powerful investigation tool in modern myeloma research enabling the dissection of the molecular background of MM and allowing the identification of gene products that could potentially serve as targets for therapeutic intervention. In this study we investigated shared transcriptomic abnormalities across newly diagnosed multiple myeloma (NDMM) patient cohorts. In total, publicly available transcriptomic data of 7 studies from CD138+ cells from 281 NDMM patients and 44 healthy individuals were integrated and analyzed. Overall, we identified 28 genes that were consistently differentially expressed (DE) between NDMM patients and healthy donors (HD) across various studies. Of those, 9 genes were over/under-expressed in more than 75% of NDMM patients. In addition, we identified 4 genes (MT1F, PURPL, LINC01239 and LINC01480) that were not previously considered to participate in MM pathogenesis. Meanwhile, by mining three drug databases (ChEMBL, IUPHAR/BPS and DrugBank) we identified 31 FDA-approved and 144 experimental drugs that target 8 of these 28 over/under-expressed MM genes. Taken together, our study offers new insights in MM pathogenesis and importantly, it reveals potential new treatment options that need to be further investigated in future studies.
Collapse
Affiliation(s)
- Angelos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Lejeune M, Köse MC, Jassin M, Gou MJ, Herbet A, Duray E, Cobraiville G, Foguenne J, Boquet D, Gothot A, Beguin Y, Fillet M, Caers J. Integrative Analysis of Proteomics and Transcriptomics Reveals Endothelin Receptor B as Novel Single Target and Identifies New Combinatorial Targets for Multiple Myeloma. Hemasphere 2023; 7:e901. [PMID: 37359190 PMCID: PMC10289631 DOI: 10.1097/hs9.0000000000000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the recent introduction of next-generation immunotherapeutic agents, multiple myeloma (MM) remains incurable. New strategies targeting MM-specific antigens may result in a more effective therapy by preventing antigen escape, clonal evolution, and tumor resistance. In this work, we adapted an algorithm that integrates proteomic and transcriptomic results of myeloma cells to identify new antigens and possible antigen combinations. We performed cell surface proteomics on 6 myeloma cell lines based and combined these results with gene expression studies. Our algorithm identified 209 overexpressed surface proteins from which 23 proteins could be selected for combinatorial pairing. Flow cytometry analysis of 20 primary samples confirmed the expression of FCRL5, BCMA, and ICAM2 in all samples and IL6R, endothelin receptor B (ETB), and SLCO5A1 in >60% of myeloma cases. Analyzing possible combinations, we found 6 combinatorial pairs that can target myeloma cells and avoid toxicity on other organs. In addition, our studies identified ETB as a tumor-associated antigen that is overexpressed on myeloma cells. This antigen can be targeted with a new monoclonal antibody RB49 that recognizes an epitope located in a region that becomes highly accessible after activation of ETB by its ligand. In conclusion, our algorithm identified several candidate antigens that can be used for either single-antigen targeting approaches or for combinatorial targeting in new immunotherapeutic approaches in MM.
Collapse
Affiliation(s)
- Margaux Lejeune
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Murat Cem Köse
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Mégane Jassin
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Marie-Jia Gou
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Amaury Herbet
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Elodie Duray
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Gaël Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Jacques Foguenne
- Department of Hematobiology and Immunohematology, CHU de Liège, Belgium
| | - Didier Boquet
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - André Gothot
- Department of Hematobiology and Immunohematology, CHU de Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
- Department of Hematology, CHU de Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
- Department of Hematology, CHU de Liège, Belgium
| |
Collapse
|
3
|
Russignan A, Dal Collo G, Bagnato A, Tamassia N, Bugatti M, Belleri M, Lorenzi L, Borsi E, Bazzoni R, Gottardi M, Terragna C, Vermi W, Giacomini A, Presta M, Cassatella MA, Krampera M, Tecchio C. Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma. Front Oncol 2021; 10:600025. [PMID: 33489901 PMCID: PMC7820698 DOI: 10.3389/fonc.2020.600025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
The endothelin-1 (ET-1) receptors were recently found to mediate pro-survival functions in multiple myeloma (MM) cells in response to autocrine ET-1. This study investigated the effectiveness of macitentan, a dual ET-1 receptor antagonist, in MM treatment, and the mechanisms underlying its activities. Macitentan affected significantly MM cell (RPMI-8226, U266, KMS-12-PE) survival and pro-angiogenic cytokine release by down-modulating ET-1-activated MAPK/ERK and HIF-1α pathways, respectively. HIF-1α silencing abrogated the ET-1 mediated induction of genes encoding for pro-angiogenic cytokines such as VEGF-A, IL-8, Adrenomedullin, and ET-1 itself. Upon exposure to macitentan, MM cells cultured in the presence of the hypoxia-mimetic agent CoCl2, exogenous ET-1, or CoCl2 plus ET-1, down-regulated HIF-1α and the transcription and release of downstream pro-angiogenic cytokines. Consistently, macitentan limited significantly the basal pro-angiogenic activity of RPMI-8226 cells in chorioallantoic membrane assay. In xenograft mouse models, established by injecting NOG mice either via intra-caudal vein with U266 or subcutaneously with RPMI-8226 cells, macitentan reduced effectively the number of MM cells infiltrating bone marrow, and the size and microvascular density of subcutaneous MM tumors. ET-1 receptors targeting by macitentan represents an effective anti-proliferative and anti-angiogenic therapeutic approach in preclinical settings of MM.
Collapse
Affiliation(s)
- Anna Russignan
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mirella Belleri
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrica Borsi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - Riccardo Bazzoni
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Carolina Terragna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), "L. and A. Seràgnoli", Bologna University, Bologna, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- Experimental Oncology and Immunology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Krampera
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone-Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Tocci P, Cianfrocca R, Di Castro V, Rosanò L, Sacconi A, Donzelli S, Bonfiglio S, Bucci G, Vizza E, Ferrandina G, Scambia G, Tonon G, Blandino G, Bagnato A. β-arrestin1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nat Commun 2019; 10:3196. [PMID: 31324767 PMCID: PMC6642155 DOI: 10.1038/s41467-019-11045-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
The limited clinical response observed in high-grade serous ovarian cancer (HG-SOC) with high frequency of TP53 mutations (mutp53) might be related to mutp53-driven oncogenic pathway network. Here we show that β-arrestin1 (β-arr1), interacts with YAP, triggering its cytoplasmic-nuclear shuttling. This interaction allows β-arr1 to recruit mutp53 to the YAP-TEAD transcriptional complex upon activation of endothelin-1 receptors (ET-1R) in patient-derived HG-SOC cells and in cell lines bearing mutp53. In parallel, β-arr1 mediates the ET-1R-induced Trio/RhoA-dependent YAP nuclear accumulation. In the nucleus, ET-1 through β-arr1 orchestrates the tethering of YAP and mutp53 to YAP/mutp53 target gene promoters, including EDN1 that ensures persistent signals. Treatment of patient-derived xenografts reveals synergistic antitumoral and antimetastatic effects of the dual ET-1R antagonist macitentan in combination with cisplatinum, shutting-down the β-arr1-mediated YAP/mutp53 transcriptional programme. Furthermore, ETAR/β-arr1/YAP gene signature correlates with a worst prognosis in HG-SOC. These findings support effective combinatorial treatment for repurposing the ET-1R antagonists in HG-SOC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antineoplastic Agents
- Cell Line, Tumor
- Cell Survival/drug effects
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Disease Models, Animal
- Endothelin-1/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Mice, Nude
- Mutation
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Pyrimidines/pharmacology
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/metabolism
- Signal Transduction
- Sulfonamides/pharmacology
- Transcription Factors/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- beta-Arrestin 1/drug effects
- beta-Arrestin 1/metabolism
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Silvia Bonfiglio
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Gabriele Bucci
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Enrico Vizza
- Gynecologic Oncology, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Gabriella Ferrandina
- Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Rome, 00168, Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University of Rome, 00168, Rome, Italy
| | - Giovanni Tonon
- Center for Translational Genomics and Bioinformatics, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|