1
|
Hong M, Guo J, Zhao Y, Song L, Zhao S, Wang R, Shi L, Zhang Z, Wu D, He Q, Chang C. Eltrombopag restores proliferative capacity and adipose-osteogenic balance of mesenchymal stromal cells in low-risk myelodysplastic syndromes. Eur J Pharmacol 2024; 985:177086. [PMID: 39481629 DOI: 10.1016/j.ejphar.2024.177086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
In low-risk myelodysplastic syndromes (MDS), the proinflammatory signaling is excessive, and the proliferation and differentiation potentials of mesenchymal stromal cells (MSCs) are strongly impaired. Eltrombopag (ELT) has been demonstrated recently effective and relatively safe in low-risk MDS with severe thrombocytopenia. However, its impact on the MDS-MSCs has not been investigated in any detail. Here, for the first time, we investigated the changes induced by ELT in MSCs' viability, proliferation, apoptosis, senescence, multilineage differentiation properties, and stem cell support capacity in low-risk MDS patients. We demonstrated that ELT may act on improving the impaired inflammatory profile and reactivating the downregulated canonical WNT signaling pathway in low-risk MDS, and also restoring the self-renewal capacity and the balance in adipose-osteogenic differentiation of MDS-MSCs.
Collapse
Affiliation(s)
- Minghua Hong
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Luxi Song
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Sida Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Roujia Wang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lei Shi
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Xu R, Wu M, Wang Y, Li C, Zeng L, Wang Y, Xiao M, Chen X, Geng S, Lai P, Du X, Weng J. Mesenchymal stem cells reversibly de-differentiate myofibroblasts to fibroblast-like cells by inhibiting the TGF-β-SMAD2/3 pathway. Mol Med 2023; 29:59. [PMID: 37098464 PMCID: PMC10131436 DOI: 10.1186/s10020-023-00630-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Myofibroblasts (MFB), one of the major effectors of pathologic fibrosis, mainly derived from the activation of fibroblast to myofibroblast transition (FMT). Although MFBs were historically considered terminally differentiated cells, their potential for de-differentiation was recently recognized and implied with therapeutic value in treating fibrotic diseases, for instance, idiopathic pulmonary fibrosis (IPF) and post allogeneic hematopoietic stem cell transplantation bronchiolitis obliterans (BO). During the past decade, several methods were reported to block or reverse MFB differentiation, among which mesenchymal stem cells (MSC) have demonstrated potential but undetermined therapeutic values. However, the MSC-mediated regulation of FMT and underlying mechanisms remained largely undefined. METHOD By identifying TGF-β1 hypertension as the pivotal landmark during the pro-fibrotic FMT, TGF-β1-induced MFB and MSC co-culture models were established and utilized to investigate regulations by MSC on FMT in vitro. Methods including RNA sequencing (RNA-seq), Western blot, qPCR and flow cytometry were used. RESULT Our data revealed that TGF-β1 readily induced invasive signatures identified in fibrotic tissues and initiated MFB differentiation in normal FB. MSC reversibly de-differentiated MFB into a group of FB-like cells by selectively inhibiting the TGF-β-SMAD2/3 signaling. Importantly, these proliferation-boosted FB-like cells remained sensitive to TGF-β1 and could be re-induced into MFB. CONCLUSION Our findings highlighted the reversibility of MSC-mediated de-differentiation of MFB through TGF-β-SMAD2/3 signaling, which may explain MSC's inconsistent clinical efficacies in treating BO and other fibrotic diseases. These de-differentiated FB-like cells are still sensitive to TGF-β1 and may further deteriorate MFB phenotypes unless the pro-fibrotic microenvironment is corrected.
Collapse
Affiliation(s)
- Ruohao Xu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Miao Wu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yawen Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Maozhi Xiao
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
3
|
Erratum to: Bone marrow mesenchymal stromal cells in chronic myelomonocytic leukaemia: Overactivated WNT/β-catenin signalling by parallel RNA sequencing and dysfunctional phenotypes. Br J Haematol 2023; 201:797. [PMID: 36929153 DOI: 10.1111/bjh.18756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
|
4
|
Chiu M, Taurino G, Dander E, Bardelli D, Fallati A, Andreoli R, Bianchi MG, Carubbi C, Pozzi G, Galuppo L, Mirandola P, Rizzari C, Tardito S, Biondi A, D’Amico G, Bussolati O. ALL blasts drive primary mesenchymal stromal cells to increase asparagine availability during asparaginase treatment. Blood Adv 2021; 5:5164-5178. [PMID: 34614505 PMCID: PMC9153005 DOI: 10.1182/bloodadvances.2020004041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells. In turn, MSCs use glutamine, either synthesized through glutamine synthetase (GS) or imported, to produce asparagine, which is then extruded to sustain asparagine-auxotroph leukemic cells. GS inhibition prevents mesenchymal cells adaptation to l-asparaginase, lowers glutamine secretion by ALL blasts, and markedly hinders the protection exerted by MSCs on leukemic cells. The pro-survival amino acid exchange is hindered by the inhibition or silencing of the asparagine efflux transporter SNAT5, which is induced in mesenchymal cells by ALL blasts. Consistently, primary MSCs from ALL patients express higher levels of SNAT5 (P < .05), secrete more asparagine (P < .05), and protect leukemic blasts (P < .05) better than MSCs isolated from healthy donors. In conclusion, ALL blasts arrange a pro-leukemic amino acid trade-off with bone marrow mesenchymal cells, which depends on GS and SNAT5 and promotes leukemic cell survival during l-asparaginase treatment.
Collapse
Affiliation(s)
- Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Erica Dander
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Donatella Bardelli
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alessandra Fallati
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Galuppo
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; and
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrea Biondi
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Giovanna D’Amico
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Femminò S, D’Ascenzo F, Ravera F, Comità S, Angelini F, Caccioppo A, Franchin L, Grosso A, Thairi C, Venturelli E, Cavallari C, Penna C, De Ferrari GM, Camussi G, Pagliaro P, Brizzi MF. Percutaneous Coronary Intervention (PCI) Reprograms Circulating Extracellular Vesicles from ACS Patients Impairing Their Cardio-Protective Properties. Int J Mol Sci 2021; 22:ijms221910270. [PMID: 34638611 PMCID: PMC8508604 DOI: 10.3390/ijms221910270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are promising therapeutic tools in the treatment of cardiovascular disorders. We have recently shown that EVs from patients with Acute Coronary Syndrome (ACS) undergoing sham pre-conditioning, before percutaneous coronary intervention (PCI) were cardio-protective, while EVs from patients experiencing remote ischemic pre-conditioning (RIPC) failed to induce protection against ischemia/reperfusion Injury (IRI). No data on EVs from ACS patients recovered after PCI are currently available. Therefore, we herein investigated the cardio-protective properties of EVs, collected after PCI from the same patients. EVs recovered from 30 patients randomly assigned (1:1) to RIPC (EV-RIPC) or sham procedures (EV-naive) (NCT02195726) were characterized by TEM, FACS and Western blot analysis and evaluated for their mRNA content. The impact of EVs on hypoxia/reoxygenation damage and IRI, as well as the cardio-protective signaling pathways, were investigated in vitro (HMEC-1 + H9c2 co-culture) and ex vivo (isolated rat heart). Both EV-naive and EV-RIPC failed to drive cardio-protection both in vitro and ex vivo. Consistently, EV treatment failed to activate the canonical cardio-protective pathways. Specifically, PCI reduced the EV-naive Dusp6 mRNA content, found to be crucial for their cardio-protective action, and upregulated some stress- and cell-cycle-related genes in EV-RIPC. We provide the first evidence that in ACS patients, PCI reprograms the EV cargo, impairing EV-naive cardio-protective properties without improving EV-RIPC functional capability.
Collapse
Affiliation(s)
- Saveria Femminò
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.F.); (F.R.); (A.C.); (A.G.); (E.V.); (G.C.)
| | - Fabrizio D’Ascenzo
- Department of Medical Sciences, Division of Cardiology, University of Turin, 10126 Turin, Italy; (F.D.); (F.A.); (L.F.); (G.M.D.F.)
| | - Francesco Ravera
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.F.); (F.R.); (A.C.); (A.G.); (E.V.); (G.C.)
| | - Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, 10143 Orbassano, Italy; (S.C.); (C.T.); (C.P.); (P.P.)
| | - Filippo Angelini
- Department of Medical Sciences, Division of Cardiology, University of Turin, 10126 Turin, Italy; (F.D.); (F.A.); (L.F.); (G.M.D.F.)
| | - Andrea Caccioppo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.F.); (F.R.); (A.C.); (A.G.); (E.V.); (G.C.)
| | - Luca Franchin
- Department of Medical Sciences, Division of Cardiology, University of Turin, 10126 Turin, Italy; (F.D.); (F.A.); (L.F.); (G.M.D.F.)
| | - Alberto Grosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.F.); (F.R.); (A.C.); (A.G.); (E.V.); (G.C.)
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, 10143 Orbassano, Italy; (S.C.); (C.T.); (C.P.); (P.P.)
| | - Emilio Venturelli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.F.); (F.R.); (A.C.); (A.G.); (E.V.); (G.C.)
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10143 Orbassano, Italy; (S.C.); (C.T.); (C.P.); (P.P.)
| | - Gaetano Maria De Ferrari
- Department of Medical Sciences, Division of Cardiology, University of Turin, 10126 Turin, Italy; (F.D.); (F.A.); (L.F.); (G.M.D.F.)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.F.); (F.R.); (A.C.); (A.G.); (E.V.); (G.C.)
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10143 Orbassano, Italy; (S.C.); (C.T.); (C.P.); (P.P.)
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (S.F.); (F.R.); (A.C.); (A.G.); (E.V.); (G.C.)
- Correspondence: ; Tel.: +39-011-670-6653
| |
Collapse
|