1
|
Lee SH, Kim TG, Ryu KH, Kim SH, Kim YZ. CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines 2024; 12:2256. [PMID: 39457569 PMCID: PMC11505494 DOI: 10.3390/biomedicines12102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: We primarily investigated the prognostic role of CDKN2A homozygous deletion in CNS WHO grade 4 gliomas. Additionally, we plan to examine traditional prognostic factors for grade 4 gliomas and validate the findings. Materials: We conducted a retrospective analysis of the glioma cohorts at our institute. We reviewed medical records spanning a 15-year period and examined pathological slides for an updated diagnosis according to the 2021 WHO classification of CNS tumors. We examined the IDH1/2 mutation and CDKN2A deletion using NGS analysis with ONCOaccuPanel®. Further, we examined traditional prognostic factors, including age, WHO performance status, extent of resection, and MGMT promoter methylation status. Results: The mean follow-up duration was 27.5 months (range: 4.1-43.5 months) and mean overall survival (OS) was 20.7 months (SD, ±1.759). After the exclusion of six patients with a poor status of pathologic samples, a total of 136 glioblastoma cases diagnosed by previous WHO classification criteria were newly classified into 29 (21.3%) astrocytoma, IDH-mutant, and CNS WHO grade 4 cases, and 107 (78.7%) glioblastoma, IDH-wildtype, and CNS WHO grade 4 cases. Among them, 61 (56.0%) had CDKN2A deletions. The high-risk group with CDKN2A deletion regardless of IDH1/2 mutation had a mean OS of 16.65 months (SD, ±1.554), the intermediate-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 21.85 months (SD, ±2.082), and the low-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 33.38 months (SD, ±2.946). Multifactor analysis showed that age (≥50 years vs. <50 years; HR 4.645), WHO performance (0, 1 vs. 2; HR 5.002), extent of resection (gross total resection vs. others; HR 5.528), MGMT promoter methylation, (methylated vs. unmethylated; HR 5.078), IDH1/2 mutation (mutant vs. wildtype; HR 6.352), and CDKN2A deletion (absence vs. presence; HR 13.454) were associated with OS independently. Conclusions: The present study suggests that CDKN2A deletion plays a powerful prognostic role in CNS WHO grade 4 gliomas. Even if CNS WHO grade 4 gliomas have mutant IDH1/2, they may have poor clinical outcomes because of CDKN2A deletion.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Kyeong Hwa Ryu
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Seok Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Young Zoon Kim
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| |
Collapse
|
2
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
3
|
Wongsurawat T, Jenjaroenpun P, Anekwiang P, Arigul T, Thongrattana W, Jamshidi‐Parsian A, Boysen G, Suriyaphol P, Suktitipat B, Srirabheebhat P, Cheunsuchon P, Tanboon J, Nookaew I, Sathornsumetee S. Exploiting nanopore sequencing for characterization and grading of IDH-mutant gliomas. Brain Pathol 2024; 34:e13203. [PMID: 37574201 PMCID: PMC10711254 DOI: 10.1111/bpa.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
The 2021 WHO Classification of Central Nervous System Tumors recommended evaluation of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion in addition to codeletion of 1p/19q to characterize IDH-mutant gliomas. Here, we demonstrated the use of a nanopore-based copy-number variation sequencing (nCNV-seq) approach to simultaneously identify deletions of CDKN2A/B and 1p/19q. The nCNV-seq approach was initially evaluated on three distinct glioma cell lines and then applied to 19 IDH-mutant gliomas (8 astrocytomas and 11 oligodendrogliomas) from patients. The whole-arm 1p/19q codeletion was detected in all oligodendrogliomas with high concordance among nCNV-seq, FISH, DNA methylation profiling, and whole-genome sequencing. For the CDKN2A/B deletion, nCNV-seq detected the loss in both astrocytoma and oligodendroglioma, with strong correlation with the CNV profiles derived from whole-genome sequencing (Pearson correlation (r) = 0.95, P < 2.2 × 10-16 to r = 0.99, P < 2.2 × 10-16 ) and methylome profiling. Furthermore, nCNV-seq can differentiate between homozygous and hemizygous deletions of CDKN2A/B. Taken together, nCNV-seq holds promise as a new, alternative approach for a rapid and simultaneous detection of the molecular signatures of IDH-mutant gliomas without capital expenditure for a sequencer.
Collapse
Affiliation(s)
- Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Panatna Anekwiang
- Department of Medicine (Neurology), Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Tantip Arigul
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Wichayapat Thongrattana
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Azemat Jamshidi‐Parsian
- Department of Radiation OncologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Gunnar Boysen
- Department of Environmental and Occupational HealthUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Prapat Suriyaphol
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Bhoom Suktitipat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Biochemistry, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Prajak Srirabheebhat
- Department of Surgery (Neurosurgery), Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Pornsuk Cheunsuchon
- Department of Pathology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jantima Tanboon
- Department of Pathology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Sith Sathornsumetee
- Department of Medicine (Neurology), Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
4
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
5
|
Brandner S, McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Leal ES, Faulkner CL, Palmer A, Wragg C, Jefferies S, Vale L, Higgins JPT, Kurian KM. Diagnostic accuracy of 1p/19q codeletion tests in oligodendroglioma: A comprehensive meta-analysis based on a Cochrane systematic review. Neuropathol Appl Neurobiol 2022; 48:e12790. [PMID: 34958131 PMCID: PMC9208578 DOI: 10.1111/nan.12790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Codeletion of chromosomal arms 1p and 19q, in conjunction with a mutation in the isocitrate dehydrogenase 1 or 2 gene, is the molecular diagnostic criterion for oligodendroglioma, IDH mutant and 1p/19q codeleted. 1p/19q codeletion is a diagnostic marker and allows prognostication and prediction of the best drug response within IDH-mutant tumours. We performed a Cochrane review and simple economic analysis to establish the most sensitive, specific and cost-effective techniques for determining 1p/19q codeletion status. Fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) test methods were considered as reference standard. Most techniques (FISH, chromogenic in situ hybridisation [CISH], PCR, real-time PCR, multiplex ligation-dependent probe amplification [MLPA], single nucleotide polymorphism [SNP] array, comparative genomic hybridisation [CGH], array CGH, next-generation sequencing [NGS], mass spectrometry and NanoString) showed good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma, irrespective of whether FISH or PCR-based LOH was used as the reference standard. Both NGS and SNP array had a high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. Our findings suggest that G banding is not a suitable test for 1p/19q analysis. Within these limits, considering cost per diagnosis and using FISH as a reference, MLPA was marginally more cost-effective than other tests, although these economic analyses were limited by the range of available parameters, time horizon and data from multiple healthcare organisations.
Collapse
Affiliation(s)
- Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Neurodegenerative Disease, Queen Square Instituite of NeurologyUniversity College LondonLondonUK
| | - Alexandra McAleenan
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Hayley E. Jones
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Ashleigh Kernohan
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Tomos Robinson
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | | | - Claire L. Faulkner
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology SciencesSouthmead HospitalBristolUK
| | | | - Luke Vale
- Population Health Sciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Julian P. T. Higgins
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Kathreena M. Kurian
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Bristol Medical School: Brain Tumour Research Centre, Public Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
6
|
Yamashita S, Takeshima H, Kadota Y, Azuma M, Fukushima T, Ogasawara N, Kawano T, Tamura M, Muta J, Saito K, Takeishi G, Mizuguchi A, Watanabe T, Ohta H, Yokogami K. T2-fluid-attenuated inversion recovery mismatch sign in lower grade gliomas: correlation with pathological and molecular findings. Brain Tumor Pathol 2022; 39:88-98. [PMID: 35482260 DOI: 10.1007/s10014-022-00433-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
After the new molecular-based classification was reported to be useful for predicting prognosis, the T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign has gained interest as one of the promising methods for detecting lower grade gliomas (LGGs) with isocitrate dehydrogenase (IDH) mutations and chromosome 1p/19q non-codeletion (IDH mut-Noncodel) with high specificity. Although all institutions could use T2-FLAIR mismatch sign without any obstacles, this sign was not completely helpful because of its low sensitivity. In this study, we attempted to uncover the mechanism of T2-FLAIR mismatch sign for clarifying the cause of this sign's low sensitivity. Among 99 patients with LGGs, 22 were T2-FLAIR mismatch sign-positive (22%), and this sign as a marker of IDH mut-Noncodel showed a sensitivity of 55.6% and specificity of 96.8%. Via pathological analyses, we could provide evidence that not only microcystic changes but the enlarged intercellular space was associated with T2-FLAIR mismatch sign (p = 0.017). As per the molecular analyses, overexpression of mTOR-related genes (m-TOR, RICTOR) were detected as the molecular events correlated with T2-FLAIR mismatch sign (p = 0.020, 0.030. respectively). Taken together, we suggested that T2-FLAIR mismatch sign could pick up the IDH mut-Noncodel LGGs with enlarged intercellular space or that with overexpression of mTOR-related genes.
Collapse
Affiliation(s)
- Shinji Yamashita
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan.
| | - Hideo Takeshima
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshihito Kadota
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Minako Azuma
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Natsuki Ogasawara
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Tomoki Kawano
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Mitsuru Tamura
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Jyunichiro Muta
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Kiyotaka Saito
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Go Takeishi
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Asako Mizuguchi
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Takashi Watanabe
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Hajime Ohta
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| | - Kiyotaka Yokogami
- Division of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
7
|
McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Spencer Leal E, Faulkner CL, Palmer A, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JP, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Cochrane Database Syst Rev 2022; 3:CD013387. [PMID: 35233774 PMCID: PMC8889390 DOI: 10.1002/14651858.cd013387.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Complete deletion of both the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), known as 1p/19q codeletion, is a mutation that can occur in gliomas. It occurs in a type of glioma known as oligodendroglioma and its higher grade counterpart known as anaplastic oligodendroglioma. Detection of 1p/19q codeletion in gliomas is important because, together with another mutation in an enzyme known as isocitrate dehydrogenase, it is needed to make the diagnosis of an oligodendroglioma. Presence of 1p/19q codeletion also informs patient prognosis and prediction of the best drug treatment. The main two tests in use are fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) assays (also known as PCR-based short tandem repeat or microsatellite analysis). Many other tests are available. None of the tests is perfect, although PCR-based LOH is expected to have very high sensitivity. OBJECTIVES To estimate the sensitivity and specificity and cost-effectiveness of different deoxyribonucleic acid (DNA)-based techniques for determining 1p/19q codeletion status in glioma. SEARCH METHODS We searched MEDLINE, Embase and BIOSIS up to July 2019. There were no restrictions based on language or date of publication. We sought economic evaluation studies from the results of this search and using the National Health Service Economic Evaluation Database. SELECTION CRITERIA We included cross-sectional studies in adults with glioma or any subtype of glioma, presenting raw data or cross-tabulations of two or more DNA-based tests for 1p/19q codeletion. We also sought economic evaluations of these tests. DATA COLLECTION AND ANALYSIS We followed procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened titles/abstracts/full texts, performed data extraction, and undertook applicability and risk of bias assessments using QUADAS-2. Meta-analyses used the hierarchical summary ROC model to estimate and compare test accuracy. We used FISH and PCR-based LOH as alternate reference standards to examine how tests compared with those in common use, and conducted a latent class analysis comparing FISH and PCR-based LOH. We constructed an economic model to evaluate cost-effectiveness. MAIN RESULTS We included 53 studies examining: PCR-based LOH, FISH, single nucleotide polymorphism (SNP) array, next-generation sequencing (NGS), comparative genomic hybridisation (CGH), array comparative genomic hybridisation (aCGH), multiplex-ligation-dependent probe amplification (MLPA), real-time PCR, chromogenic in situ hybridisation (CISH), mass spectrometry (MS), restriction fragment length polymorphism (RFLP) analysis, G-banding, methylation array and NanoString. Risk of bias was low for only one study; most gave us concerns about how patients were selected or about missing data. We had applicability concerns about many of the studies because only patients with specific subtypes of glioma were included. 1520 participants contributed to analyses using FISH as the reference, 1304 participants to analyses involving PCR-based LOH as the reference and 262 participants to analyses of comparisons between methods from studies not including FISH or PCR-based LOH. Most evidence was available for comparison of FISH with PCR-based LOH (15 studies, 915 participants): PCR-based LOH detected 94% of FISH-determined codeletions (95% credible interval (CrI) 83% to 98%) and FISH detected 91% of codeletions determined by PCR-based LOH (CrI 78% to 97%). Of tumours determined not to have a deletion by FISH, 94% (CrI 87% to 98%) had a deletion detected by PCR-based LOH, and of those determined not to have a deletion by PCR-based LOH, 96% (CrI 90% to 99%) had a deletion detected by FISH. The latent class analysis suggested that PCR-based LOH may be slightly more accurate than FISH. Most other techniques appeared to have high sensitivity (i.e. produced few false-negative results) for detection of 1p/19q codeletion when either FISH or PCR-based LOH was considered as the reference standard, although there was limited evidence. There was some indication of differences in specificity (false-positive rate) with some techniques. Both NGS and SNP array had high specificity when considered against FISH as the reference standard (NGS: 6 studies, 243 participants; SNP: 6 studies, 111 participants), although we rated certainty in the evidence as low or very low. NGS and SNP array also had high specificity when PCR-based LOH was considered the reference standard, although with much more uncertainty as these results were based on fewer studies (just one study with 49 participants for NGS and two studies with 33 participants for SNP array). G-banding had low sensitivity and specificity when PCR-based LOH was the reference standard. Although MS had very high sensitivity and specificity when both FISH and PCR-based LOH were considered the reference standard, these results were based on only one study with a small number of participants. Real-time PCR also showed high specificity with FISH as a reference standard, although there were only two studies including 40 participants. We found no relevant economic evaluations. Our economic model using FISH as the reference standard suggested that the resource-optimising test depends on which measure of diagnostic accuracy is most important. With FISH as the reference standard, MLPA is likely to be cost-effective if society was willing to pay GBP 1000 or less for a true positive detected. However, as the value placed on a true positive increased, CISH was most cost-effective. Findings differed when the outcome measure changed to either true negative detected or correct diagnosis. When PCR-based LOH was used as the reference standard, MLPA was likely to be cost-effective for all measures of diagnostic accuracy at lower threshold values for willingness to pay. However, as the threshold values increased, none of the tests were clearly more likely to be considered cost-effective. AUTHORS' CONCLUSIONS In our review, most techniques (except G-banding) appeared to have good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma against both FISH and PCR-based LOH as a reference standard. However, we judged the certainty of the evidence low or very low for all the tests. There are possible differences in specificity, with both NGS and SNP array having high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. The economic analysis should be interpreted with caution due to the small number of studies.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne , UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmelyn Spencer Leal
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luke Vale
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Pt Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
de Biase D, Acquaviva G, Visani M, Marucci G, De Leo A, Maloberti T, Sanza V, Di Oto E, Franceschi E, Mura A, Ragazzi M, Serra S, Froio E, Bisagni A, Brandes AA, Pession A, Tallini G. Next-Generation Sequencing Panel for 1p/19q Codeletion and IDH1-IDH2 Mutational Analysis Uncovers Mistaken Overdiagnoses of 1p/19q Codeletion by FISH. J Mol Diagn 2021; 23:1185-1194. [PMID: 34186176 DOI: 10.1016/j.jmoldx.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
The 1p/19q codeletion is the result of a translocation between chromosome 1 (Chr1p) and chromosome 19 (Chr19q) with the loss of derivative (1;19)(p10;q10) chromosome. The 1p/19q codeletion has predictive and prognostic significance, and it is essential for the classification of gliomas. In routine practice, the fluorescence in situ hybridization (FISH) diagnosis of 1p/19q codeletion is sometimes unexpected. This study aimed to develop a next-generation sequencing panel for the concurrent definition of the 1p/19q codeletion and IDH1/IDH2 mutation status to resolve these equivocal cases. A total of 65 glioma samples were investigated using a 1p/19q-single-nucleotide polymorphism (SNP)-IDH panel. The panel consists of 192 amplicons, including SNPs mapping to Chr1 and Chr19 and amplicons for IDH1/IDH2 analysis. The 1p/19q SNP-IDH panel consistently identified IDH1/IDH2 mutations. In 49 of 60 cases (81.7%), it provided the same 1p/19q results obtained by FISH. In the remaining 11 cases, the 1p/19q SNP-IDH panel uncovered partial chromosome imbalances as a result of interstitial amplification or deletion of the regions where the FISH probes map, leading to a mistaken overdiagnosis of 1p/19q codeletion by FISH. The 1p/19q SNP-IDH next-generation sequencing panel allows reliable analysis of the 1p/19q codeletion and IDH1/IDH2 mutation at the same time. The panel not only allows resolution of difficult cases but also represents a cost-effective alternative to standard molecular diagnostics procedures.
Collapse
Affiliation(s)
- Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giorgia Acquaviva
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Michela Visani
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio De Leo
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Thais Maloberti
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Viviana Sanza
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Enrico Di Oto
- Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy
| | - Enrico Franceschi
- Department of Oncology, Azienda Unitá Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Antonella Mura
- Department of Oncology, Azienda Unitá Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Moira Ragazzi
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Silvia Serra
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Froio
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Anatomic Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alba A Brandes
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Tallini
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medicine (Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale), University of Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Foltyn M, Nieto Taborda KN, Neuberger U, Brugnara G, Reinhardt A, Stichel D, Heiland S, Herold-Mende C, Unterberg A, Debus J, von Deimling A, Wick W, Bendszus M, Kickingereder P. T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology. Neurooncol Adv 2020; 2:vdaa004. [PMID: 32642675 PMCID: PMC7212872 DOI: 10.1093/noajnl/vdaa004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to assess the validity and pathophysiology of the T2/FLAIR-mismatch sign for noninvasive identification of isocitrate dehydrogenase (IDH)-mutant 1p/19q non-codeleted glioma. Methods Magnetic resonance imaging scans from 408 consecutive patients with newly diagnosed glioma (113 lower-grade gliomas and 295 glioblastomas) were evaluated for the presence of T2/FLAIR-mismatch sign by 2 independent reviewers. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess the performance of the T2/FLAIR-mismatch sign for identifying IDH-mutant 1p/19q non-codeleted tumors. An exploratory analysis of differences in contrast-enhancing tumor volumes, apparent diffusion coefficient (ADC) values, and relative cerebral blood volume (rCBV) values in IDH-mutant gliomas with versus without the presence of a T2/FLAIR-mismatch sign (as well as analysis of spatial differences within tumors with the presence of a T2/FLAIR-mismatch sign) was performed. Results The T2/FLAIR-mismatch sign was present in 12 cases with lower-grade glioma (10.6%), all of them being IDH-mutant 1p/19q non-codeleted tumors (sensitivity = 10.9%, specificity = 100%, PPV = 100%, NPV = 3.0%, accuracy = 13.3%). There was a substantial interrater agreement to identify the T2/FLAIR-mismatch sign (Cohen's kappa = 0.75 [95% CI, 0.57-0.93]). The T2/FLAIR-mismatch sign was not identified in any other molecular subgroup, including IDH-mutant glioblastoma cases (n = 5). IDH-mutant gliomas with a T2/FLAIR-mismatch sign showed significantly higher ADC (P < .0001) and lower rCBV values (P = .0123) as compared to IDH-mutant gliomas without a T2/FLAIR-mismatch sign. Moreover, in IDH-mutant gliomas with T2/FLAIR-mismatch sign the ADC values were significantly lower in the FLAIR-hyperintense rim as compared to the FLAIR-hypointense core of the tumor (P = .0005). Conclusions This study confirms the high specificity of the T2/FLAIR-mismatch sign for noninvasive identification of IDH-mutant 1p/19q non-codeleted gliomas; however, sensitivity is low and applicability is limited to lower-grade gliomas. Whether the higher ADC and lower rCBV values in IDH-mutant gliomas with a T2/FLAIR-mismatch sign (as compared to those without) translate into a measurable prognostic effect requires investigation in future studies. Moreover, spatial differences in ADC values between the core and rim of tumors with a T2/FLAIR-mismatch sign potentially reflect specific distinctions in tumor cellularity and microenvironment.
Collapse
Affiliation(s)
- Martha Foltyn
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | | | - Ulf Neuberger
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University of Heidelberg Medical Center, Heidelberg Institute of Radiation Oncology and National Center for Radiation Research in Oncology, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and DKFZ, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany.,Clinical Cooperation Unit Neuro-oncology, DKTK, DKFZ, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Philipp Kickingereder
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| |
Collapse
|
10
|
Tejada Neyra MA, Neuberger U, Reinhardt A, Brugnara G, Bonekamp D, Sill M, Wick A, Jones DTW, Radbruch A, Unterberg A, Debus J, Heiland S, Schlemmer HP, Herold-Mende C, Pfister S, von Deimling A, Wick W, Capper D, Bendszus M, Kickingereder P. Voxel-wise radiogenomic mapping of tumor location with key molecular alterations in patients with glioma. Neuro Oncol 2019; 20:1517-1524. [PMID: 30107597 DOI: 10.1093/neuonc/noy134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background This study aims to evaluate the impact of tumor location on key molecular alterations on a single voxel level in patients with newly diagnosed glioma. Methods A consecutive series of n = 237 patients with newly diagnosed glioblastoma and n = 131 patients with lower-grade glioma was analyzed. Volumetric tumor segmentation was performed on preoperative MRI with a semi-automated approach and images were registered to the standard Montreal Neurological Institute 152 space. Using a voxel-based lesion symptom mapping (VLSM) analysis, we identified specific brain regions that were associated with tumor-specific molecular alterations. We assessed a predefined set of n = 17 molecular characteristics in the glioblastoma cohort and n = 2 molecular characteristics in the lower-grade glioma cohort. Permutation adjustment (n = 1000 iterations) was used to correct for multiple testing, and voxel t-values that were greater than the t-value in >95% of the permutations were retained in the VLSM results (α = 0.05, power > 0.8). Results Tumor location predilection for isocitrate dehydrogenase (IDH) mutant tumors was found in both glioblastoma and lower-grade glioma cohorts, each showing a concordant predominance in the frontal lobe adjacent to the rostral extension of the lateral ventricles (permutation-adjusted P = 0.021 for the glioblastoma and 0.013 for the lower-grade glioma cohort). Apart from that, the VLSM analysis did not reveal a significant association of the tumor location with any other key molecular alteration in both cohorts (permutation-adjusted P > 0.05 each). Conclusion Our study highlights the unique properties of IDH mutations and underpins the hypothesis that the rostral extension of the lateral ventricles is a potential location for the cell of origin in IDH-mutant gliomas.
Collapse
Affiliation(s)
| | - Ulf Neuberger
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - David Bonekamp
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK) Core Center Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK) Core Center Heidelberg, Heidelberg, Germany
| | - Alexander Radbruch
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University of Heidelberg Medical Center, Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCOR), Heidelberg, Germany.,Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital and DKFZ, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | | | - Christel Herold-Mende
- Department of Neurosurgery, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Stefan Pfister
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK) Core Center Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany.,DKTK, Clinical Cooperation Unit Neuropathology, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, DKTK, DKFZ, Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Neuropathology, Berlin, Germany.,DKTK, Partner Site Berlin, DKFZ, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Philipp Kickingereder
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| |
Collapse
|
11
|
Lin H, Xu Y, Chen L, Na P, Li W. Multiparametric and multiregional diffusion features help predict molecule information, grade and survival in lower-grade gliomas: a feasibility study. Br J Radiol 2019; 92:20190324. [PMID: 31386559 DOI: 10.1259/bjr.20190324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE This study was to investigate the relationship of diffusion features with molecule information, and then predict grade and survival in lower-grade gliomas. METHODS 65 patients with primary lower-grade gliomas (WHO Grade II & III) who underwent conventional MRI and diffusion tensor imaging were retrospectively studied. The tumor region was automatically segmented into contrast-enhancing tumor, non-enhancing tumor, edematous and necrotic volumes. Diffusion features, including fractional anisotropy (FA), axial diffusivity, radial diffusivity and apparent diffusion coefficient (ADC), were extracted from each volume using histogram analysis. To estimate molecule biomarkers and predict clinical characteristics of grade and survival, support vector machine, generalized linear model, logistic regression and Cox regression were performed on the related features. RESULTS The diffusion features in non-enhancing tumor volume showed differences between isocitrate dehydrogenase mutant and wild-type gliomas. And the mean accuracy of support vector machine classifiers was 0.79. Ki-67 labeling index was correlated with these features, which were combined to significantly estimate Ki-67 expression level (r = 0.657, p < 0.001). These features also showed differences between Grade II and III gliomas. A combination of them for grade classification resulted in an area under the curve of 0.914 (0.857-0.971). Mean FA and fifth percentile of ADC were independently associated with overall survival, with lower FA and higher ADC showing better survival outcome. CONCLUSION In lower-grade gliomas, multiparametric and multiregional diffusion features could help predict molecule information, histological grade and survival. ADVANCES IN KNOWLEDGE The multi parametric diffusion features in non-enhancing tumor were associated with molecule information, grade and survival in lower-grade gliomas.
Collapse
Affiliation(s)
- Hai Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yanwen Xu
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Lei Chen
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Department of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Peng Na
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Weiping Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Shenzhen University School of Medicine, Shenzhen, Guangdong, China.,Department of Neurosurgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
McAleenan A, Jones HE, Kernohan A, Faulkner CL, Palmer A, Dawson S, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JPT, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Hippokratia 2019. [DOI: 10.1002/14651858.cd013387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandra McAleenan
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Hayley E Jones
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Ashleigh Kernohan
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Claire L Faulkner
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Abigail Palmer
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Dawson
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Christopher Wragg
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Jefferies
- Addenbrooke's Hospital; Department of Oncology; Hills Road Cambridge UK CB2 0QQ
| | - Sebastian Brandner
- The National Hospital for Neurology and Neurosurgery; Division of Neuropathology and Department of Neurodegeneration; University College Hospital NHS Foundation Trust and UCL Institute of Neurology Queen Square London UK WC1N 3BG
| | - Luke Vale
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Julian P T Higgins
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Kathreena M Kurian
- University of Bristol; Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences; Oakfield House, Oakfield Grove Bristol UK BS8 2BN
| |
Collapse
|
13
|
Scheie D, Kufaishi HHA, Broholm H, Lund EL, de Stricker K, Melchior LC, Grauslund M. Biomarkers in tumors of the central nervous system - a review. APMIS 2019; 127:265-287. [PMID: 30740783 DOI: 10.1111/apm.12916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Until recently, diagnostics of brain tumors were almost solely based on morphology and immunohistochemical stainings for relatively unspecific lineage markers. Although certain molecular markers have been known for longer than a decade (combined loss of chromosome 1p and 19q in oligodendrogliomas), molecular biomarkers were not included in the WHO scheme until 2016. Now, the classification of diffuse gliomas rests on an integration of morphology and molecular results. Also, for many other central nervous system tumor entities, specific diagnostic, prognostic and predictive biomarkers have been detected and continue to emerge. Previously, we considered brain tumors with similar histology to represent a single disease entity. We now realize that histologically identical tumors might show alterations in different molecular pathways, and often represent separate diseases with different natural history and response to treatment. Hence, knowledge about specific biomarkers is of great importance for individualized treatment and follow-up. In this paper we review the biomarkers that we currently use in the diagnostic work-up of brain tumors.
Collapse
Affiliation(s)
- David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | | - Helle Broholm
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Eva Løbner Lund
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Morten Grauslund
- Department of Genetics and Pathology, Laboratory Medicine, Lund, Sweden
| |
Collapse
|
14
|
Saito K, Hirai T, Takeshima H, Kadota Y, Yamashita S, Ivanova A, Yokogami K. Genetic Factors Affecting Intraoperative 5-aminolevulinic Acid-induced Fluorescence of Diffuse Gliomas. Radiol Oncol 2017; 51:142-150. [PMID: 28740449 PMCID: PMC5514654 DOI: 10.1515/raon-2017-0019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background In patients operated for malignant glioma, 5-aminolevulinic acid (5-ALA)-induced fluorescence guidance is useful. However, we occasionally experience instances of non-visible fluorescence despite a histopathological diagnosis of high-grade glioma. We sought to identify factors that influence the intraoperative visualization of gliomas by their 5-ALA-induced fluorescence. Patients and methods We reviewed data from 60 patients with astrocytic or oligodendroglial tumors who underwent tumor removal under 5-ALA-induced fluorescence guidance between January 2014 and December 2015. Their characteristics, preoperative magnetic resonance imaging (MRI) findings, histological diagnosis, and genetic profile were analyzed and univariate and multivariate statistical analyses were performed. Results In 42 patients (70%) we intraoperatively observed tumor 5-ALA fluorescence. They were 2 of 8 (25%) patients with World Health Organization (WHO) grade II, 9 of 17 (53%) with grade III, and 31 of 35 (89%) patients with grade IV gliomas. Univariate analysis revealed a statistically significant association between 5-ALA fluorescence and the isocitrate dehydrogenase 1 (IDH1) status, 1p19q loss of heterozygosity (LOH), the MIB-1 labeling index, and the tumor margin, -heterogeneity, and -contrast enhancement on MRI scans (p < 0.001, p = 0.003, p = 0.007, p = 0.046, p = 0.021, and p = 0.002, respectively). Multivariate analysis showed that the IDH1 status was the only independent, statistically significant factor related to 5-ALA fluorescence (p = 0.009). Conclusions This study identified the IDH1 status as the factor with the most influence on the 5-ALA fluorescence of diffuse gliomas.
Collapse
Affiliation(s)
- Kiyotaka Saito
- Department of Neurosurgery, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Kiyotaka Saito, M.D., Department of Neurosurgery, Division of Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan. Phone: +81-985-85-3128; Fax: +81-985-84-4571
| | - Toshinori Hirai
- Department of Radiology, Division of Pathophysiological Diagnosis and Therapy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshihito Kadota
- Department of Radiology, Division of Pathophysiological Diagnosis and Therapy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shinji Yamashita
- Department of Neurosurgery, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Asya Ivanova
- Department of Neurosurgery, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kiyotaka Yokogami
- Department of Neurosurgery, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
15
|
Sharifi N, Salmaninejad A, Ferdosi S, Bajestani AN, Khaleghiyan M, Estiar MA, Jamali M, Nowroozi MR, Shakoori A. HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method. Oncol Lett 2016; 12:4651-4658. [PMID: 28105172 DOI: 10.3892/ol.2016.5235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most widespread malignancies in the world. The role of the human epidermal growth factor receptor 2 (HER2) in the pathogenesis and progression of human PCa remains poorly understood. In contradiction with breast cancer, studies on HER2 overexpression and gene amplification in PCa have produced varying results, although the HER2 oncogene has been implicated in the biology of numerous tumor types, and serves as a prognostic marker and therapeutic target in breast cancer. Technical challenges are considered the main reasons for data discrepancies. Amplification of the HER2 gene has previously been reported in PCa, in which it was associated with tumor progression. The present study aimed to evaluate the prevalence and clinical significance of HER2 amplification in PCa. A total of 32 biopsy samples obtained from human prostate adenocarcinomas were evaluated by chromogenic in situ hybridization (CISH) to determine the frequency of patients with HER2 gene amplifications. High copy numbers of HER2 were detected in 19 of the prostate tumors analyzed. The results of the present study suggested that, in patients without amplification of HER2, high levels of prostate-specific antigen or a high Gleason score were not significantly correlated with a high pathologic stage. Furthermore, amplification levels of the HER2 gene were directly associated with pathologic stage in patients with PCa. Therefore, the potential use of HER2 as a prognostic factor or therapeutic target for PCa warrants further study.
Collapse
Affiliation(s)
- Nazanin Sharifi
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran; Genetic Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Samira Ferdosi
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Abolfazl Nesaei Bajestani
- Department of Medical Genetics, Ayatollah Madani Hospital, Gonabad University of Medical Sciences, Gonabad 9698154813, Iran
| | - Malihe Khaleghiyan
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran; Department of Medical Genetics, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Mehrdad Asghari Estiar
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Mansour Jamali
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Mohammad Reza Nowroozi
- Uro Oncology Research Center, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran; Department of Medical Genetics, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| |
Collapse
|
16
|
Srebotnik-Kirbiš I, Limbäck-Stokin C. Application of brush cytology for FISH-based detection of 1p/19q codeletion in oligodendroglial tumors. J Neurooncol 2016; 129:415-422. [DOI: 10.1007/s11060-016-2211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022]
|
17
|
Woehrer A, Hainfellner JA. Molecular diagnostics: techniques and recommendations for 1p/19q assessment. CNS Oncol 2015; 4:295-306. [PMID: 26545171 DOI: 10.2217/cns.15.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several morphology- and polymerase chain reaction (PCR)-based methods for chromosome 1p 19q deletion status assessment are available. Important prerequisites for all molecular techniques concern tissue quality and selection of regions of interest. The most common methods for diagnostic 1p 19q assessment are fluorescence in situ hybridization and PCR-based microsatellite analysis. While the latter requires the use of autologous blood samples, more advanced techniques such as array comparative genomic hybridization, multiplex ligation-dependent probe amplification or real-time PCR are independent from autologous DNA samples. However, due to high technical demand and experience required their applicability as diagnostic tests remains to be shown. On the other hand, chromogenic in situ hybridization evolves as attractive alternative to FISH. Herein, the available test methods are reviewed and outlined, their advantages and drawbacks being discussed in detail.
Collapse
Affiliation(s)
- Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
18
|
Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours. Eur Radiol 2015; 26:1705-15. [PMID: 26396108 DOI: 10.1007/s00330-015-4025-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/30/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To explore the correlations of conventional MRI (cMRI) and diffusion tensor imaging (DTI) values with the 1p/19 codeletion and IDH mutations in oligodendroglial tumours (OTs). METHODS Eighty-four patients with OTs who underwent cMRI and DTI were retrospectively reviewed. The maximal fractional anisotropy and minimal apparent diffusion coefficient (ADC) were measured and compared using the Mann-Whitney U test. Receiver operating characteristic curves, logistic regression analysis and four-table statistics analysis were performed to predict genotypings. RESULTS OTs with 1p/19q codeletion or IDH mutations were prone to locate in frontal (P = 0.106 and 0.005, respectively) and insular lobes and were associated with absent or blurry contrast enhancement (P = 0.040 and 0.013, respectively). DTI values showed significant differences between OTs with and without IDH mutations (P < 0.05) but not in OTs with and without 1p/19q loss. The Ki-67 index significantly correlated with IDH mutations (P = 0.002) but not with 1p/19q codeletion. A combination of DTI and cMRI for the identification of IDH mutations resulted in sensitivity, specificity, positive and negative predictive values of 92.2 %, 75.8 %, 93.8 % and 71.1 %, respectively. CONCLUSIONS Combination of DTI and cMRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in OTs. KEY POINTS • OTs with 1p/19q codeletion were associated with absent or blurry contrast enhancement • OTs with IDH mutations were also associated with absent or blurry contrast enhancement • OTs with IDH mutations were prone to locate in frontal and insular lobes • DTI values can provide a non-invasive method for assessing the IDH status of OTs • A combination of DTI and cMRI correlates with isocitrate dehydrogenase 1/2 mutations.
Collapse
|
19
|
Disseminated oligodendroglial cell-like leptomeningeal tumors: preliminary diagnostic and therapeutic results for a novel tumor entity. J Neurooncol 2015; 124:65-74. [DOI: 10.1007/s11060-015-1735-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 01/31/2015] [Indexed: 11/26/2022]
|
20
|
Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 2014; 128:551-9. [PMID: 25143301 DOI: 10.1007/s00401-014-1326-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Astrocytoma and oligodendroglioma are histologically and genetically well-defined entities. The majority of astrocytomas harbor concurrent TP53 and ATRX mutations, while most oligodendrogliomas carry the 1p/19q co-deletion. Both entities share high frequencies of IDH mutations. In contrast, oligoastrocytomas (OA) appear less clearly defined and, therefore, there is an ongoing debate whether these tumors indeed constitute an entity or whether they represent a mixed bag containing both astrocytomas and oligodendrogliomas. We investigated 43 OA diagnosed in different institutions employing histology, immunohistochemistry and in situ hybridization addressing surrogates for the molecular genetic markers IDH1R132H, TP53, ATRX and 1p/19q loss. In all but one OA the combination of nuclear p53 accumulation and ATRX loss was mutually exclusive with 1p/19q co-deletion. In 31/43 OA, only alterations typical for oligodendroglioma were observed, while in 11/43 OA, only indicators for mutations typical for astrocytomas were detected. A single case exhibited a distinct pattern, nuclear expression of p53, ATRX loss, IDH1 mutation and partial 1p/19q loss. However, this was the only patient undergoing radiotherapy prior to surgery, possibly contributing to the acquisition of this uncommon combination. In OA with oligodendroglioma typical alterations, the portions corresponding to astrocytic part were determined as reactive, while in OA with astrocytoma typical alterations the portions corresponding to oligodendroglial differentiation were neoplastic. These data provide strong evidence against the existence of an independent OA entity.
Collapse
|
21
|
Duval C, de Tayrac M, Sanschagrin F, Michaud K, Gould PV, Saikali S. ImmunoFISH is a reliable technique for the assessment of 1p and 19q status in oligodendrogliomas. PLoS One 2014; 9:e100342. [PMID: 24949947 PMCID: PMC4065070 DOI: 10.1371/journal.pone.0100342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
Objective To develop a new ImmunoFISH technique for the study of oligodendrogliomas by combining a standard immunohistochemical stain using MIB-1 antibody with a standard FISH technique using commercial 1p36 and 19q13 chromosomal probes. Methods Validation was performed by two observers on a series of 36 pre-selected oligodendrogliomas and compared to the results previously determined by FISH alone. Results The ImFISH technique is easy to perform and to analyze and is no more time-consuming than the usual FISH technique. Our results show that the inter-observer reliability of ImFISH is high (κ = 0.86 and 0.95 respectively for 1p and 19q). Compared to FISH, the ImFISH exhibits a very high sensitivity (∼100%) and specificity (∼90%) for 1p and/or 19q deleted cases. The sensitivity is high for normal cases (∼85%) and imbalanced cases (∼90%) with a specificity ranging between 50 and 85%. Finally, there were no significant differences between FISH and ImFISH results calculated on 60, 40 or 20 cells. Conclusion Our study demonstrates the reliability of the ImFISH technique in oligodendrogliomas and emphasizes its advantage in poorly cellular tumoral specimen.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Antinuclear/metabolism
- Antibodies, Monoclonal/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/metabolism
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/metabolism
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence/methods
- Male
- Middle Aged
- Observer Variation
- Oligodendroglioma/genetics
- Oligodendroglioma/metabolism
- Reproducibility of Results
Collapse
Affiliation(s)
- Céline Duval
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Marie de Tayrac
- Department of genomic and molecular genetics, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - François Sanschagrin
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Karine Michaud
- Department of Neurosurgery, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Peter Vincent Gould
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Stéphan Saikali
- Department of Pathology, Centre Hospitalier Universitaire de Québec, Québec, Canada
- * E-mail:
| |
Collapse
|