1
|
Gul AZ, Selek S, Bekiroglu S, Demirel M, Cakir FB, Uyanik B. Serum NMR metabolomics in distinct subtypes of hematologic malignancies. Exp Hematol 2025; 143:104710. [PMID: 39788411 DOI: 10.1016/j.exphem.2025.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Hematologic malignancies encompass a diverse array of subtypes, contributing to substantial heterogeneity that poses challenges in predicting clinical outcomes. Leveraging the capabilities of nuclear magnetic resonance holds substantial promise in the detection of serum biomarkers and individual metabolic alterations in patients. This study involved the analysis of the sera from patients with acute myeloid leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma to investigate the affected metabolites and their associated pathways. The quantitative one-dimensional (1D) 1H nuclear magnetic resonance method was employed to identify alterations. Metabolite annotations were validated using two-dimensional (2D) analyses. Discriminating chemometric models and receiver operating characteristic curves were created using the MetaboAnalyst platform. The findings revealed significant alterations in the serum levels of amino acid catabolism products, citrate cycle intermediates, and phospholipids. The acute myeloid leukemia group showed differences in glucogenic amino acids related to the glycolysis pathway, whereas the chronic lymphocytic leukemia and non-Hodgkin lymphoma groups displayed variances in fumarate and acetate levels linked to the citrate cycle pathway. In the leukemia groups, higher levels of products from the protein degradation pathway were observed. The biomarker panels for each malignancy group exhibited outstanding discrimination from controls. Healthy individuals differed distinctly from patients, indicating commonly observed metabolic adaptation patterns among frequent hematologic malignancies. The small cohort study using nuclear magnetic resonance metabolomics in various hematologic malignancy subtypes revealed significant changes in serum amino acid and protein degradation end-product levels, suggesting prolonged leukocyte lifespan and increased energy demand.
Collapse
Affiliation(s)
- Ayse Zehra Gul
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey.
| | - Sahabettin Selek
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Somer Bekiroglu
- National Biological and Chemical Test Center, TÜBİTAK Marmara Research Center, Gebze, Kocaeli, Turkey
| | - Metin Demirel
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey; Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatma Betul Cakir
- Department of Pediatrics, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Bulent Uyanik
- Department of Medical Genetics Department, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Wemyss C, Jones E, Stentz R, Carding SR. Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment. Cancers (Basel) 2024; 16:4136. [PMID: 39766036 PMCID: PMC11675077 DOI: 10.3390/cancers16244136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL) remain significant challenges in haematological oncology. This review examines the pathophysiology, classification, and risk stratification of these aggressive malignancies, emphasising their impact on treatment strategies and prognosis. We discuss current standard-of-care treatments, including chemotherapy regimens and targeted therapies, while addressing the associated adverse effects and hypersensitivity reactions. Delving into the metabolic characteristics and vulnerabilities of leukaemia cells, the review highlights the key differences between lymphoid and myeloid leukaemia and how metabolic insights can be utilised for therapeutic purposes, with special focus on asparaginase therapy and its potential for improvement in both ALL and AML treatment. The review conveys the importance of personalised medicine approaches based on individual metabolic profiles and the challenges posed by metabolic heterogeneity and plasticity in leukaemia cells. Combining molecular and metabolic profiling can enhance and refine treatment strategies for acute leukaemia, potentially improving patient outcomes and quality of life. However, integrating these into routine clinical practice requires overcoming various practical, technical, and logistical issues.
Collapse
Affiliation(s)
- Carrie Wemyss
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Emily Jones
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
| | - Régis Stentz
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
| | - Simon R. Carding
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
3
|
Strandberg NJ, Serpa PBS, Fourez LM, Childress MO, Fulkerson CM, Fulkerson CV, Murakami M, Dos Santos AP. Marked paraneoplastic basophilia in a cat with alimentary T-cell lymphoma. Vet Clin Pathol 2024; 53:63-68. [PMID: 38041417 DOI: 10.1111/vcp.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/03/2023]
Abstract
An 8-year-old, spayed female domestic shorthair cat was presented for acute weight loss, hyporexia, intermittent vomiting, and loose stools. A caudal abdominal mass and thickened intestinal loops were palpated on initial examination. An abdominal ultrasound identified a circumferential intramural jejunal mass with complete loss of wall layering, diffuse thickening of the jejunal muscularis, and jejunal and ileocecal lymphadenomegaly. Initial routine bloodwork revealed mild monocytosis and minimal lymphopenia with reactive lymphocytes. Cytologic evaluation of the jejunal mass and enlarged lymph nodes was consistent with lymphoma (intermediate cell size), and PCR for antigen receptor rearrangement revealed a clonal T-cell receptor rearrangement consistent with T-cell lymphoma. Chemotherapy (CHOP protocol) was initiated, but despite initial improvement of clinical signs, a repeat ultrasound examination 5 weeks after initiation of treatment revealed no improvement in the lymphadenomegaly or reduction in the size of the jejunal mass. At this visit, the cat also developed a marked basophilia (basophils 12.28 × 103 /μL, RI 0.00-0.10) with low numbers of circulating atypical lymphocytes; no concurrent eosinophilia was noted. Heartworm disease, ectoparasites, and allergic diseases were evaluated for and considered unlikely. The chemotherapy protocol was changed to L-asparaginase, followed by lomustine. The basophilia was significantly reduced 2 days after the initial dose of L-asparaginase and remained within the reference interval for 40 days before an eventual decline in the cat's health. To the authors' knowledge, this is the first report of paraneoplastic basophilia without concurrent eosinophilia in a cat with T-cell lymphoma.
Collapse
Affiliation(s)
- Natalia J Strandberg
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Priscila B S Serpa
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Lindsey M Fourez
- Small Animal Hospital, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Michael O Childress
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| | - Christopher M Fulkerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| | - Caroline V Fulkerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Masahiro Murakami
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Andrea P Dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Andjelkovic M, Zinovjev K, Ramos-Guzmán CA, Ruiz- Pernía JJ, Tuñón I. Elucidation of the Active Form and Reaction Mechanism in Human Asparaginase Type III Using Multiscale Simulations. J Chem Inf Model 2023; 63:5676-5688. [PMID: 37635309 PMCID: PMC10852353 DOI: 10.1021/acs.jcim.3c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/29/2023]
Abstract
l-asparaginases catalyze the asparagine hydrolysis to aspartate. These enzymes play an important role in the treatment of acute lymphoblastic leukemia because these cells are unable to produce their own asparagine. Due to the immunogenic response and various side effects of enzymes of bacterial origin, many attempts have been made to replace these enzymes with mammalian enzymes such as human asparaginase type III (hASNaseIII). This study investigates the reaction mechanism of hASNaseIII through molecular dynamics simulations, quantum mechanics/molecular mechanics methods, and free energy calculations. Our simulations reveal that the dimeric form of the enzyme plays a vital role in stabilizing the substrate in the active site, despite the active site residues coming from a single protomer. Protomer-protomer interactions are essential to keep the enzyme in an active conformation. Our study of the reaction mechanism indicates that the self-cleavage process that generates an N-terminal residue (Thr168) is required to activate the enzyme. This residue acts as the nucleophile, attacking the electrophilic carbon of the substrate after a proton transfer from its hydroxyl group to the N-terminal amino group. The reaction mechanism proceeds with the formation of an acyl-enzyme complex and its hydrolysis, which turns out to be the rate-determining step. Our proposal of the enzymatic mechanism sheds light on the role of different active site residues and rationalizes the studies on mutations. The insights provided here about hASNaseIII activity could contribute to the comprehension of the disparities among different ASNases and might even guide the design of new variants with improved properties for acute lymphoblastic leukemia treatment.
Collapse
Affiliation(s)
- Milorad Andjelkovic
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
| | - Kirill Zinovjev
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
| | - Carlos Alberto Ramos-Guzmán
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
- Instituto
de Materiales Avanzados, Universidad Jaume
I, 12071 Castelló, Spain
| | | | - Iñaki Tuñón
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
5
|
Xiao Y, Hu B, Guo Y, Zhang D, Zhao Y, Chen Y, Li N, Yu L. Targeting Glutamine Metabolism as an Attractive Therapeutic Strategy for Acute Myeloid Leukemia. Curr Treat Options Oncol 2023:10.1007/s11864-023-01104-0. [PMID: 37249801 PMCID: PMC10356674 DOI: 10.1007/s11864-023-01104-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
OPINION STATEMENT Relapse after chemotherapy and hematopoietic stem cell transplantation leads to adverse prognosis for acute myeloid leukemia (AML) patients. As a "conditionally essential amino acid," glutamine contributes to the growth and proliferation of AML cells. Glutamine-target strategies as new treatment approaches have been widely explored in AML treatment to improve outcome. Glutamine-target strategies including depletion of systemic glutamine and application of glutamine uptake inhibitors, glutamine antagonists/analogues, and glutaminase inhibitors. Because glutamine metabolism involved in multiple pathways in cells and each pathway of glutamine metabolism has many regulatory factors, therefore, AML therapy targeting glutamine metabolism should focus on how to inhibit multiple metabolic pathways without affecting normal cells and host immune to achieve effective treatment for AML.
Collapse
Affiliation(s)
- Yan Xiao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bingbing Hu
- Reproductive Medicine Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
6
|
Zhou R, Liang T, Li T, Huang J, Chen C. Possible mechanism of metabolic and drug resistance with L-asparaginase therapy in childhood leukaemia. Front Oncol 2023; 13:1070069. [PMID: 36816964 PMCID: PMC9929349 DOI: 10.3389/fonc.2023.1070069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
L-asparaginase, which hydrolyzes asparagine into aspartic acid and ammonia, is frequently used to treat acute lymphoblastic leukaemia in children. When combined with other chemotherapy drugs, the event-free survival rate is 90%. Due to immunogenicity and drug resistance, however, not all patients benefit from it, restricting the use of L-asparaginase therapy in other haematological cancers. To solve the problem of immunogenicity, several L-ASNase variants have emerged, such as Erwinia-ASNase and PEG-ASNase. However, even when Erwinia-ASNase is used as a substitute for E. coli-ASNase or PEG-ASNase, allergic reactions occur in 3%-33% of patients. All of these factors contributed to the development of novel L-ASNases. Additionally, L-ASNase resistance mechanisms, such as the methylation status of ASNS promoters and activation of autophagy, have further emphasized the importance of personalized treatment for paediatric haematological neoplasms. In this review, we discussed the metabolic effects of L-ASNase, mechanisms of drug resistance, applications in non-ALL leukaemia, and the development of novel L-ASNase.
Collapse
Affiliation(s)
| | | | | | | | - Chun Chen
- *Correspondence: Junbin Huang, ; Chun Chen,
| |
Collapse
|
7
|
Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14040902. [PMID: 35205650 PMCID: PMC8870365 DOI: 10.3390/cancers14040902] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary L-asparaginase (L-ASNase) therapy is key for achieving the very high cure rate of pediatric acute lymphoblastic leukemia (ALL), yet its use is mostly confined to this indication. One main reason preventing the expansion of today’s FDA-approved L-ASNases to solid cancers is their high toxicity and side effects, which become especially challenging in adult patients. The design of optimized L-ASNase molecules provides opportunities to overcome these unwanted toxicities. An additional challenge to broader application of L-ASNases is how cells can counter the pharmacological effect of this drug and the identification of L-ASNases resistance mechanisms. In this review, we discuss recent insights into L-ASNase adverse effects, resistance mechanisms, and how novel L-ASNase variants and drug combinations can expand its clinical applicability, with a focus on both hematological and solid tumors. Abstract L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yanti De Visser
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Amanda M. Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
| | - Veerle Mondelaers
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
- The Jesse Brown VA Medical Center, Chicago, IL 60607, USA
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
8
|
Getz KD, Alonzo TA, Sung L, Meshinchi S, Gerbing RB, Raimondi S, Hirsch B, Loken M, Brodersen LE, Kahwash S, Choi J, Kolb EA, Gamis A, Aplenc R. Cytarabine dose reduction in patients with low-risk acute myeloid leukemia: A report from the Children's Oncology Group. Pediatr Blood Cancer 2022; 69:e29313. [PMID: 34472213 PMCID: PMC8919970 DOI: 10.1002/pbc.29313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The optimal number of chemotherapy courses for low-risk (LR) pediatric acute myeloid leukemia (AML) is not known. OBJECTIVE To compare outcomes for four (21.6 g/m2 cytarabine) versus five (45.6 g/m2 cytarabine) chemotherapy courses for LR-AML using data from Children's Oncology Group (COG) AAML0531 and AAML1031. METHODS We compared relapse risk (RR), disease-free survival (DFS), and overall survival (OS), and the differential impact in LR subgroups for patients receiving four versus five chemotherapy courses. Cox (OS and DFS) and risk (RR) regressions were used to estimate hazard ratios (HR) to compare outcomes. RESULTS A total of 923 LR-AML patients were included; 21% received five courses. Overall, LR-AML patients who received four courses had higher RR (40.9% vs. 31.4%; HR = 1.40, 95% confidence interval [CI]: 1.06-1.85), and worse DFS (56.0% vs. 67.0%; HR = 1.45, 95% CI: 1.10-1.91). There was a similar decrement in OS though it was not statistically significant (77.0% vs. 83.5%; HR = 1.45, 95% CI: 0.97-2.17). Stratified analyses revealed the detrimental effects of cytarabine dose de-escalation to be most pronounced in the LR-AML subgroup with uninformative cytogenetic/molecular features who were minimal residual disease (MRD) negative after the first induction course (EOI1). The absolute decrease in DFS with four courses for patients with favorable cytogenetic/molecular features and positive MRD was similar to that observed for patients with uninformative cytogenetic/molecular features and negative MRD at EOI1, though not statistically significant. CONCLUSIONS Our results support de-escalation of cytarabine exposure through the elimination of a fifth chemotherapy course only for LR-AML patients who have both favorable cytogenetic/molecular features and negative MRD after the first induction cycle.
Collapse
Affiliation(s)
- Kelly D. Getz
- Children’s Hospital of Philadelphia, Division of Oncology, Philadelphia, Pennsylvania, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A. Alonzo
- University of Southern California, Los Angeles, California, USA
| | - Lillian Sung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Susana Raimondi
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Betsy Hirsch
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | - John Choi
- St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - E. Anders Kolb
- Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Alan Gamis
- Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| | - Richard Aplenc
- Children’s Hospital of Philadelphia, Division of Oncology, Philadelphia, Pennsylvania, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Mahmood K, Emadi A. 1-C Metabolism-Serine, Glycine, Folates-In Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2021; 14:ph14030190. [PMID: 33652666 PMCID: PMC7996867 DOI: 10.3390/ph14030190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming contributes to tumor development and introduces metabolic liabilities that can be exploited to treat cancer. Studies in hematological malignancies have shown alterations in fatty acid, folate, and amino acid metabolism pathways in cancer cells. One-carbon (1-C) metabolism is essential for numerous cancer cell functions, including protein and nucleic acid synthesis and maintaining cellular redox balance, and inhibition of the 1-C pathway has yielded several highly active drugs, such as methotrexate and 5-FU. Glutamine depletion has also emerged as a therapeutic approach for cancers that have demonstrated dependence on glutamine for survival. Recent studies have shown that in response to glutamine deprivation leukemia cells upregulate key enzymes in the serine biosynthesis pathway, suggesting that serine upregulation may be a targetable compensatory mechanism. These new findings may provide opportunities for novel cancer treatments.
Collapse
Affiliation(s)
- Kanwal Mahmood
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Ashkan Emadi
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-328-6841; Fax: +1-410-328-6896
| |
Collapse
|
10
|
Xu B, Hu R, Liang Z, Chen T, Chen J, Hu Y, Jiang Y, Li Y. Metabolic regulation of the bone marrow microenvironment in leukemia. Blood Rev 2020; 48:100786. [PMID: 33353770 DOI: 10.1016/j.blre.2020.100786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Most leukemia patients experience little benefit from immunotherapy, in part due to the immunosuppressive bone marrow microenvironment. Various metabolic mechanisms orchestrate the behaviors of immune cells and leukemia cells in the bone marrow microenvironment. Furthermore, leukemia cells regulate the bone marrow microenvironment through metabolism to generate an adequate supply of energy and to escape antitumor immune surveillance. Thus, the targeting of the interaction between leukemia cells and the bone marrow microenvironment provides a new therapeutic avenue. In this review, we describe the concept of the bone marrow microenvironment and several important metabolic processes of leukemia cells within the bone marrow microenvironment, including carbohydrate, lipid, and amino acid metabolism. In addition, we discuss how these metabolic pathways regulate antitumor immunity and reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong 523059, PR China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, PR China.
| |
Collapse
|