1
|
Zhang M, Zhang J, Ma Y, Jin Y, Li Y, Wu X. Nephropathy induced by cisplatin results from mitochondrial disruption, impaired energy metabolism, altered expression of renal transporters, and accumulation of urinary toxins. J Trace Elem Med Biol 2024; 86:127553. [PMID: 39427559 DOI: 10.1016/j.jtemb.2024.127553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/09/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The administration of platinum-based drugs such as cisplatin and its derivatives, which are frequently used during clinical chemotherapy, is highly restricted due to the incidence of nephrotoxicity. The present study focused on investigating cisplatin-induced nephrotoxicity from the perspective of energy metabolism, renal transporter expression and urinary toxin accumulation. METHODS This study investigated cisplatin's toxic effects, including nephrotoxicity, cardiotoxicity, hepatotoxicity, pulmonary toxicity, and splenotoxicity. We used transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to characterize the accumulation of cisplatin in the kidney and the structure of renal mitochondria. The production of reactive oxygen species (ROS) induced by cisplatin in renal tubular epithelial cells was evaluated by in vitro experiments, and apoptosis of renal tubular epithelial cells and alterations to the renal microvasculature were assessed. Metabolites associated with the glycolytic and tricarboxylic acid pathways were measured, and renal transporters expression, autophagy, and urinary toxins (UTs) accumulation were also assessed. RESULTS Our results reveal that cisplatin-induced varying degrees of damage to the heart, liver, spleen, lungs, and kidneys, including inflammatory and fibrotic damage. Accumulation of cisplatin in renal mitochondria disrupted mitochondrial structure and mitochondrial function, as evidenced by decreased levels of glucose 6-phosphate and ribose 5-phosphate and elevated levels of isocitric acid. Cisplatin-induced accumulation of ROS in renal tubular epithelial cells led to apoptosis and, ultimately, constriction or loss of renal microvasculature. Furthermore, dysregulation of renal transporter expression, activation of autophagy and increased accumulation of UTs was observed. CONCLUSION Accumulation of cisplatin in the kidney led to damage to mitochondrial structure and function, apoptosis of renal tubular epithelial cells, constriction or loss of renal microvasculature, dysfunction of renal transporters, activation of autophagy, and accumulation of UTs.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Jianping Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Yanrong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Yongwen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Yile Li
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Lanzhou, Gansu 730000, China.
| |
Collapse
|
2
|
Beatty AE, Barnes-Tompkins TM, Long KM, Tobiansky DJ. Comparative analysis of meningeal transcriptomes in birds: Potential pathways of resilience to repeated impacts. Anat Rec (Hoboken) 2024. [PMID: 39376204 DOI: 10.1002/ar.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The meninges and associated vasculature (MAV) play a crucial role in maintaining cerebral integrity and homeostasis. Recent advances in transcriptomic analysis have illuminated the significance of the MAV in understanding the complex physiological interactions at the interface between the skull and the brain after exposure to mechanical stress. To investigate how physiological responses may confer resilience against repetitive mechanical stress, we performed the first transcriptomic analysis of avian MAV tissues using the Downy Woodpecker (Dryobates pubescens) and Tufted Titmouse (Baeolophus bicolor) as the comparison species. Our findings reveal divergences in gene expression profiles related to immune response, cellular stress management, and protein translation machinery. The male woodpeckers exhibit a tailored immune modulation strategy that potentially dampens neuroinflammation while preserving protective immunity. Overrepresented genes involved in cellular stress responses suggest enhanced mechanisms for mitigating damage and promoting repair. Additionally, the enrichment of translation-associated pathways hints at increased capacity for protein turnover and cellular remodeling vital for recovery. Our study not only fills a critical gap in avian neurobiology but also lays the groundwork for research in comparative neuroprotection.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| | | | - Kira M Long
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel J Tobiansky
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
- Program in Neuroscience, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| |
Collapse
|
3
|
Wang W, Tan J, Liu X, Guo W, Li M, Liu X, Liu Y, Dai W, Hu L, Wang Y, Lu Q, Lee WX, Tang HW, Zhou Q. Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress. Nat Commun 2023; 14:6201. [PMID: 37794041 PMCID: PMC10550995 DOI: 10.1038/s41467-023-41757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Endonuclease G (ENDOG), a nuclear-encoded mitochondrial intermembrane space protein, is well known to be translocated into the nucleus during apoptosis. Recent studies have shown that ENDOG might enter the mitochondrial matrix to regulate mitochondrial genome cleavage and replication. However, little is known about the role of ENDOG in the cytosol. Our previous work showed that cytoplasmic ENDOG competitively binds with 14-3-3γ, which released TSC2 to repress mTORC1 signaling and induce autophagy. Here, we demonstrate that cytoplasmic ENDOG could also release Rictor from 14-3-3γ to activate the mTORC2-AKT-ACLY axis, resulting in acetyl-CoA production. Importantly, we observe that ENDOG could translocate to the ER, bind with Bip, and release IRE1a/PERK to activate the endoplasmic reticulum stress response, promoting lipid synthesis. Taken together, we demonstrate that loss of ENDOG suppresses acetyl-CoA production and lipid synthesis, along with reducing endoplasmic reticulum stress, which eventually alleviates high-fat diet-induced nonalcoholic fatty liver disease in female mice.
Collapse
Affiliation(s)
- Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Junyang Tan
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaomin Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenqi Guo
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Mengmeng Li
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xinjie Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yanyan Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liubing Hu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yimin Wang
- GeneMind Biosciences Company Limited, No. 116, Qingshuihe 1st Road, Luohu District, Shenzhen, Guangdong, 518000, China
| | - Qiuxia Lu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
4
|
Song Y, Leem J, Dhanani M, McKirnan MD, Ichikawa Y, Braza J, Harrington EO, Hammond HK, Roth DM, Patel HH. Impact of blood factors on endothelial cell metabolism and function in two diverse heart failure models. PLoS One 2023; 18:e0281550. [PMID: 36780477 PMCID: PMC9924994 DOI: 10.1371/journal.pone.0281550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Role of blood-based factors in development and progression of heart failure (HF) is poorly characterized. Blood contains factors released during pathophysiological states that may impact cellular function and provide mechanistic insights to HF management. We tested effects of blood from two distinct HF models on cardiac metabolism and identified possible cellular targets of the effects. Blood plasma was obtained from daunorubicin- and myocardial infarction-induced HF rabbits (Dauno-HF and MI-HF) and their controls (Dauno-Control and MI-Control). Effects of plasma on bioenergetics of myocardial tissue from healthy mice and cellular cardiac components were assessed using high-resolution respirometry and Seahorse flux analyzer. Since endothelial cell respiration was profoundly affected by HF plasma, effects of plasma on endothelial cell barrier function and death were further evaluated. Western-blotting and electron microscopy were performed to evaluate mitochondrial proteins and morphology. Brief exposure to HF plasma decreased cardiac tissue respiration. Endothelial cell respiration was most impacted by exposure to HF plasma. Endothelial cell monolayer integrity was decreased by incubation with Dauno-HF plasma. Apoptosis and necrosis were increased in cells incubated with Dauno-HF plasma for 24 h. Down-regulation of voltage-dependent anion-selective channel (VDAC)-1, translocase of outer membrane 20 (Tom20), and mitochondrial fission factor (MFF) in cells exposed to Dauno-HF plasma and mitochondrial signal transducer and activator of transcription 3 (Stat3) and MFF in cells exposed to MI-HF plasma were observed. Mitochondrial structure was disrupted in cells exposed to HF plasma. These findings indicate that endothelial cells and mitochondrial structure and function may be primary target where HF pathology manifests and accelerates. High-throughput blood-based screening of HF may provide innovative ways to advance disease diagnosis and management.
Collapse
Affiliation(s)
- Young Song
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joseph Leem
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
| | - Mehul Dhanani
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
| | - M. Dan McKirnan
- Department of Medicine, UCSD School of Medicine, San Diego, CA, United States of America
| | - Yasuhiro Ichikawa
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
| | - Julie Braza
- Department of Medicine, Brown University and the Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, United States of America
| | - Elizabeth O. Harrington
- Department of Medicine, Brown University and the Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, United States of America
| | - H. Kirk Hammond
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
- Department of Medicine, UCSD School of Medicine, San Diego, CA, United States of America
| | - David M. Roth
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
- Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, United States of America
| | - Hemal H. Patel
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
- Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, United States of America
| |
Collapse
|
5
|
Rozov SM, Deineko EV. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of Transport Signal Peptides. PLANTS (BASEL, SWITZERLAND) 2022; 11:2561. [PMID: 36235427 PMCID: PMC9572730 DOI: 10.3390/plants11192561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The problem with increasing the yield of recombinant proteins is resolvable using different approaches, including the transport of a target protein to cell compartments with a low protease activity. In the cell, protein targeting involves short-signal peptide sequences recognized by intracellular protein transport systems. The main systems of the protein transport across membranes of the endoplasmic reticulum and endosymbiotic organelles are reviewed here, as are the major types and structure of the signal sequences targeting proteins to the endoplasmic reticulum and its derivatives, to plastids, and to mitochondria. The role of protein targeting to certain cell organelles depending on specific features of recombinant proteins and the effect of this targeting on the protein yield are discussed, in addition to the main directions of the search for signal sequences based on their primary structure. This knowledge makes it possible not only to predict a protein localization in the cell but also to reveal the most efficient sequences with potential biotechnological utility.
Collapse
|
6
|
The Role of Mitochondrial Quality Control in Cognitive Dysfunction in Diabetes. Neurochem Res 2022; 47:2158-2172. [PMID: 35661963 PMCID: PMC9352619 DOI: 10.1007/s11064-022-03631-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer’s disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.
Collapse
|
7
|
Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae. Curr Genet 2022; 68:343-360. [PMID: 35660944 DOI: 10.1007/s00294-022-01243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/21/2022] [Accepted: 04/30/2022] [Indexed: 11/03/2022]
Abstract
The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (npa3∆C) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3∆C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.
Collapse
|