1
|
Pozzo F, Forestieri G, Vit F, Ianna G, Tissino E, Bittolo T, Papotti R, Gaglio A, Terzi di Bergamo L, Steffan A, Polesel J, Bulian P, Laureana R, Tafuri A, Chiarenza A, Di Raimondo F, Olivieri J, Zaja F, Laurenti L, Del Principe MI, Postorino M, Del Poeta G, Bomben R, Zucchetto A, Rossi D, Gattei V. Early reappearance of intraclonal proliferative subpopulations in ibrutinib-resistant chronic lymphocytic leukemia. Leukemia 2024; 38:1712-1721. [PMID: 38914716 PMCID: PMC11286529 DOI: 10.1038/s41375-024-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib represents an effective strategy for treatment of chronic lymphocytic leukemia (CLL), nevertheless about 30% of patients eventually undergo disease progression. Here we investigated by flow cytometry the long-term modulation of the CLL CXCR4dim/CD5bright proliferative fraction (PF), its correlation with therapeutic outcome and emergence of ibrutinib resistance. By longitudinal tracking, the PF, initially suppressed by ibrutinib, reappeared upon early disease progression, without association with lymphocyte count or serum beta-2-microglobulin. Somatic mutations of BTK/PLCG2, detected in 57% of progressing cases, were significantly enriched in PF with a 3-fold greater allele frequency than the non-PF fraction, suggesting a BTK/PLCG2-mutated reservoir resident within the proliferative compartments. PF increase was also present in BTK/PLCG2-unmutated cases at progression, indicating that PF evaluation could represent a marker of CLL progression under ibrutinib. Furthermore, we evidence different transcriptomic profiles of PF at progression in cases with or without BTK/PLCG2 mutations, suggestive of a reactivation of B-cell receptor signaling or the emergence of bypass signaling through MYC and/or Toll-Like-Receptor-9. Clinically, longitudinal monitoring of the CXCR4dim/CD5bright PF by flow cytometry may provide a simple tool helping to intercept CLL progression under ibrutinib therapy.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Piperidines
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Drug Resistance, Neoplasm/genetics
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Mutation
- Cell Proliferation/drug effects
- Phospholipase C gamma/genetics
- Disease Progression
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Male
- Aged
- Female
- Middle Aged
- CD5 Antigens/metabolism
- CD5 Antigens/genetics
Collapse
Affiliation(s)
- Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy.
| | - Gabriela Forestieri
- Experimental Hematology, Institute of Oncology Research, Bellinzona, 6500, Switzerland
| | - Filippo Vit
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Giulia Ianna
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Robel Papotti
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Annalisa Gaglio
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | | | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, 33081, Italy
| | - Pietro Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Roberta Laureana
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Agostino Tafuri
- Hematology Unit, Azienda Ospedaliera-Universitaria Sant'Andrea, Rome, 00189, Italy
| | | | | | - Jacopo Olivieri
- Hematology Clinic, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, 33100, Italy
| | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Luca Laurenti
- Institute of Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | | | - Massimiliano Postorino
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Giovanni Del Poeta
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Davide Rossi
- Experimental Hematology, Institute of Oncology Research, Bellinzona, 6500, Switzerland
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy.
| |
Collapse
|
2
|
Wiśniewski K, Puła B. A Review of Resistance Mechanisms to Bruton's Kinase Inhibitors in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:5246. [PMID: 38791284 PMCID: PMC11120758 DOI: 10.3390/ijms25105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Bruton's Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi.
Collapse
Affiliation(s)
- Kamil Wiśniewski
- Department of Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | | |
Collapse
|
3
|
Moia R, Gaidano G. Prognostication in chronic lymphocytic leukemia. Semin Hematol 2024; 61:83-90. [PMID: 38523019 DOI: 10.1053/j.seminhematol.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in Western countries. CLL is a highly heterogeneous disease: some patients may never require therapy and others relapse several times after different therapeutic strategies. Therefore, in CLL, prognostic markers are essential to capture high-risk patients for different clinical endpoints including early treatment requirement, early progression after BTK or BCL2 inhibitors and Richter transformation. In early stage CLL, different biological and clinical biomarkers have been identified to predict time to treatment requirement that could be used to identify the most appropriate population for early intervention clinical trial. However, at the moment, the standard of care for early stage CLL remains watch & wait since no survival benefit has been identified in clinical trials with chemoimmunotherapy and with BTK inhibitors. In patients requiring treatment TP53 disruptions identify high-risk patients who benefit the most from long-term continuous therapy with BTKi. On the opposite side of the spectrum, IGHV mutated patients devoid of TP53 disruption benefit the most from fixed-duration therapy with venetoclax-obinutuzumab. In between, the highly heterogenous subgroup of patients with IGHV unmutated genes represents the group in which further efforts are needed to identify additional prognostic biomarkers aimed at selecting patients who can benefit from fixed-duration and patients who can benefit from long term BTKi therapy. In the context of the aggressive transformation of CLL, namely Richter syndrome, the clonal relationship to the CLL counterpart represents the strongest prognostic biomarker. Clonally related Richter syndrome still represents an unmet clinical need which requires further efforts to identify new therapeutic strategies.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Humans
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Mutation
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
4
|
Brown J, Mashima K, Fernandes S, Naeem A, Shupe S, Fardoun R, Davids M. Mutations Detected in Real World Clinical Sequencing during BTK Inhibitor Treatment in CLL. RESEARCH SQUARE 2024:rs.3.rs-3837426. [PMID: 38313250 PMCID: PMC10836097 DOI: 10.21203/rs.3.rs-3837426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
We retrospectively analyzed 609 chronic lymphocytic leukemia (CLL) patients treated with BTK inhibitors (BTKis) at Dana-Farber Cancer Institute from 2014 to 2022. Among them, 85 underwent next-generation sequencing (NGS) during or after BTKi therapy (ibrutinib, 64; acalabrutinib, 13; pirtobrutinib, 7; vecabrutinib, 1). Patients with NGS at progression (N=36, PD group) showed more 17p deletion, complex karyotype, and previous treatments including BTKi, compared to ongoing responders (N=49, NP group). 216 variants were found in 57 genes across both groups, with more variants in the PD group (158 variants, 70.3% pathogenic, P<0.001). The PD group had a higher incidence of pathogenic variants (70.3%, P<0.001), including 32 BTK(BTK C481S/F/R/Y, L528W, and T474I/L) and 4 PLCG2mutations. Notably, a high VAF L528W mutation was found in a first line ibrutinib-resistant patient. TP53, SF3B1, and NOTCH2mutations were also significantly more prevalent in the PD group (P<0.01, P<0.05, P<0.05). Additionally, MAPK pathway gene mutations trended more common and had higher VAFs in the PD group (P=0.041). T474 mutations were found in 4 of 6 patients progressing on pirtobrutinib, and BTK L528W mutation can arise with both covalent and non-covalent BTKi therapy. These results also suggest that RAS/RAF/MAPK pathway mutations may contribute to BTKi resistance.
Collapse
|
5
|
Xu B, Liang L, Jiang Y, Zhao Z. Investigating the ibrutinib resistance mechanism of L528W mutation on Bruton's tyrosine kinase via molecular dynamics simulations. J Mol Graph Model 2024; 126:108623. [PMID: 37716293 DOI: 10.1016/j.jmgm.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Drug resistance to Bruton's Tyrosine Kinase (BTK) inhibitors presents a challenge in treating B-cell malignancies, and the mechanism behind drug resistance remains unclear. In this study, we focused on the BTK L528W mutation and investigated the underlying mechanisms of resistance to ibrutinib (including prototype and its active metabolite from, PCI-45227) using a combination of bioinformatics analysis, and molecular dynamics (MD) simulations. Protein stability of wild type (WT) BTK and L528W mutant was predicted using DUET, PoPMuSiC, and I-Mutant2.0. We performed MD simulations of six systems, apo-WT, metabolite-WT, prototype-WT and their mutants, to analyze the significant conformational and BTK-inhibitor binding affinity changes induced by the L528W mutation. Results show that the L528W mutation reduces the conformational stability of BTK compared to the WT. Principal component analysis (PCA) based free energy landscape (FEL) analysis shows that the L528W mutant ensemble tends to form more conformation clusters and exhibit higher levels of local minima than the WT counterpart. The interaction analysis reveal that the L528W mutation disrupts the strong hydrogen bond between Cys481 and inhibitors and reduces the number of hydrogen bonds between inhibitors and BTK in the L528W mutant complex structures compared to the WT. Porcupine plot analysis in association with cross-correlation analysis show the high-intensity flexible motion exhibited by the P-loop region. MM/GBSA calculations show that the L528W mutation in metabolite-BTK and prototype-BTK complexes increases binding free energy compared to the WT, with a reduction in binding affinity confirmed by per-residue energy decomposition. Specifically, the binding free energy increases from -57.86 kcal/mol to -48.26 kcal/mol for the metabolite-BTK complex and from -62.04 kcal/mol to -50.55 kcal/mol for the prototype-BTK complex. Overall, our study finds that the L528W mutation reduces BTK stability, decreases binding affinity, and leads to drug resistance and potential disease recurrence.
Collapse
Affiliation(s)
- Biyu Xu
- Department of Hematology, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China; Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China
| | - Luguang Liang
- Department of Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan City, 523710, Guangdong Province, China
| | - Yirong Jiang
- Department of Hematology, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China; Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China.
| | - Zuguo Zhao
- Department of Microbiology and Immunology of Basical Medicine of Guangdong Medical University, Dongguan City, 523808, Guangdong Province, China; Department of Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan City, 523710, Guangdong Province, China.
| |
Collapse
|
6
|
Chirino A, Montoya S, Safronenka A, Taylor J. Resisting the Resistance: Navigating BTK Mutations in Chronic Lymphocytic Leukemia (CLL). Genes (Basel) 2023; 14:2182. [PMID: 38137005 PMCID: PMC10742473 DOI: 10.3390/genes14122182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) plays a key role in the B-cell receptor (BCR) signaling pathway and confers anti-apoptotic and proliferative properties to malignant B-cells in chronic lymphocytic leukemia (CLL). Small molecule BTK inhibitors were designed to bind BTK's active site and block downstream signaling. These drugs have now been used in the treatment of thousands of patients with CLL, the most common form of leukemia in the western hemisphere. However, adverse effects of early generations of BTK inhibitors and resistance to treatment have led to the development of newer, more selective and non-covalent BTK inhibitors. As the use of these newer generation BTK inhibitors has increased, novel BTK resistance mutations have come to light. This review aims to discuss previously known and novel BTK mutations, their mechanisms of resistance, and their relationship with patient treatment. Also discussed here are future studies that are needed to investigate the underlying cause allowing these mutations to occur and how they incite resistance. New treatments on the horizon that attempt to maneuver around these resistance mutations can be met with new resistance mutations, creating an unmet need for patients with CLL. Novel therapies and combinations that address all forms of resistance are discussed.
Collapse
Affiliation(s)
| | | | | | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Zhou ZY, Dai LMJ, Sha YQ, Qiu TL, Qin SC, Miao Y, Xia Y, Wu W, Tang HN, Xu W, Li JY, Zhu HY. [Clinical and molecular biological characterization of patients with accelerated chronic lymphocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:917-923. [PMID: 38185521 PMCID: PMC10753261 DOI: 10.3760/cma.j.issn.0253-2727.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 01/09/2024]
Abstract
Objective: To investigate the clinical and molecular biological characteristics of patients with accelerated chronic lymphocytic leukemia (aCLL) . Methods: From January 2020 to October 2022, the data of 13 patients diagnosed with aCLL at The First Affiliated Hospital of Nanjing Medical University were retrospectively analyzed to explore the clinical and molecular biological characteristics of aCLL. Results: The median age of the patients was 54 (35-72) years. Prior to aCLL, five patients received no treatment for CLL/small lymphocytic lymphoma (SLL), while the other patients received treatment, predominantly with BTK inhibitors. The patients were diagnosed with aCLL through pathological confirmation upon disease progression. Six patients exhibited bulky disease (lesions with a maximum diameter ≥5 cm). Positron emission tomography (PET) -computed tomography (CT) images revealed metabolic heterogeneity, both between and within lesions, and the median maximum standardized uptake value (SUVmax) of the lesion with the most elevated metabolic activity was 6.96 (2.51-11.90). Patients with unmutated IGHV CLL accounted for 76.9% (10/13), and the most frequent genetic and molecular aberrations included +12 [3/7 (42.9% ) ], ATM mutation [6/12 (50% ) ], and NOTCH1 mutation [6/12 (50% ) ]. Twelve patients received subsequent treatment. The overall response rate was 91.7%, and the complete response rate was 58.3%. Five patients experienced disease progression, among which two patients developed Richter transformation. Patients with aCLL with KRAS mutation had worse progression-free survival (7.0 month vs 26.3 months, P=0.015) . Conclusion: Patients with aCLL exhibited a clinically aggressive course, often accompanied by unfavorable prognostic factors, including unmutated IGHV, +12, ATM mutation, and NOTCH1 mutation. Patients with CLL/SLL with clinical suspicion of disease progression, especially those with bulky disease and PET-CT SUVmax ≥5, should undergo biopsy at the site of highest metabolic uptake to establish a definitive pathological diagnosis.
Collapse
Affiliation(s)
- Z Y Zhou
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - L M J Dai
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Y Q Sha
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - T L Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - S C Qin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Y Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Y Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - W Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - H N Tang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - W Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - J Y Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - H Y Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| |
Collapse
|
8
|
Bonfiglio S, Sutton LA, Ljungström V, Capasso A, Pandzic T, Weström S, Foroughi-Asl H, Skaftason A, Gellerbring A, Lyander A, Gandini F, Gaidano G, Trentin L, Bonello L, Reda G, Bödör C, Stavroyianni N, Tam CS, Marasca R, Forconi F, Panayiotidis P, Ringshausen I, Jaksic O, Frustaci AM, Iyengar S, Coscia M, Mulligan SP, Ysebaert L, Strugov V, Pavlovsky C, Walewska R, Österborg A, Cortese D, Ranghetti P, Baliakas P, Stamatopoulos K, Scarfò L, Rosenquist R, Ghia P. BTK and PLCG2 remain unmutated in one-third of patients with CLL relapsing on ibrutinib. Blood Adv 2023; 7:2794-2806. [PMID: 36696464 PMCID: PMC10279547 DOI: 10.1182/bloodadvances.2022008821] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) progressing on ibrutinib constitute an unmet need. Though Bruton tyrosine kinase (BTK) and PLCG2 mutations are associated with ibrutinib resistance, their frequency and relevance to progression are not fully understood. In this multicenter retrospective observational study, we analyzed 98 patients with CLL on ibrutinib (49 relapsing after an initial response and 49 still responding after ≥1 year of continuous treatment) using a next-generation sequencing (NGS) panel (1% sensitivity) comprising 13 CLL-relevant genes including BTK and PLCG2. BTK hotspot mutations were validated by droplet digital polymerase chain reaction (ddPCR) (0.1% sensitivity). By integrating NGS and ddPCR results, 32 of 49 relapsing cases (65%) carried at least 1 hotspot BTK and/or PLCG2 mutation(s); in 6 of 32, BTK mutations were only detected by ddPCR (variant allele frequency [VAF] 0.1% to 1.2%). BTK/PLCG2 mutations were also identified in 6 of 49 responding patients (12%; 5/6 VAF <10%), of whom 2 progressed later. Among the relapsing patients, the BTK-mutated (BTKmut) group was enriched for EGR2 mutations, whereas BTK-wildtype (BTKwt) cases more frequently displayed BIRC3 and NFKBIE mutations. Using an extended capture-based panel, only BRAF and IKZF3 mutations showed a predominance in relapsing cases, who were enriched for del(8p) (n = 11; 3 BTKwt). Finally, no difference in TP53 mutation burden was observed between BTKmut and BTKwt relapsing cases, and ibrutinib treatment did not favor selection of TP53-aberrant clones. In conclusion, we show that BTK/PLCG2 mutations were absent in a substantial fraction (35%) of a real-world cohort failing ibrutinib, and propose additional mechanisms contributing to resistance.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Drug Resistance, Neoplasm/genetics
- Piperidines
- Recurrence
Collapse
Affiliation(s)
- Silvia Bonfiglio
- Centre for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Ljungström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Antonella Capasso
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Simone Weström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Hassan Foroughi-Asl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Gellerbring
- Clinical Genomics Stockholm, Science for Life Laboratory, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Lyander
- Clinical Genomics Stockholm, Science for Life Laboratory, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Francesca Gandini
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology, University of Padua, Italy
| | - Lisa Bonello
- Molecular Pathology Unit, A.O.U Città della Salute e della Scienza, Torino, Italy
- Department of Molecular Biotechnologies and Health Sciences, Università di Torino, Italy
| | - Gianluigi Reda
- Department of Hematology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Csaba Bödör
- HCEMM-SU Molecular Oncohematology Research Group, Budapest, Hungary
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Niki Stavroyianni
- Department of Hematology and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Constantine S. Tam
- Department of Hematology, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Hematology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Hematology, University Hospital National Health Service Trust, Southampton, United Kingdom
| | - Panayiotis Panayiotidis
- Department of Propaedeutic Internal Medicine, Laiko Hospital, University of Athens, Athens, Greece
| | - Ingo Ringshausen
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Anna Maria Frustaci
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Sunil Iyengar
- Department of Haemato-Oncology, Royal Marsden Hospital, London, United Kingdom
| | - Marta Coscia
- Department of Molecular Biotechnologies and Health Sciences, Università di Torino, Italy
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Stephen P. Mulligan
- Department of Haematology, Royal North Shore Hospital, University of Sydney, Sydney, Australia
| | - Loïc Ysebaert
- Département d'Hématologie, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| | | | | | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, Bournemouth, United Kingdom
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Diego Cortese
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Pamela Ranghetti
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Lydia Scarfò
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Ghia
- Division of Experimental Oncology, B cell Neoplasia Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
9
|
Kotmayer L, László T, Mikala G, Kiss R, Lévay L, Hegyi LL, Gróf S, Nagy T, Barna G, Farkas P, Weisinger J, Nagy Z, Balogh A, Masszi T, Demeter J, Sulák A, Kohl Z, Alizadeh H, Egyed M, Pettendi P, Gergely L, Plander M, Pauker Z, Masszi A, Matolcsy A, Szász R, Bödör C, Alpár D. Landscape of BCL2 Resistance Mutations in a Real-World Cohort of Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia Treated with Venetoclax. Int J Mol Sci 2023; 24:ijms24065802. [PMID: 36982875 PMCID: PMC10058128 DOI: 10.3390/ijms24065802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
The oral, highly selective Bcl2 inhibitor venetoclax has substantially improved the therapeutic landscape of chronic lymphocytic leukemia (CLL). Despite the remarkable response rates in patients with relapsed/refractory (R/R) disease, acquired resistance is the leading cause of treatment failure, with somatic BCL2 mutations being the predominant genetic drivers underpinning venetoclax resistance. To assess the correlation between disease progression and the most common BCL2 mutations G101V and D103Y, sensitive (10−4) screening for the most common BCL2 mutations G101V and D103Y was performed in 67 R/R CLL patients during venetoclax single-agent or venetoclax–rituximab combination therapy. With a median follow-up time of 23 months, BCL2 G101V and D103Y were detected in 10.4% (7/67) and 11.9% (8/67) of the cases, respectively, with four patients harboring both resistance mutations. Ten out of eleven patients carrying BCL2 G101V and/or D103Y experienced relapse during the follow-up period, representing 43.5% of the cases (10/23) showing clinical signs of disease progression. All BCL2 G101V or D103Y variants were detected in patients receiving venetoclax as a continuous single-agent treatment while these mutations were not observed during or after fixed-duration venetoclax therapy. Targeted ultra-deep sequencing of BCL2 uncovered three additional variants in four patient samples obtained at relapse, suggesting convergent evolution and implying a cooperating role of BCL2 mutations in driving venetoclax resistance. This cohort is the largest R/R CLL patient population reported to date in which BCL2 resistance mutations were investigated. Our study demonstrates the feasibility and clinical value of sensitive screening for BCL2 resistance mutations in R/R CLL.
Collapse
Affiliation(s)
- Lili Kotmayer
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás László
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Gábor Mikala
- South-Pest Central Hospital, National Institute of Hematology and Infectology, 1097 Budapest, Hungary
| | - Richárd Kiss
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Luca Lévay
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Stefánia Gróf
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Farkas
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Júlia Weisinger
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Zsolt Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Alexandra Balogh
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Masszi
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Judit Demeter
- Department of Internal Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary
| | - Adrienn Sulák
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, 6725 Szeged, Hungary
| | - Zoltán Kohl
- 1st Department of Internal Medicine, Clinical Centre, University of Pécs, 7622 Pécs, Hungary
| | - Hussain Alizadeh
- 1st Department of Internal Medicine, Clinical Centre, University of Pécs, 7622 Pécs, Hungary
| | - Miklós Egyed
- Kaposi Mór University Teaching Hospital of County Somogy, 7400 Kaposvár, Hungary
| | - Piroska Pettendi
- Hetényi Géza Hospital, Clinic of County Jász-Nagykun-Szolnok, 5000 Szolnok, Hungary
| | - Lajos Gergely
- Division of Hematology, Department of Internal Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Márk Plander
- Markusovszky University Teaching Hospital, 9700 Szombathely, Hungary
| | - Zsolt Pauker
- Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, 3515 Miskolc, Hungary
| | - András Masszi
- National Institute of Oncology, 1122 Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
- Department of Laboratory Medicine, Karolinska Institute, 171 77 Solna, Sweden
| | - Róbert Szász
- Division of Hematology, Department of Internal Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
- Correspondence: (C.B.); (D.A.); Tel.: +36-1-459-1500 (C.B. & D.A)
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
- Correspondence: (C.B.); (D.A.); Tel.: +36-1-459-1500 (C.B. & D.A)
| |
Collapse
|
10
|
Zhu J, Zhu X, Xie F, Ding Y, Lu H, Dong Y, Li P, Fu J, Liang A, Zeng Y, Xiu B. Case report: Circulating tumor DNA technology displays temporal and spatial heterogeneity in Waldenström macroglobulinemia during treatment with BTK inhibitors. Pathol Oncol Res 2023; 29:1611070. [PMID: 37151353 PMCID: PMC10154527 DOI: 10.3389/pore.2023.1611070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Background: Waldenström macroglobulinemia (WM) is a rare subtype of B-cell lymphoma. Rituximab-based combination therapy and Bruton's tyrosine kinase (BTK) inhibitors have greatly improved the prognosis of WM. Despite the high response rate and good tolerance of BTK inhibitors in treatment of WM, a proportion of patients still experience disease progression. Case presentation: We report a 55-year-old man with relapsed WM. The patient achieved partial remission after six courses of CHOP chemotherapy and multiple plasma exchanges in initial treatment. He was admitted to the hospital with abdominal distension, and was diagnosed with relapsed WM and subsequently started on zanubrutinib. Disease progression and histological transformation occurred during treatment. We performed liquid biopsies on transformed plasma, tumor tissue and ascites at the same time and found high consistency between ascites and tissues. Moreover, we detected resistance mutations of BTK inhibitors (BTK, PLCG2) in ascites that were not detected in plasma or tissue. Eventually, the patient died during the 15-month follow-up after relapse. Conclusion: We describe a rare case of WM transformation to DLCBCL treated with chemoimmunotherapy and BTK inhibition. We analyzed tumor DNA obtained at different anatomic sites and circulating tumor DNA (ctDNA) derived from plasma and ascites specimens, with apparent significant temporal and spatial heterogeneity. The case specifically highlights the clinical value of ctDNA of ascites supernatant from WM patients, which is a more convenient and relatively noninvasive method compared with traditional invasive tissue biopsy.
Collapse
Affiliation(s)
- Jingjing Zhu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyu Zhu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyang Xie
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Ding
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huina Lu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfei Fu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zeng
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yu Zeng, ; Bing Xiu,
| | - Bing Xiu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yu Zeng, ; Bing Xiu,
| |
Collapse
|
11
|
Comparison of Intermolecular Interactions of Irreversible and Reversible Inhibitors with Bruton’s Tyrosine Kinase via Molecular Dynamics Simulations. Molecules 2022; 27:molecules27217451. [DOI: 10.3390/molecules27217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses of static protein structures, the dynamics of conformational change of BTK upon inhibitor binding remain unclear. Here, molecular dynamics simulations were conducted to investigate the molecular mechanisms of association and dissociation of a reversible (ARQ531) and irreversible (ibrutinib) small-molecule inhibitor to/from BTK. The results indicated that the BTK kinase domain was found to be locked in an inactive state through local conformational changes in the DFG motif, and P-, A-, and gatekeeper loops. The binding of the inhibitors drove the outward rotation of the C-helix, resulting in the upfolded state of Trp395 and the formation of the salt bridge of Glu445-Arg544, which maintained the inactive conformation state. Met477 and Glu475 in the hinge region were found to be the key residues for inhibitor binding. These findings can be used to evaluate the inhibitory activity of the pharmacophore and applied to the design of effective BTK inhibitors. In addition, the drug resistance to the irreversible inhibitor Ibrutinib was mainly from the strong interaction of Cys481, which was evidenced by the mutational experiment, and further confirmed by the measurement of rupture force and rupture times from steered molecular dynamics simulation. Our results provide mechanistic insights into resistance against BTK-targeting drugs and the key interaction sites for the development of high-quality BTK inhibitors. The steered dynamics simulation also offers a means to rapidly assess the binding capacity of newly designed inhibitors.
Collapse
|
12
|
Jiang VC, Hao D, Jain P, Li Y, Cai Q, Yao Y, Nie L, Liu Y, Jin J, Wang W, Lee HH, Che Y, Dai E, Han G, Wang R, Rai K, Futreal A, Flowers C, Wang L, Wang M. TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma. Mol Cancer 2022; 21:185. [PMID: 36163179 PMCID: PMC9513944 DOI: 10.1186/s12943-022-01655-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy using brexucabtagene autoleucel (BA) induces remission in many patients with mantle cell lymphoma (MCL), and BA is the only CAR T-cell therapy approved by the FDA for MCL. However, development of relapses to BA is recognized with poor patient outcomes. Multiple CAR T-cell therapies have been approved for other lymphomas and the resistance mechanisms have been investigated. However, the mechanisms underlying BA relapse in MCL have not been investigated and whether any previously reported resistance mechanisms apply to BA-relapsed patients with MCL is unknown. METHODS To interrogate BA resistance mechanisms in MCL, we performed single-cell RNA sequencing on 39 longitudinally collected samples from 15 BA-treated patients, and multiplex cytokine profiling on 80 serial samples from 20 patients. RESULTS We demonstrate that after BA relapse, the proportion of T cells, especially cytotoxic T cells (CTLs), decreased among non-tumor cells, while the proportion of myeloid cells correspondingly increased. TIGIT, LAG3, and CD96 were the predominant checkpoint molecules expressed on exhausted T cells and CTLs; only TIGIT was significantly increased after relapse. CTLs expanded during remission, and then contracted during relapse with upregulated TIGIT expression. Tumor cells also acquired TIGIT expression after relapse, leading to the enhanced interaction of tumor cell TIGIT with monocyte CD155/PVR. In myeloid cells, post-relapse HLA-II expression was reduced relative to pretreatment and during remission. Myeloid-derived suppressor cells (MDSCs) were enriched after relapse with elevated expression of activation markers, including CLU (clusterin) and VCAN (versican). Extracellular chemokines (CCL4, CXCL9, CXCL13), soluble checkpoint inhibitors (sPD-L1, sTIM3, s4-1BB), and soluble receptors (sIL-2R, sTNFRII) were decreased during remission but elevated after relapse. CONCLUSIONS Our data demonstrate that multiple tumor-intrinsic and -extrinsic factors are associated with T-cell suppression and BA relapse. Among these, TIGIT appears to be the central player given its elevated expression after BA relapse in not only CTLs but also MCL cells. The acquisition of TIGIT expression on tumor cells is MCL-specific and has not been reported in other CAR T-treated diseases. Together, our data suggest that co-targeting TIGIT may prevent CAR T relapses and thus promote long-term progression-free survival in MCL patients.
Collapse
Affiliation(s)
- Vivian Changying Jiang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dapeng Hao
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yijing Li
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Nie
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jingling Jin
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxuan Che
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kunal Rai
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher Flowers
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Takács F, Kotmayer L, Czeti Á, Szalóki G, László T, Mikala G, Márk Á, Masszi A, Farkas P, Plander M, Weisinger J, Demeter J, Fekete S, Szerafin L, Deák BM, Szaleczky E, Sulák A, Borbényi Z, Barna G. Revealing a Phenotypical Appearance of Ibrutinib Resistance in Patients With Chronic Lymphocytic Leukaemia by Flow Cytometry. Pathol Oncol Res 2022; 28:1610659. [PMID: 36213161 PMCID: PMC9532522 DOI: 10.3389/pore.2022.1610659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Background: Ibrutinib is widely known as an effective and well-tolerated therapeutical choice of the chronic lymphocytic leukaemia (CLL). However, acquired resistance may occur during the treatment, causing relapse. Early detection of ibrutinib resistance is an important issue, therefore we aimed to find phenotypic markers on CLL cells the expression of which may correlate with the appearance of ibrutinib resistance. Methods: We examined 28 patients’ peripheral blood (PB) samples (treatment naïve, ibrutinib sensitive, clinically ibrutinib resistant). The surface markers’ expression (CD27, CD69, CD86, CD184, CD185) were measured by flow cytometry. Furthermore, the BTKC481S resistance mutation was assessed by digital droplet PCR. Moreover, the CLL cells’ phenotype of a patient with acquired ibrutinib resistance was observed during the ibrutinib treatment. Results: The expression of CD27 (p = 0.030) and CD86 (p = 0.031) became higher in the clinically resistant cohort than in the ibrutinib sensitive cohort. Besides, we found that high CD86 and CD27 expressions were accompanied by BTKC481S mutation. Our prospective study showed that the increase of the expression of CD27, CD69 and CD86 was noticed ahead of the clinical resistance with 3 months. Conclusion: Our study suggests that the changes of the expression of these markers could indicate ibrutinib resistance and the examination of these phenotypic changes may become a part of the patients’ follow-up in the future.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Piperidines
- Prospective Studies
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Ferenc Takács
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
- Center for Pathology, University Medical Center—University of Freiburg, Freiburg, Germany
| | - Lili Kotmayer
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Ágnes Czeti
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Gábor Szalóki
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamás László
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Gábor Mikala
- South-Pest Central Hospital—National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - András Masszi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Péter Farkas
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Márk Plander
- Department of Hematology, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Júlia Weisinger
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Judit Demeter
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Sándor Fekete
- South-Pest Central Hospital—National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - László Szerafin
- Hospitals of Szabolcs-Szatmár-Bereg County and University Teaching Hospital, Nyíregyháza, Hungary
| | | | | | - Adrienn Sulák
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Zita Borbényi
- 2nd Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
- *Correspondence: Gábor Barna,
| |
Collapse
|