1
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhao M, Guan Y, Lin J, Qiu Y, Zhao S, Duan M. Acute kidney injury in critical care: complications of hemophagocytic lymphohistiocytosis. Front Immunol 2024; 15:1396124. [PMID: 38957461 PMCID: PMC11217173 DOI: 10.3389/fimmu.2024.1396124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is an immune dysfunction characterized by an exaggerated and pathological inflammatory response, potentially leading to systemic inflammatory reactions and multiple-organ failure, including renal involvement. HLH can be classified as primary or secondary, with primary HLH associated with genetic mutations affecting cell degranulation capacity, and secondary HLH often linked to infections, tumors, and autoimmune diseases. The pathogenesis of HLH is not fully understood, but primary HLH is typically driven by genetic defects, whereas secondary HLH involves the activation of CD8+ T cells and macrophages, leading to the release of inflammatory cytokines and systemic inflammatory response syndrome (SIRS). The clinical presentation of HLH includes non-specific manifestations, making it challenging to differentiate from severe sepsis, particularly secondary HLH due to infections. Shared features include prolonged fever, hepatosplenomegaly, hematopenia, hepatic dysfunction, hypertriglyceridemia, and hypofibrinogenemia, along with histiocytosis and hemophagocytosis. However, distinctive markers like dual hemocytopenia, hypertriglyceridemia, hypofibrinogenemia, and elevated sCD25 levels may aid in differentiating HLH from sepsis. Indeed, no singular biomarker effectively distinguishes between hemophagocytic lymphohistiocytosis and infection. However, research on combined biomarkers provides insights into the differential diagnosis. Renal impairment is frequently encountered in both HLH and sepsis. It can result from a systemic inflammatory response triggered by an influx of inflammatory mediators, from direct damage caused by these factors, or as a consequence of the primary disease process. For instance, macrophage infiltration of the kidney can lead to structural damage affecting various renal components, precipitating disease. Presently, tubular necrosis remains the predominant form of renal involvement in HLH-associated acute kidney injury (HLH-AKI). However, histopathological changes may also encompass interstitial inflammation, glomerular abnormalities, microscopic lesions, and thrombotic microangiopathy. Treatment approaches for HLH and sepsis diverge significantly. HLH is primarily managed with repeated chemotherapy to eliminate immune-activating stimuli and suppress hypercellularity. The treatment approach for sepsis primarily focuses on anti-infective therapy and intensive symptomatic supportive care. Renal function significantly influences clinical decision-making, particularly regarding the selection of chemotherapy and antibiotic dosages, which can profoundly impact patient prognosis. Conversely, renal function recovery is a complex process influenced by factors such as disease severity, timely diagnosis, and the intensity of treatment. A crucial aspect in managing HLH-AKI is the timely diagnosis, which plays a pivotal role in reversing renal impairment and creating a therapeutic window for intervention, may have opportunity to improve patient prognosis. Understanding the clinical characteristics, underlying causes, biomarkers, immunopathogenesis, and treatment options for hemophagocytic lymphohistiocytosis associated with acute kidney injury (HLH-AKI) is crucial for improving patient prognosis.
Collapse
Affiliation(s)
- Mengya Zhao
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Guan
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Qiu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shen Zhao
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ricci S, Sarli WM, Lodi L, Canessa C, Lippi F, Dini D, Ferrari M, Pisano L, Sieni E, Indolfi G, Resti M, Azzari C. HLH as an additional warning sign of inborn errors of immunity beyond familial-HLH in children: a systematic review. Front Immunol 2024; 15:1282804. [PMID: 38415256 PMCID: PMC10896843 DOI: 10.3389/fimmu.2024.1282804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background Hemophagocytic Lymphohistiocytosis (HLH) is a rare and life-threatening condition characterized by a severe impairment of the immune homeostasis. While Familial-HLH (FHL) is a known cause, the involvement of other Inborn Errors of Immunity (IEI) in pediatric-HLH remains understudied. Objective This systematic review aimed to assess the clinical features, triggers, laboratory data, treatment, and outcomes of pediatric HLH patients with IEI other than FHL (IEInotFHL), emphasizing the importance of accurate identification and management. Methods A systematic search for studies meeting inclusion criteria was conducted in PubMed, EMBASE, MEDLINE, and Cochrane Central. Quality assessment was performed through JBI criteria. Results A comprehensive search yielded 108 records meeting inclusion criteria, involving 178 patients. We identified 46 different IEI according to IUIS 2022 Classification. Combined immunodeficiencies, immune dysregulation disorders, and phagocyte defects were the IEI most frequently associated with HLH. In 75% of cases, HLH preceded the IEI diagnosis, often with an unrecognized history of severe infections. Triggers reflected the specific infection susceptibilities within IEI groups. Liver and central nervous system involvement were less common than in FHL cases. Treatment approaches and outcomes varied, with limited long-term follow-up data, limiting the assessment of therapeutic efficacy across IEI groups. Conclusion A comprehensive evaluation encompassing immunological, infectious, and genetic aspects is essential in pediatric-HLH. Relying solely on FHL or EBV susceptibility disorders tests is insufficient, as diverse other IEI can contribute to HLH. Early recognition of HLH as a potential warning sign can guide timely diagnostic investigations and facilitate tailored therapeutic interventions for improved outcomes. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=371425, PROSPERO, CRD42022371425.
Collapse
Affiliation(s)
- Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Walter Maria Sarli
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Clementina Canessa
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Francesca Lippi
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Donata Dini
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Marta Ferrari
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Laura Pisano
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Elena Sieni
- Pediatric Hematology-Oncology Department, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Giuseppe Indolfi
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department Neurofarba, University of Florence, Florence, Italy
| | - Massimo Resti
- Department of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Division, Section of Pediatrics, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
4
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Fratini ES, Migliavacca M, Barzaghi F, Fossati C, Giannelli S, Monti I, Casiraghi M, Ferrua F, Recupero S, Consiglieri G, Calbi V, Tucci F, Gallo V, Bernardo ME, Cenciarelli S, Palmoni M, Moni M, Galimberti L, Duse M, Leonardi L, Sieni E, Soncini E, Porta F, Notarangelo LD, De Santis R, Ladogana S, Aiuti A, Cicalese MP. Hemophagocytic inflammatory syndrome in ADA-SCID: report of two cases and literature review. Front Immunol 2023; 14:1187959. [PMID: 37435083 PMCID: PMC10331599 DOI: 10.3389/fimmu.2023.1187959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Hemophagocytic inflammatory syndrome (HIS) is a rare form of secondary hemophagocytic lymphohistiocytosis caused by an impaired equilibrium between natural killer and cytotoxic T-cell activity, evolving in hypercytokinemia and multiorgan failure. In the context of inborn errors of immunity, HIS occurrence has been reported in severe combined immunodeficiency (SCID) patients, including two cases of adenosine deaminase deficient-SCID (ADA-SCID). Here we describe two additional pediatric cases of ADA-SCID patients who developed HIS. In the first case, HIS was triggered by infectious complications while the patient was on enzyme replacement therapy; the patient was treated with high-dose corticosteroids and intravenous immunoglobulins with HIS remission. However, the patient required HLA-identical sibling donor hematopoietic stem cell transplantation (HSCT) for a definitive cure of ADA-SCID, without HIS relapse up to 13 years after HSCT. The second patient presented HIS 2 years after hematopoietic stem cell gene therapy (GT), secondarily to Varicella-Zoster vaccination and despite CD4+ and CD8+ lymphocytes' reconstitution in line with other ADA SCID patients treated with GT. The child responded to trilinear immunosuppressive therapy (corticosteroids, Cyclosporine A, Anakinra). We observed the persistence of gene-corrected cells up to 5 years post-GT, without HIS relapse. These new cases of children with HIS, together with those reported in the literature, support the hypothesis that a major dysregulation in the immune system can occur in ADA-SCID patients. Our cases show that early identification of the disease is imperative and that a variable degree of immunosuppression could be an effective treatment while allogeneic HSCT is required only in cases of refractoriness. A deeper knowledge of immunologic patterns contributing to HIS pathogenesis in ADA-SCID patients is desirable, to identify new targeted treatments and ensure patients' long-term recovery.
Collapse
Affiliation(s)
- Elena Sophia Fratini
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Maddalena Migliavacca
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Fossati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Casiraghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Salvatore Recupero
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vera Gallo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabina Cenciarelli
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Monica Palmoni
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Margherita Moni
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Galimberti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marzia Duse
- Department of Pediatrics, La Sapienza University of Rome, Rome, Italy
| | - Lucia Leonardi
- Department of Pediatrics, La Sapienza University of Rome, Rome, Italy
| | - Elena Sieni
- Paediatric Haematology/Oncology Department, Meyer Children’s University Hospital, Florence, Italy
| | - Elena Soncini
- Pediatric Oncology-Haematology and Bone Marrow Transplantation (BMT) Unit, Spedali Civili di Brescia, Brescia, Italy
| | - Fulvio Porta
- Pediatric Oncology-Haematology and Bone Marrow Transplantation (BMT) Unit, Spedali Civili di Brescia, Brescia, Italy
| | | | - Raffaella De Santis
- Paediatric Onco-Haematology Unit, “Casa Sollievo della Sofferenza” Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Saverio Ladogana
- Paediatric Onco-Haematology Unit, “Casa Sollievo della Sofferenza” Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Vignesh P, Anjani G, Kumrah R, Singh A, Mondal S, Nameirakpam J, Jindal A, Suri D, Sharma M, Kaur G, Sharma S, Gupta K, Sreedharanunni S, Rawat A, Singh S. Features of Hemophagocytic Lymphohistiocytosis in Infants With Severe Combined Immunodeficiency: Our Experience From Chandigarh, North India. Front Immunol 2022; 13:867753. [PMID: 35812426 PMCID: PMC9260510 DOI: 10.3389/fimmu.2022.867753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hemophagocytic lymphohistiocytosis (HLH) is characterized by uncontrolled and excessive inflammation leading to high mortality. Aetiology of HLH can be primarily due to genetic causes or secondarily due to infections or rheumatological illness. However, rarely T-cell deficiencies like severe combined immunodeficiency (SCID) can develop HLH. Objective To describe clinical and laboratory features of SCID cases who developed HLH. Methods We collected clinical, laboratory, and molecular details of patients with SCID who developed HLH at our center at Chandigarh, North India. Results Of the 94 cases with SCID, 6 were noted to have developed HLH-like manifestations. Male-female ratio was 5:1. Median (inter-quartile range) age of onset of clinical symptoms was 4.25 months (2-5 months). Median (inter-quartile range) delay in diagnosis was 1 month (1-3.5 months). Family history of deaths was seen in 4 cases. Molecular defects in IL2RG were seen in 5 out of 6 cases. Documented infections include disseminated bacillus calmette-guerin (BCG) infection (n=2), blood stream infections (n=3) with Staphylococcal aureus (n=1), Klebsiella pneumonia (n=1), and Pseudomonas aeruginosa (n=1), pneumonia (influenza H1N1 strain, and K. pneumoniae (n=1). Conclusion Children with SCID can present with HLH-like manifestations secondary to fulminant infections. A high index of suspicion of SCID is needed in infants who present with HLH who have an associated infection or a suggestive family history. Occurrence of HLH-like manifestations in SCID suggests that T-lymphocytes may not have a significant role in immunopathogenesis of HLH.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Pandiarajan Vignesh, ; Amit Rawat,
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjib Mondal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurjit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sathish Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- *Correspondence: Pandiarajan Vignesh, ; Amit Rawat,
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Anjani G, Sudhakar M, Bhattarai D, Kumrah R, Vignesh P, Rawat A. Features of nephrotic syndrome in infants with severe combined immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:356-357. [PMID: 35000739 DOI: 10.1016/j.jaip.2021.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Gummadi Anjani
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India; Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Murugan Sudhakar
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India; Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dharmagat Bhattarai
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India; Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India; Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India; Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India; Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|