1
|
Kelliher JL, Folkerts ML, Shen KV, Song W, Tengler K, Stiefel CM, Lee SO, Dray E, Zhao W, Koss B, Pannunzio NR, Leung JW. Evolved histone tail regulates 53BP1 recruitment at damaged chromatin. Nat Commun 2024; 15:4634. [PMID: 38821984 PMCID: PMC11143218 DOI: 10.1038/s41467-024-49071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
The master DNA damage repair histone protein, H2AX, is essential for orchestrating the recruitment of downstream mediator and effector proteins at damaged chromatin. The phosphorylation of H2AX at S139, γH2AX, is well-studied for its DNA repair function. However, the extended C-terminal tail is not characterized. Here, we define the minimal motif on H2AX for the canonical function in activating the MDC1-RNF8-RNF168 phosphorylation-ubiquitination pathway that is important for recruiting repair proteins, such as 53BP1 and BRCA1. Interestingly, H2AX recruits 53BP1 independently from the MDC1-RNF8-RNF168 pathway through its evolved C-terminal linker region with S139 phosphorylation. Mechanistically, 53BP1 recruitment to damaged chromatin is mediated by the interaction between the H2AX C-terminal tail and the 53BP1 Oligomerization-Tudor domains. Moreover, γH2AX-linker mediated 53BP1 recruitment leads to camptothecin resistance in H2AX knockout cells. Overall, our study uncovers an evolved mechanism within the H2AX C-terminal tail for regulating DNA repair proteins at damaged chromatin.
Collapse
Affiliation(s)
- Jessica L Kelliher
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Melissa L Folkerts
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92626, USA
| | - Kaiyuan V Shen
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92626, USA
| | - Wan Song
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Kyle Tengler
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Clara M Stiefel
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Seong-Ok Lee
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Nicholas R Pannunzio
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Zhao D, Guo Y, Wei H, Jia X, Zhi Y, He G, Nie W, Huang L, Wang P, Laster KV, Liu Z, Wang J, Lee MH, Dong Z, Liu K. Multi-omics characterization of esophageal squamous cell carcinoma identifies molecular subtypes and therapeutic targets. JCI Insight 2024; 9:e171916. [PMID: 38652547 PMCID: PMC11141925 DOI: 10.1172/jci.insight.171916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer and is characterized by an unfavorable prognosis. To elucidate the distinct molecular alterations in ESCC and investigate therapeutic targets, we performed a comprehensive analysis of transcriptomics, proteomics, and phosphoproteomics data derived from 60 paired treatment-naive ESCC and adjacent nontumor tissue samples. Additionally, we conducted a correlation analysis to describe the regulatory relationship between transcriptomic and proteomic processes, revealing alterations in key metabolic pathways. Unsupervised clustering analysis of the proteomics data stratified patients with ESCC into 3 subtypes with different molecular characteristics and clinical outcomes. Notably, subtype III exhibited the worst prognosis and enrichment in proteins associated with malignant processes, including glycolysis and DNA repair pathways. Furthermore, translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1) was validated as a potential prognostic molecule for ESCC. Moreover, integrated kinase-substrate network analysis using the phosphoproteome nominated candidate kinases as potential targets. In vitro and in vivo experiments further confirmed casein kinase II subunit α (CSNK2A1) as a potential kinase target for ESCC. These underlying data represent a valuable resource for researchers that may provide better insights into the biology and treatment of ESCC.
Collapse
Affiliation(s)
- Dengyun Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, China
| | - Yaping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Huifang Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yafei Zhi
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Guiliang He
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Limeng Huang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | | | - Zhicai Liu
- Linzhou Cancer Hospital, Anyang, Henan, China
| | - Jinwu Wang
- Linzhou Cancer Hospital, Anyang, Henan, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Matsuura Y. Crystallographic data of an importin-α3 dimer in which the two protomers are bridged by a bipartite nuclear localization signal. Data Brief 2023; 47:108988. [PMID: 36875212 PMCID: PMC9975678 DOI: 10.1016/j.dib.2023.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
53BP1 (TP53-binding protein 1), a key player in DNA double-strand break repair, has a classical bipartite nuclear localization signal (NLS) of sequence 1666-GKRKLITSEEERSPAKRGRKS-1686 that binds to importin-α, a nuclear import adaptor protein. Nucleoporin Nup153 is involved in nuclear import of 53BP1, and the binding of Nup153 to importin-α has been proposed to promote efficient import of classical NLS-containing proteins. Here, the ARM-repeat domain of human importin-α3 bound to 53BP1 NLS was crystallized in the presence of a synthetic peptide corresponding to the extreme C-terminus of Nup153 (sequence: 1459-GTSFSGRKIKTAVRRRK-1475). The crystal belonged to space group I2, with unit-cell parameters a = 95.70, b = 79.60, c = 117.44 Å, β = 95.57°. The crystal diffracted X-rays to 1.9 Å resolution, and the structure was solved by molecular replacement. The asymmetric unit contained two molecules of importin-α3 and two molecules of 53BP1 NLS. Although no convincing density was observed for the Nup153 peptide, the electron density corresponding to 53BP1 NLS was unambiguous and continuous along the entire length of the bipartite NLS. The structure revealed a novel dimer of importin-α3, in which two protomers of importin-α3 are bridged by the bipartite NLS of 53BP1. In this structure, the upstream basic cluster of the NLS is bound to the minor NLS-binding site of one protomer of importin-α3, whereas the downstream basic cluster of the same chain of NLS is bound to the major NLS-binding site of another protomer of importin-α3. This quaternary structure is distinctly different from the previously determined crystal structure of mouse importin-α1 bound to the 53BP1 NLS. The atomic coordinates and structure factors have been deposited in the Protein Data Bank (accession code 8HKW).
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, Tochigi 324-8501, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Hisaoka S, Osawa J, Kobashi R, Ishida A, Kameshita I, Sueyoshi N. Subcellular distribution of bone morphogenetic protein 2-inducible kinase (BMP2K): Regulation by liquid-liquid phase separation and nucleocytoplasmic shuttling. Biochem Biophys Res Commun 2023; 649:16-24. [PMID: 36739695 DOI: 10.1016/j.bbrc.2023.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic protein 2 (BMP2)-inducible kinase (BMP2K) is induced by the cytokine BMP2, which is also implicated in the production of bone differentiation. In addition to regulating bone differentiation, BMP2K is implicated in a variety of cancers. Therefore, understanding the variables that determine where in the cell this kinase functions may help in understanding malignancies linked to BMP2K. However, the mechanisms regulating the subcellular localization of BMP2K are mainly unknown. By liquid-liquid phase separation (LLPS), BMP2K forms droplets in the cytoplasm, but how the droplets are regulated remains unclear. The reason why BMP2K localizes to the cytoplasm irrespective of having a nuclear localization signal (NLS) is also unknown. Here we show the element that controls BMP2K's LLPS and cytoplasmic localization. A glutamine-rich area is necessary for BMP2K phase separation, and droplet formation is controlled by hyperosmolarity. Cytoplasmic localization of BMP2K is managed by inhibition of NLS function through phosphorylation of Ser-1010 and by a newly found cytoplasmic localization region that antagonizes the NLS. These results will provide an important biochemical foundation for the advancement of BMP2K-related cell biology, structural biology, and pathophysiology.
Collapse
Affiliation(s)
- Shiho Hisaoka
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Jin Osawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Riku Kobashi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
5
|
Rass E, Willaume S, Bertrand P. 53BP1: Keeping It under Control, Even at a Distance from DNA Damage. Genes (Basel) 2022; 13:genes13122390. [PMID: 36553657 PMCID: PMC9778356 DOI: 10.3390/genes13122390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that can be generated by exposure to genotoxic agents or during physiological processes, such as during V(D)J recombination. The repair of these DSBs is crucial to prevent genomic instability and to maintain cellular homeostasis. Two main pathways participate in repairing DSBs, namely, non-homologous end joining (NHEJ) and homologous recombination (HR). The P53-binding protein 1 (53BP1) plays a pivotal role in the choice of DSB repair mechanism, promotes checkpoint activation and preserves genome stability upon DSBs. By preventing DSB end resection, 53BP1 promotes NHEJ over HR. Nonetheless, the balance between DSB repair pathways remains crucial, as unscheduled NHEJ or HR events at different phases of the cell cycle may lead to genomic instability. Therefore, the recruitment of 53BP1 to chromatin is tightly regulated and has been widely studied. However, less is known about the mechanism regulating 53BP1 recruitment at a distance from the DNA damage. The present review focuses on the mechanism of 53BP1 recruitment to damage and on recent studies describing novel mechanisms keeping 53BP1 at a distance from DSBs.
Collapse
Affiliation(s)
- Emilie Rass
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Correspondence:
| | - Simon Willaume
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
7
|
Yan Q, Zhang B, Ling X, Zhu B, Mei S, Yang H, Zhang D, Huo J, Zhao Z. CTLA-4 Facilitates DNA Damage–Induced Apoptosis by Interacting With PP2A. Front Cell Dev Biol 2022; 10:728771. [PMID: 35281086 PMCID: PMC8907142 DOI: 10.3389/fcell.2022.728771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) plays a pivotal role in regulating immune responses. It accumulates in intracellular compartments, translocates to the cell surface, and is rapidly internalized. However, the cytoplasmic function of CTLA-4 remains largely unknown. Here, we describe the role of CTLA-4 as an immunomodulator in the DNA damage response to genotoxic stress. Using isogenic models of murine T cells with either sufficient or deficient CTLA-4 expression and performing a variety of assays, including cell apoptosis, cell cycle, comet, western blotting, co-immunoprecipitation, and immunofluorescence staining analyses, we show that CTLA-4 activates ataxia–telangiectasia mutated (ATM) by binding to the ATM inhibitor protein phosphatase 2A into the cytoplasm of T cells following transient treatment with zeocin, exacerbating the DNA damage response and inducing apoptosis. These findings provide new insights into how T cells maintain their immune function under high-stress conditions, which is clinically important for patients with tumors undergoing immunotherapy combined with chemoradiotherapy.
Collapse
Affiliation(s)
- Qiongyu Yan
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xi Ling
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiping Huo
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Zhao,
| |
Collapse
|
8
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
9
|
Jiang Y, Dong Y, Luo Y, Jiang S, Meng FL, Tan M, Li J, Zang Y. AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ. Cell Rep 2021; 34:108713. [PMID: 33596428 DOI: 10.1016/j.celrep.2021.108713] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an energy sensor that plays roles in multiple biological processes beyond metabolism. Several studies have suggested that AMPK is involved in the DNA damage response (DDR), but the mechanisms remain unclear. Herein, we demonstrate that AMPK promotes classic non-homologous end joining (c-NHEJ) in double-strand break (DSB) repair through recruiting a key chromatin-based mediator named p53-binding protein 1 (53BP1), which facilitates the end joining of distal DNA ends during DDR. We find that the interaction of AMPK and 53BP1 spatially occurs under DSB stress. In the context of DSBs, AMPK directly phosphorylates 53BP1 at Ser1317 and promotes 53BP1 recruitment during DDR for an efficient c-NHEJ, thus maintaining genomic stability and diversity of the immune repertoire. Taken together, our study demonstrates that AMPK is a regulator of 53BP1 and controls c-NHEJ choice by phospho-regulation.
Collapse
Affiliation(s)
- Yuejing Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yifeng Luo
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shangwen Jiang
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei-Long Meng
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
10
|
Fang L, Sun X, Wang Y, Du L, Ji K, Wang J, He N, Liu Y, Wang Q, Zhai H, Hao J, Xu C, Liu Q. RMI1 contributes to DNA repair and to the tolerance to camptothecin. FASEB J 2019; 33:5561-5570. [PMID: 30676768 DOI: 10.1096/fj.201802014r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Maintenance of genome integrity is critical for faithful propagation of genetic information and the prevention of the mutagenesis induced by various DNA damage events. RecQ-mediated genome instability protein 1 (RMI1), together with Bloom syndrome protein and topoisomerase IIIα, form an evolutionarily conserved complex that is critical for the maintenance of genomic stability. Herein, we report that RMI1 depletion increases cell sensitivity to camptothecin treatment, as shown by an elevation of genotoxic stress-induced DNA double-strand breaks, a stronger activation of the DNA damage response, and a greater G2/M cell cycle delay. Our findings support that, upon DNA damage, RMI1 forms nuclear foci at the damaged regions, interacts with RAD51, and facilitates the recruitment of RAD51 to initiate homologous recombination. Our data reveal the importance of RMI1 in response to DNA double-strand breaks and shed light on the molecular mechanisms by which RMI1 contributes to maintain genome stability.-Fang, L., Sun, X., Wang, Y., Du, L., Ji, K., Wang, J., He, N., Liu, Y., Wang, Q., Zhai, H., Hao, J., Xu, C., Liu, Q. RMI1 contributes to DNA repair and to the tolerance to camptothecin.
Collapse
Affiliation(s)
- Lianying Fang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,The Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, China; and
| | - Xiaohui Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hezheng Zhai
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiu Hao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
11
|
Matsuura Y. Structural and biochemical characterization of the recognition of the 53BP1 nuclear localization signal by importin-α. Biochem Biophys Res Commun 2019; 510:236-241. [PMID: 30685087 DOI: 10.1016/j.bbrc.2019.01.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
53BP1 (TP53-binding protein 1) plays a key role in DNA double-strand break repair by promoting non-homologous end joining (NHEJ) especially during G1 phase of the cell cycle. Nuclear import of 53BP1 is required for proper localization of 53BP1 and maintenance of genome integrity. 53BP1 has a classical bipartite nuclear localization signal (NLS) of sequence 1666-GKRKLITSEEERSPAKRGRKS-1686. Ser1678 within the 53BP1 NLS can be phosphorylated by CDK1/cyclin B, and a phosphomimetic substitution of Ser1678 with aspartate has been shown to negatively regulate nuclear import of 53BP1. Here, the X-ray crystal structures of the nuclear import adaptor importin-α1 bound to the wild-type 53BP1 NLS and the S1678D mutant of 53BP1 NLS are reported at resolutions of 1.9 and 1.7 Å, respectively. In the wild-type structure, not only the two basic clusters of the 53BP1 NLS but also the linker region between the basic clusters made extensive interactions with importin-α1. In the mutant structure, the linker region between the basic clusters in the 53BP1 NLS made fewer interactions with importin-α1 than those observed in the wild-type structure. However, biochemical binding assays using purified proteins showed that the 53BP1 mutation S1678D reduces the binding affinity to importin-α1 only to a modest extent. Implications of these findings for regulatory mechanism of 53BP1 nuclear import are discussed.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan.
| |
Collapse
|
12
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|