1
|
Katsumata Y, Wu X, Aung KZ, Fardo DW, Woodworth DC, Sajjadi SA, Tomé SO, Thal DR, Troncoso JC, Chang K, Mock C, Nelson PT. Pure LATE-NC: Frequency, clinical impact, and the importance of considering APOE genotype when assessing this and other subtypes of non-Alzheimer's pathologies. Acta Neuropathol 2024; 148:66. [PMID: 39546031 PMCID: PMC11568059 DOI: 10.1007/s00401-024-02821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Pure limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (pure LATE-NC) is a term used to describe brains with LATE-NC but lacking intermediate or severe levels of Alzheimer's disease neuropathologic changes (ADNC). Focusing on pure LATE-NC, we analyzed data from the National Alzheimer's Coordinating Center (NACC) Neuropathology Data Set, comprising clinical and pathological information aggregated from 32 NIH-funded Alzheimer's Disease Research Centers (ADRCs). After excluding subjects dying with unusual conditions, n = 1,926 autopsied subjects were included in the analyses. For > 90% of these participants, apolipoprotein E (APOE) allele status was known; 46.5% had at least one APOE 4 allele. In most human populations, only 15-25% of people are APOE ε4 carriers. ADRCs with higher documented AD risk allele (APOE or BIN1) rates had fewer participants lacking ADNC, and correspondingly low rates of pure LATE-NC. Among APOE ε4 non-carries, 5.3% had pure LATE-NC, 37.0% had pure ADNC, and 3.6% had pure neocortical Lewy body pathology. In terms of clinical impact, participants with pure LATE-NC tended to die after having received a diagnosis of dementia: 56% died with dementia among APOE ε4 non-carrier participants, comparable to 61% with pure ADNC. LATE-NC was associated with increased Clinical Dementia Rating Sum of Boxes (CDR-SOB) scores, i.e. worsened global cognitive impairments, in participants with no/low ADNC and no neocortical Lewy body pathology (p = 0.0023). Among pure LATE-NC cases, there was a trend for higher LATE-NC stages to be associated with worse CDR-SOB scores (p = 0.026 for linear trend of LATE-NC stages). Pure LATE-NC was not associated with clinical features of disinhibition or primary progressive aphasia. In summary, LATE-NC with no or low levels of ADNC was less frequent than pure ADNC but was not rare, particularly among individuals who lacked the APOE 4 allele, and in study cohorts with APOE 4 frequencies similar to those in most human populations.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Xian Wu
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Khine Zin Aung
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, 40536-0679, USA
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA
| | - Davis C Woodworth
- Department of Neurology, University of California, Irvine, CA, 92,697, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, 92,697, USA
- Department of Pathology, University of California, Irvine, CA, 92,697, USA
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Juan C Troncoso
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Koping Chang
- Departments of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Mock
- National Alzheimer's Coordinating Center (NACC), University of Washington, Seattle, WA, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, U. Kentucky, Rm 575 Lee Todd Bldg 789 S. Limestone Ave, Lexington, KY, 40536, USA.
- Department of Pathology, Division of Neuropathology, University of Kentucky, Rm 575 Lee Todd Bldg, U. Kentucky, 789 S. Limestone Ave., Lexington, KY, 40536-0230, USA.
| |
Collapse
|
2
|
Nitrini R. Alzheimer's disease: part 2 - the present. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 39529357 DOI: 10.1055/s-0044-1791755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Based on my work as a clinical neurologist with more than 50 years of experience in caring for patients with Alzheimer's disease (AD), I focus, in this review article, on the disease's two fundamental aspects for the doctor: diagnosis and treatment. The 1984 diagnostic criteria had been stable for more than a quarter of a century when it was replaced in 2011. Since then, there have been many discoveries, especially of biomarkers that have a heavy impact on the diagnosis of AD. Recently, AD biomarkers have become available in plasma, which certainly will cause a major change in the diagnosis of biological AD, a term that still needs care and information to society before being used in clinical practice. Three monoclonal antibodies against β-amyloid peptide have also been recently approved, and two of these have shown a small but statistically significant effect on clinical outcome. These monoclonal antibodies have had a greater effect on the reduction of amyloid plaques in the brain assessed by positron emission tomography (PET), and on the concentration of biomarkers in the cerebrospinal fluid (β-amyloid peptide with 42 amino acids and hyperphosphorylated tau protein) than in the neuropsychological and functional assessments. Even this small clinical effect will be encouraging for the development of new research, particularly helped by the greater ease of diagnosis and monitoring of the evolution of AD pathophysiology with plasma biomarkers. Recently, new diagnostic criteria for AD were presented by the Alzheimer's Association, causing controversy about their use in clinical practice.
Collapse
Affiliation(s)
- Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, São Paulo SP, Brazil
| |
Collapse
|
3
|
Korczyn AD, Grinberg LT. Is Alzheimer disease a disease? Nat Rev Neurol 2024; 20:245-251. [PMID: 38424454 DOI: 10.1038/s41582-024-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Dementia, a prevalent condition among older individuals, has profound societal implications. Extensive research has resulted in no cure for what is perceived as the most common dementing illness: Alzheimer disease (AD). AD is defined by specific brain abnormalities - amyloid-β plaques and tau protein neurofibrillary tangles - that are proposed to actively influence the neurodegenerative process. However, conclusive evidence of amyloid-β toxicity is lacking, the mechanisms leading to the accumulation of plaques and tangles are unknown, and removing amyloid-β has not halted neurodegeneration. So, the question remains, are we making progress towards a solution? The complexity of AD is underscored by numerous genetic and environmental risk factors, and diverse clinical presentations, suggesting that AD is more akin to a syndrome than to a traditional disease, with its pathological manifestation representing a convergence of pathogenic pathways. Therefore, a solution requires a multifaceted approach over a single 'silver bullet'. Improved recognition and classification of conditions that converge in plaques and tangle accumulation and their treatment requires the use of multiple strategies simultaneously.
Collapse
Affiliation(s)
- Amos D Korczyn
- Departments of Neurology, Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel.
| | - Lea T Grinberg
- Departments of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
4
|
Hainsworth AH, Markus HS, Schneider JA. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension 2024; 81:75-86. [PMID: 38044814 PMCID: PMC10734789 DOI: 10.1161/hypertensionaha.123.19943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hypertension-associated cerebral small vessel disease is a common finding in older people. Strongly associated with age and hypertension, small vessel disease is found at autopsy in over 50% of people aged ≥65 years, with a spectrum of clinical manifestations. It is the main cause of lacunar stroke and a major source of vascular contributions to cognitive impairment and dementia. The brain areas affected are subcortical and periventricular white matter and deep gray nuclei. Neuropathological sequelae are diffuse white matter lesions (seen as white matter hyperintensities on T2-weighted magnetic resonance imaging), small ischemic foci (lacunes or microinfarcts), and less commonly, subcortical microhemorrhages. The most common form of cerebral small vessel disease is concentric, fibrotic thickening of small penetrating arteries (up to 300 microns outer diameter) termed arteriolosclerosis. Less common forms are small artery atheroma and lipohyalinosis (the lesions described by C. Miller Fisher adjacent to lacunes). Other microvascular lesions that are not reviewed here include cerebral amyloid angiopathy and venous collagenosis. Here, we review the epidemiology, neuropathology, clinical management, genetics, preclinical models, and pathogenesis of hypertensive small vessel disease. Knowledge gaps include initiating factors, molecular pathogenesis, relationships between arterial pathology and tissue damage, possible reversibility, pharmacological targets, and molecular biomarkers. Progress is anticipated from multicell transcriptomic and proteomic profiling, novel experimental models and further target-finding and interventional clinical studies.
Collapse
Affiliation(s)
- Atticus H. Hainsworth
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.H.H.)
- Department of Neurology, St George’s University Hospitals NHS Foundation Trust, London, United Kingdom (A.H.H.)
| | - Hugh S. Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.S.M.)
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, IL (J.A.S.)
| |
Collapse
|
5
|
Tosun D, Yardibi O, Benzinger TLS, Kukull WA, Masters CL, Perrin RJ, Weiner MW, Simen A, Schwarz AJ. Identifying individuals with non-Alzheimer's disease co-pathologies: A precision medicine approach to clinical trials in sporadic Alzheimer's disease. Alzheimers Dement 2024; 20:421-436. [PMID: 37667412 PMCID: PMC10843695 DOI: 10.1002/alz.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Biomarkers remain mostly unavailable for non-Alzheimer's disease neuropathological changes (non-ADNC) such as transactive response DNA-binding protein 43 (TDP-43) proteinopathy, Lewy body disease (LBD), and cerebral amyloid angiopathy (CAA). METHODS A multilabel non-ADNC classifier using magnetic resonance imaging (MRI) signatures was developed for TDP-43, LBD, and CAA in an autopsy-confirmed cohort (N = 214). RESULTS A model using demographic, genetic, clinical, MRI, and ADNC variables (amyloid positive [Aβ+] and tau+) in autopsy-confirmed participants showed accuracies of 84% for TDP-43, 81% for LBD, and 81% to 93% for CAA, outperforming reference models without MRI and ADNC biomarkers. In an ADNI cohort (296 cognitively unimpaired, 401 mild cognitive impairment, 188 dementia), Aβ and tau explained 33% to 43% of variance in cognitive decline; imputed non-ADNC explained an additional 16% to 26%. Accounting for non-ADNC decreased the required sample size to detect a 30% effect on cognitive decline by up to 28%. DISCUSSION Our results lead to a better understanding of the factors that influence cognitive decline and may lead to improvements in AD clinical trial design.
Collapse
Affiliation(s)
- Duygu Tosun
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ozlem Yardibi
- Takeda Pharmaceutical Company LtdCambridgeMassachusettsUSA
| | | | - Walter A. Kukull
- Department of EpidemiologyNational Alzheimer's Coordinating CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Richard J. Perrin
- Department of Pathology & ImmunologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael W. Weiner
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Arthur Simen
- Takeda Pharmaceutical Company LtdCambridgeMassachusettsUSA
| | | | | |
Collapse
|
6
|
Zhang M, Ganz AB, Rohde S, Lorenz L, Rozemuller AJM, van Vliet K, Graat M, Sikkes SAM, Reinders MJT, Scheltens P, Hulsman M, Hoozemans JJM, Holstege H. The correlation between neuropathology levels and cognitive performance in centenarians. Alzheimers Dement 2023; 19:5036-5047. [PMID: 37092333 DOI: 10.1002/alz.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Neuropathological substrates associated with neurodegeneration occur in brains of the oldest old. How does this affect cognitive performance? METHODS The 100-plus Study is an ongoing longitudinal cohort study of centenarians who self-report to be cognitively healthy; post mortem brain donation is optional. In 85 centenarian brains, we explored the correlations between the levels of 11 neuropathological substrates with ante mortem performance on 12 neuropsychological tests. RESULTS Levels of neuropathological substrates varied: we observed levels up to Thal-amyloid beta phase 5, Braak-neurofibrillary tangle (NFT) stage V, Consortium to Establish a Registry for Alzheimer's Disease (CERAD)-neuritic plaque score 3, Thal-cerebral amyloid angiopathy stage 3, Tar-DNA binding protein 43 (TDP-43) stage 3, hippocampal sclerosis stage 1, Braak-Lewy bodies stage 6, atherosclerosis stage 3, cerebral infarcts stage 1, and cerebral atrophy stage 2. Granulovacuolar degeneration occurred in all centenarians. Some high performers had the highest neuropathology scores. DISCUSSION Only Braak-NFT stage and limbic-predominant age-related TDP-43 encephalopathy (LATE) pathology associated significantly with performance across multiple cognitive domains. Of all cognitive tests, the clock-drawing test was particularly sensitive to levels of multiple neuropathologies.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft Technical University, Van, The Netherlands
| | - Andrea B Ganz
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Neuroscience, Amsterdam, The Netherlands
| | - Susan Rohde
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Neuroscience, Amsterdam, The Netherlands
| | - Linda Lorenz
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Neuroscience, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, The Netherlands
| | - Kimberley van Vliet
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marieke Graat
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sietske A M Sikkes
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Epidemiology & Biostatistics, Amsterdam, The Netherlands
- Faculty of Behavioural and Movement Sciences, Clinical Developmental Psychology and Clinical Neuropsychology, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc Hulsman
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft Technical University, Van, The Netherlands
| | | | - Henne Holstege
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Neuville RS, Biswas R, Ho CC, Bukhari S, Sajjadi SA, Paganini-Hill A, Montine TJ, Corrada MM, Kawas CH. Study of neuropathological changes and dementia in 100 centenarians in The 90+ Study. Alzheimers Dement 2023; 19:3417-3425. [PMID: 36795955 PMCID: PMC10427735 DOI: 10.1002/alz.12981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/18/2023]
Abstract
INTRODUCTION The association between neuropathological changes and dementia among centenarians and nonagenarians remains unclear. METHODS We examined brain tissue from 100 centenarians and 297 nonagenarians from The 90+ Study, a community-based longitudinal study of aging. We determined the prevalence of 10 neuropathological changes and compared their associations with dementia and cognitive performance between centenarians and nonagenarians. RESULTS A total of 59% of centenarians and 47% of nonagenarians had at least four neuropathological changes. In centenarians, neuropathological changes were associated with higher odds of dementia and, compared to nonagenarians, the odds were not attenuated. For each additional neuropathological change, the Mini-Mental State Examination score was lower by 2 points for both groups. DISCUSSION Neuropathological changes continue to be strongly related to dementia in centenarians, highlighting the importance of slowing or preventing the development of multiple neuropathological changes in the aging brain to maintain cognitive health. HIGHLIGHTS Individual and multiple neuropathological changes are frequent in centenarians. These neuropathological changes are strongly associated with dementia. There is no attenuation of this association with age.
Collapse
Affiliation(s)
- Raumin S. Neuville
- School of Medicine, University of California, Irvine,
Irvine, CA 92617, USA
| | - Roshni Biswas
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
| | - Chu-Ching Ho
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Syed Bukhari
- Department of Pathology, Stanford University, 300 Pasteur
Drive, Stanford, CA 94305, USA
| | - S. Ahmad Sajjadi
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology & Behavior, University of
California, Irvine, Gillespie NRF, Irvine, CA 92697, USA
| | - Annlia Paganini-Hill
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, 300 Pasteur
Drive, Stanford, CA 94305, USA
| | - María M. Corrada
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Epidemiology, University of California,
Irvine, Anteater Instruction & Research Offices (AIRB), 653 E. Peltason Drive,
Irvine, CA 92697, USA
| | - Claudia H. Kawas
- Department of Neurology, University of California, Irvine,
Hewitt Hall, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology & Behavior, University of
California, Irvine, Gillespie NRF, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Suemoto CK, Leite REP. Autopsy studies are key to identifying dementia cause. THE LANCET. HEALTHY LONGEVITY 2023; 4:e94-e95. [PMID: 36870340 DOI: 10.1016/s2666-7568(23)00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Affiliation(s)
- Claudia K Suemoto
- Division of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Renata E P Leite
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
9
|
Oveisgharan S, Kim N, Agrawal S, Yu L, Leurgans S, Kapasi A, Arfanakis K, Bennett DA, Schneider JA, Buchman AS. Brain and spinal cord arteriolosclerosis and its associations with cerebrovascular disease risk factors in community-dwelling older adults. Acta Neuropathol 2023; 145:219-233. [PMID: 36469116 PMCID: PMC10183107 DOI: 10.1007/s00401-022-02527-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Arteriolosclerosis is common in older brains and related to cognitive and motor impairment. We compared the severity of arteriolosclerosis and its associations with cerebrovascular disease risk factors (CVD-RFs) in multiple locations in the brain and spinal cord. Participants (n = 390) were recruited in the context of a longitudinal community-based clinical-pathological study, the Rush Memory and Aging Project. CVD-RFs were assessed annually for an average of 8.7 (SD = 4.3) years before death. The annual assessments included systolic (SBP) and diastolic (DBP) blood pressure, diabetes mellitus (DM), low- and high-density lipoprotein cholesterol, triglyceride, body mass index, and smoking. Postmortem pathological assessments included assessment of arteriolosclerosis severity using the same rating scale in three brain locations (basal ganglia, frontal, and parietal white matter regions) and four spinal cord levels (cervical, thoracic, lumbar and sacral levels). A single measure was used to summarize the severity of spinal arteriolosclerosis assessments at the four levels due to their high correlations. Average age at death was 91.5 (SD = 6.2) years, and 73% were women. Half showed arteriolosclerosis in frontal white matter and spinal cord followed by parietal white matter (38%) and basal ganglia (27%). The severity of arteriolosclerosis in all three brain locations showed mild-to-moderate correlations. By contrast, spinal arteriolosclerosis was associated with brain arteriolosclerosis only in frontal white matter. Higher DBP was associated with more severe arteriolosclerosis in all three brain locations. DM was associated with more severe arteriolosclerosis only in frontal white matter. Controlling for DBP, higher SBP was inversely associated with arteriolosclerosis in parietal white matter. Blood cholesterol and triglyceride, high body mass index, or smoking were not related to the severity of arteriolosclerosis in any brain region. None of the CVD-RFs were associated with the severity of spinal arteriolosclerosis. These data indicate that severity of arteriolosclerosis and its associations with CVD-RFs may vary in different CNS locations.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Namhee Kim
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sonal Agrawal
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sue Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Alifiya Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
Naslavsky MS, Suemoto CK, Brito LA, Scliar MO, Ferretti-Rebustini RE, Rodriguez RD, Leite REP, Araujo NM, Borda V, Tarazona-Santos E, Jacob-Filho W, Pasqualucci C, Nitrini R, Yaffe K, Zatz M, Grinberg LT. Global and local ancestry modulate APOE association with Alzheimer's neuropathology and cognitive outcomes in an admixed sample. Mol Psychiatry 2022; 27:4800-4808. [PMID: 36071110 PMCID: PMC9734036 DOI: 10.1038/s41380-022-01729-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023]
Abstract
Dementia is more prevalent in Blacks than in Whites, likely due to a combination of environmental and biological factors. Paradoxically, clinical studies suggest an attenuation of APOE ε4 risk of dementia in African ancestry (AFR), but a dearth of neuropathological data preclude the interpretation of the biological factors underlying these findings, including the association between APOE ε4 risk and Alzheimer's disease (AD) pathology, the most frequent cause of dementia. We investigated the interaction between African ancestry, AD-related neuropathology, APOE genotype, and functional cognition in a postmortem sample of 400 individuals with a range of AD pathology severity and lack of comorbid neuropathology from a cohort of community-dwelling, admixed Brazilians. Increasing proportions of African ancestry (AFR) correlated with a lower burden of neuritic plaques (NP). However, for individuals with a severe burden of NP and neurofibrillary tangles (NFT), AFR proportion was associated with worse Clinical Dementia Rating sum of boxes (CDR-SOB). Among APOE ε4 carriers, the association between AFR proportion and CDR-SOB disappeared. APOE local ancestry inference of a subset of 309 individuals revealed that, in APOE ε4 noncarriers, non-European APOE background correlated with lower NP burden and, also, worse cognitive outcomes than European APOE when adjusting by NP burden. Finally, APOE ε4 was associated with worse AD neuropathological burden only in a European APOE background. APOE genotype and its association with AD neuropathology and clinical pattern are highly influenced by ancestry, with AFR associated with lower NP burden and attenuated APOE ε4 risk compared to European ancestry.
Collapse
Affiliation(s)
- Michel Satya Naslavsky
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, University of São Paulo, São Paulo, SP, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claudia K Suemoto
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Luciano Abreu Brito
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, University of São Paulo, São Paulo, SP, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | | | - Renata Eloah Ferretti-Rebustini
- Escola de Enfermagem, Programa de Pós-Graduação em Enfermagem na Saúde do Adulto, University of São Paulo, São Paulo, SP, Brazil
| | | | - Renata E P Leite
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Nathalia Matta Araujo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Borda
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wilson Jacob-Filho
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Carlos Pasqualucci
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- VA Medical Center, San Francisco, San Francisco, CA, USA
| | - Mayana Zatz
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, University of São Paulo, São Paulo, SP, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil
| | - Lea T Grinberg
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, SP, Brazil.
- Memory and Aging Center, Department of Neurology, and Pathology, University of California, San Francisco, San Francisco, CA, USA.
- Global brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Nelson PT, Brayne C, Flanagan ME, Abner EL, Agrawal S, Attems J, Castellani RJ, Corrada MM, Cykowski MD, Di J, Dickson DW, Dugger BN, Ervin JF, Fleming J, Graff-Radford J, Grinberg LT, Hokkanen SRK, Hunter S, Kapasi A, Kawas CH, Keage HAD, Keene CD, Kero M, Knopman DS, Kouri N, Kovacs GG, Labuzan SA, Larson EB, Latimer CS, Leite REP, Matchett BJ, Matthews FE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Nelson RS, Neltner JH, Nguyen AT, Petersen RC, Polvikoski T, Reichard RR, Rodriguez RD, Suemoto CK, Wang SHJ, Wharton SB, White L, Schneider JA. Frequency of LATE neuropathologic change across the spectrum of Alzheimer's disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathol 2022; 144:27-44. [PMID: 35697880 PMCID: PMC9552938 DOI: 10.1007/s00401-022-02444-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 02/02/2023]
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA.
| | | | | | - Erin L Abner
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA
| | | | | | | | | | | | - Jing Di
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA
| | | | | | | | | | | | - Lea T Grinberg
- University of California, San Francisco, CA, USA
- University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Mia Kero
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | - Janna H Neltner
- University of Kentucky, Rm 311 Sanders-Brown Center on Aging, Lexington, KY, USA
| | | | | | | | | | | | | | | | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Lon White
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | | |
Collapse
|
12
|
Neves BA, Nunes PV, Rodriguez RD, Haidar AM, Leite REP, Nascimento C, Pasqualucci CA, Nitrini R, Jacob-Filho W, Lafer B, Grinberg LT, Suemoto CK. Cause of Death Determined by Full-body Autopsy in Neuropathologically Diagnosed Dementias: The Biobank for Aging Studies of the University of Sao Paulo (BAS-USP), Brazil. Alzheimer Dis Assoc Disord 2022; 36:156-161. [PMID: 35001032 PMCID: PMC9149027 DOI: 10.1097/wad.0000000000000489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study aimed to compare causes of death in the most prevalent neuropathologically diagnosed dementias. METHODS We analyzed causes of death in a community-based cohort of participants aged 50 or older, submitted to full-body autopsy and a comprehensive neuropathologic examination of the brain. Individuals with Alzheimer disease (AD), vascular dementia (VaD), mixed dementia (AD+VaD), or dementia with Lewy bodies (DLBs) were compared with individuals with no dementia. RESULTS In a sample of 920 individuals, 456 had no dementia, 147 had AD, 120 had VaD, 53 had DLB, and 37 had AD+VaD. Pneumonia as the cause of death was more frequent in the AD (P=0.023), AD+VaD (P=0.046), and DLB (P=0.043) groups. In addition, VaD (P=0.041) and AD+VaD (P=0.028) groups had a higher frequency of atherosclerosis as detected by full-body autopsy. CONCLUSION Our findings highlight the importance of preventive measures regarding atherosclerosis and pneumonia in patients with dementia. Moreover, because of cognitive impairment, these patients may not fully account for symptoms to make early detection and diagnosis possible. These results confirm findings from previous studies that were based on clinical data, with added accuracy provided by neuropathologic diagnosis and full-body autopsy reports.
Collapse
Affiliation(s)
| | - Paula Villela Nunes
- Faculdade de Medicina de Jundiai, Jundiai, SP, Brazil
- Faculdade de Medicina, Universidade de São Paulo,
São Paulo, SP, Brazil
| | | | | | | | - Camila Nascimento
- Faculdade de Medicina, Universidade de São Paulo,
São Paulo, SP, Brazil
| | | | - Ricardo Nitrini
- Faculdade de Medicina, Universidade de São Paulo,
São Paulo, SP, Brazil
| | | | - Beny Lafer
- Faculdade de Medicina, Universidade de São Paulo,
São Paulo, SP, Brazil
| | - Lea Tenenholz Grinberg
- Faculdade de Medicina, Universidade de São Paulo,
São Paulo, SP, Brazil
- Memory and Aging Center University of California, San
Francisco, USA
| | | |
Collapse
|
13
|
Makkinejad N, Evia AM, Tamhane AA, Javierre-Petit C, Leurgans SE, Lamar M, Barnes LL, Bennett DA, Schneider JA, Arfanakis K. ARTS: A novel In-vivo classifier of arteriolosclerosis for the older adult brain. Neuroimage Clin 2021; 31:102768. [PMID: 34330087 PMCID: PMC8329541 DOI: 10.1016/j.nicl.2021.102768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
Brain arteriolosclerosis, one of the main pathologies of cerebral small vessel disease, is common in older adults and has been linked to lower cognitive and motor function and higher odds of dementia. In spite of its frequency and associated morbidity, arteriolosclerosis can only be diagnosed at autopsy. Therefore, the purpose of this work was to develop an in-vivo classifier of arteriolosclerosis based on brain MRI. First, an ex-vivo classifier of arteriolosclerosis was developed based on features related to white matter hyperintensities, diffusion anisotropy and demographics by applying machine learning to ex-vivo MRI and pathology data from 119 participants of the Rush Memory and Aging Project (MAP) and Religious Orders Study (ROS), two longitudinal cohort studies of aging that recruit non-demented older adults. The ex-vivo classifier showed good performance in predicting the presence of arteriolosclerosis, with an average area under the receiver operating characteristic curve AUC = 0.78. The ex-vivo classifier was then translated to in-vivo based on available in-vivo and ex-vivo MRI data on the same participants. The in-vivo classifier was named ARTS (short for ARTerioloSclerosis), is fully automated, and provides a score linked to the likelihood a person suffers from arteriolosclerosis. The performance of ARTS in predicting the presence of arteriolosclerosis in-vivo was tested in a separate, 91% dementia-free group of 79 MAP/ROS participants and exhibited an AUC = 0.79 in persons with antemortem intervals shorter than 2.4 years. This level of performance in mostly non-demented older adults is notable considering that arteriolosclerosis can only be diagnosed at autopsy. The scan-rescan reproducibility of the ARTS score was excellent, with an intraclass correlation of 0.99, suggesting that application of ARTS in longitudinal studies may show high sensitivity in detecting small changes. Finally, higher ARTS scores in non-demented older adults were associated with greater decline in cognition two years after baseline MRI, especially in perceptual speed which has been linked to arteriolosclerosis and small vessel disease. This finding was shown in a separate group of 369 non-demented MAP/ROS participants and was validated in 72 non-demented Black participants of the Minority Aging Research Study (MARS) and also in 244 non-demented participants of the Alzheimer's Disease Neuroimaging Initiative 2 and 3. The results of this work suggest that ARTS may have broad implications in the advancement of diagnosis, prevention and treatment of arteriolosclerosis. ARTS is publicly available at https://www.nitrc.org/projects/arts/.
Collapse
Affiliation(s)
- Nazanin Makkinejad
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Arnold M Evia
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ashish A Tamhane
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Carles Javierre-Petit
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Melissa Lamar
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Dept. of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Dept. of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Dept. of Diagnostic Radiology & Nuc Med, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW People over 90 are the fastest growing segment of the population with the highest rates of dementia. This review highlights recent findings that provide insight to our understanding of dementia and cognition at all ages. RECENT FINDINGS Risk factors for Alzheimer's disease (AD) and dementia differ by age, with some factors, like the development of hypertension, actually becoming protective in the oldest-old. At least half of all dementia in this age group is due to non AD pathologies, including microinfarcts, hippocampal sclerosis and TDP-43. The number of pathologic changes found in the brain is related to both risk and severity of dementia, but many people in this age group appear to be 'resilient' to these pathologies. Resilience to Alzheimer pathology, in part, may be related to absence of other pathologies, and imaging and spinal fluid biomarkers for AD have limited utility in this age group. SUMMARY Studies of dementia in the oldest-old are important for our understanding and eventual treatment or prevention of dementia at all ages.
Collapse
Affiliation(s)
- Claudia H. Kawas
- Department of Neurology and Department of Neurobiology & Behavior, University of California, Irvine, Irvine, California, USA
| | - Nienke Legdeur
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC and Department of Internal Medicine, Spaarne Gasthuis, Haarlem, the Netherlands
| | - María M. Corrada
- Department of Neurology and Department of Epidemiology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
15
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
16
|
Esteban de Antonio E, López-Álvarez J, Rábano A, Agüera-Ortiz L, Sánchez-Soblechero A, Amaya L, Portela S, Cátedra C, Olazarán J. Pathological Correlations of Neuropsychiatric Symptoms in Institutionalized People with Dementia. J Alzheimers Dis 2020; 78:1731-1741. [PMID: 33185596 DOI: 10.3233/jad-200600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Comprehensive clinicopathological studies of neuropsychiatric symptoms (NPS) in dementia are lacking. OBJECTIVE To describe the pathological correlations of NPS in a sample of institutionalized people with dementia. METHODS We studied 59 people who were consecutively admitted to a nursing home and donated their brain. Correlations between pathological variables and NPS upon admission (n = 59) and at one-year follow-up assessment (n = 46) were explored and confirmed using bivariate and multivariate statistical methods. RESULTS Mean (SD) age at admission was 83.2 (6.4) years and mean (SD) age at demise was 85.4 (6.6); 73% of the subjects were female and 98% presented advanced dementia. The most frequent etiological diagnosis was Alzheimer's disease (AD; 74.6% clinical diagnosis, 67.8% pathological diagnosis). The pathological diagnosis of AD was associated with aggression (β est 0.31), depression (β est 0.31), anxiety (β est 0.38), and irritability (β est 0.28). Tau stage correlated with aggressive symptoms (β est 0.32) and anxiety (βest 0.33). Coexistence of AD and Lewy body pathology was associated with depression (β est 0.32), while argyrophilic grains were associated with eating symptoms (β est 0.29). Predictive models were achieved for apathy, including cognitive performance, basal ganglia ischemic lesions, and sex as predictors (R2 0.38) and for sleep disorders, including pathological diagnosis of AD and age at demise (R2 0.18) (all p-values <0.05, unadjusted). CONCLUSION AD was the main pathological substrate of NPS in our sample of very elderly people with advanced dementia. However, correlations were mild, supporting a model of focal/asymmetric rather than diffuse brain damage, along with relevance of environmental and other personal factors, in the genesis of those symptoms.
Collapse
Affiliation(s)
| | | | - Alberto Rábano
- Alzheimer's Center Reina Sofía Foundation - CIEN Foundation and CIBERNED, Carlos III Institute of Health, Madrid, Spain
| | - Luis Agüera-Ortiz
- Psychiatry Department, University Hospital 12 de Octubre, Madrid, Spain.,CIBERSAM, Madrid, Spain
| | | | - Laura Amaya
- Neurology Service, University Hospital Gregorio Marañón, Madrid, Spain
| | - Sofía Portela
- Neurology Service, University Hospital Gregorio Marañón, Madrid, Spain
| | - Carlos Cátedra
- Neurology Service, University Hospital Gregorio Marañón, Madrid, Spain
| | - Javier Olazarán
- Neurology Service, University Hospital Gregorio Marañón, Madrid, Spain.,Memory Disorders Unit, HM Hospitals, Madrid, Spain
| |
Collapse
|
17
|
Henriques AD, Machado-Silva W, Leite RE, Suemoto CK, Leite KR, Srougi M, Pereira AC, Jacob-Filho W, Nóbrega OT. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech Ageing Dev 2020; 191:111352. [DOI: 10.1016/j.mad.2020.111352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|
18
|
Resende EDPF, Nolan AL, Petersen C, Ehrenberg AJ, Spina S, Allen IE, Rosen HJ, Kramer J, Miller BL, Seeley WW, Gorno-Tempini ML, Miller Z, Grinberg LT. Language and spatial dysfunction in Alzheimer disease with white matter thorn-shaped astrocytes. Neurology 2020; 94:e1353-e1364. [PMID: 32001514 DOI: 10.1212/wnl.0000000000008937] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Alzheimer disease (AD) shows a broad array of clinical presentations, but the mechanisms underlying these phenotypic variants remain elusive. Aging-related astrogliopathy (ARTAG) is a relatively recent term encompassing a broad array of tau deposition in astroglia outside the range of traditional tauopathies. White matter thorn-shaped astrocyte (WM-TSA) clusters, a specific ARTAG subtype, has been associated with atypical language presentation of AD in a small study lacking replication. To interrogate the impact of WM-TSA in modifying clinical phenotype in AD, we investigated a clinicopathologic sample of 83 persons with pure cortical AD pathology and heterogeneous clinical presentations. METHODS We mapped WM-TSA presence and density throughout cortical areas and interrogated whether WM-TSA correlated with atypical AD presentation or worse performance in neuropsychological testing. RESULTS WM-TSA was present in nearly half of the cases and equally distributed in typical and atypical AD presentations. Worsening language and visuospatial functions were correlated with higher WM-TSA density in language-related and visuospatial-related regions, respectively. These findings were unrelated to regional neurofibrillary tangle burden. Next, unsupervised clustering divided the participants into 2 groups: a high-WM-TSA (n = 9) and low-WM-TSA (n = 74) pathology signature. The high-WM-TSA group scored significantly worse in language but not in other cognitive domains. CONCLUSIONS The negative impact of WM-TSA pathology to language and possibly visuospatial networks suggests that WM-TSA is not as benign as other ARTAG types and may be explored as a framework to understand the mechanisms and impact of astrocytic tau deposition in AD in humans.
Collapse
Affiliation(s)
- Elisa de Paula França Resende
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Amber L Nolan
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Cathrine Petersen
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Alexander J Ehrenberg
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Salvatore Spina
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Isabel E Allen
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Howard J Rosen
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Joel Kramer
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Bruce L Miller
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - William W Seeley
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Maria Luiza Gorno-Tempini
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Zachary Miller
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Lea T Grinberg
- From the Memory and Aging Center (E.d.P.F.R., A.L.N., C.P., A.J.E., S.S., I.E.A., H.J.R., J.K., B.L.M., W.W.S., M.L.G.-T., Z.M., L.T.G.), Weill Institute for Neurosciences, and Department of Biostatistics and Epidemiology (L.T.G.), University of California, San Francisco; Global Brain Health Institute based at University of California (E.d.P.F.R., L.T.G.), San Francisco; Trinity College (E.d.P.F.R., L.T.G.), Dublin, Ireland; Department of Neurology (E.d.P.F.R.), Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Integrative Biology (A.J.E.), University of California, Berkeley; and Department of Pathology (L.T.G.), Lim-22, Lim-66, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| |
Collapse
|
19
|
Suemoto CK, Leite REP, Ferretti-Rebustini REL, Rodriguez RD, Nitrini R, Pasqualucci CA, Jacob-Filho W, Grinberg LT. Response letter: neuropathological lesions in the very old. Brain Pathol 2019; 30:204. [PMID: 31596998 DOI: 10.1111/bpa.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Claudia K Suemoto
- Division of Geriatrics, Universidade de Sao Paulo, Faculdade de Medicina, Sao Paulo, Brazil
| | - Renata E P Leite
- Department of Pathology, Universidade de Sao Paulo, Faculdade de Medicina, Sao Paulo, Brazil
| | | | - Roberta D Rodriguez
- Department of Neurology, Universidade de Sao Paulo, Faculdade de Medicina, Sao Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, Universidade de Sao Paulo, Faculdade de Medicina, Sao Paulo, Brazil
| | - Carlos A Pasqualucci
- Department of Pathology, Universidade de Sao Paulo, Faculdade de Medicina, Sao Paulo, Brazil
| | - Wilson Jacob-Filho
- Division of Geriatrics, Universidade de Sao Paulo, Faculdade de Medicina, Sao Paulo, Brazil
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA
| |
Collapse
|
20
|
Dani SU, Pittella JEH. Anthropometric rather than ethnic factors may explain differences in the incidence of Alzheimer-type neurodegenerative changes. Brain Pathol 2019; 30:203. [PMID: 31593322 DOI: 10.1111/bpa.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sergio U Dani
- Medawar Institute, Acangau Foundation, Belo Horizonte, Brazil
| | - José Eymard H Pittella
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Alzheimer's disease clinical variants show distinct regional patterns of neurofibrillary tangle accumulation. Acta Neuropathol 2019; 138:597-612. [PMID: 31250152 DOI: 10.1007/s00401-019-02036-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
The clinical spectrum of Alzheimer's disease (AD) extends well beyond the classic amnestic-predominant syndrome. The previous studies have suggested differential neurofibrillary tangle (NFT) burden between amnestic and logopenic primary progressive aphasia presentations of AD. In this study, we explored the regional distribution of NFT pathology and its relationship to AD presentation across five different clinical syndromes. We assessed NFT density throughout six selected neocortical and hippocampal regions using thioflavin-S fluorescent microscopy in a well-characterized clinicopathological cohort of pure AD cases enriched for atypical clinical presentations. Subjects underwent apolipoprotein E genotyping and neuropsychological testing. Main cognitive domains (executive, visuospatial, language, and memory function) were assessed using an established composite z score. Our results showed that NFT regional burden aligns with the clinical presentation and region-specific cognitive scores. Cortical, but not hippocampal, NFT burden was higher among atypical clinical variants relative to the amnestic syndrome. In analyses of specific clinical variants, logopenic primary progressive aphasia showed higher NFT density in the superior temporal gyrus (p = 0.0091), and corticobasal syndrome showed higher NFT density in the primary motor cortex (p = 0.0205) relative to the amnestic syndrome. Higher NFT burden in the angular gyrus and CA1 sector of the hippocampus were independently associated with worsening visuospatial dysfunction. In addition, unbiased hierarchical clustering based on regional NFT densities identified three groups characterized by a low overall NFT burden, high overall burden, and cortical-predominant burden, respectively, which were found to differ in sex ratio, age, disease duration, and clinical presentation. In comparison, the typical, hippocampal sparing, and limbic-predominant subtypes derived from a previously proposed algorithm did not reproduce the same degree of clinical relevance in this sample. Overall, our results suggest domain-specific functional consequences of regional NFT accumulation. Mapping these consequences presents an opportunity to increase understanding of the neuropathological framework underlying atypical clinical manifestations.
Collapse
|