1
|
Lopes KDP, Yu L, Shen X, Qiu Y, Tasaki S, Iatrou A, Beeri MS, Seyfried NT, Menon V, Wang Y, Schneider JA, Cantor H, Bennett DA. Associations of cortical SPP1 and ITGAX with cognition and common neuropathologies in older adults. Alzheimers Dement 2024; 20:525-537. [PMID: 37727065 PMCID: PMC10841499 DOI: 10.1002/alz.13474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION The secreted phosphoprotein 1 (SPP1) gene expressed by CD11c+ cells is known to be associated with microglia activation and neuroinflammatory diseases. As most studies rely on mouse models, we investigated these genes and proteins in the cortical brain tissue of older adults and their role in Alzheimer's disease (AD) and related disorders. METHODS We leveraged protein measurements, single-nuclei, and RNASeq data from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) of over 1200 samples for association analysis. RESULTS Expression of SPP1 and its encoded protein osteopontin were associated with faster cognitive decline and greater odds of common neuropathologies. At single-cell resolution, integrin subunit alpha X (ITGAX) was highly expressed in microglia, where specific subpopulations were associated with AD and cerebral amyloid angiopathy. DISCUSSION The study provides evidence of SPP1 and ITGAX association with cognitive decline and common neuropathologies identifying a microglial subset associated with disease.
Collapse
Affiliation(s)
- Katia de Paiva Lopes
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Xianli Shen
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Yiguo Qiu
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Chongqing International Institute for ImmunologyChongqingChina
| | - Shinya Tasaki
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Artemis Iatrou
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Michal Schnaider Beeri
- Joseph Sagol Neuroscience Center, Sheba Medical CenterRamat GanIsrael
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- The Herbert and Jackeline Krieger Klein Alzheimer's Research CenterRutgers Biomedical and Health Sciences, Rutgers UniversityNew JerseyUSA
| | - Nicholas T. Seyfried
- Goizueta Alzheimer's Disease Research Center, Department of Neurology and Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Vilas Menon
- Center for Translational and Computational NeuroimmunologyDepartment of Neurology & Taub Institute for Research on Alzheimer's disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yanling Wang
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Julie A. Schneider
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Harvey Cantor
- Department of Cancer Immunology and VirologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
2
|
Riew TR, Hwang JW, Jin X, Kim HL, Jung SJ, Lee MY. Astrocytes are involved in the formation of corpora amylacea-like structures from neuronal debris in the CA1 region of the rat hippocampus after ischemia. Front Cell Neurosci 2023; 17:1308247. [PMID: 38188667 PMCID: PMC10766773 DOI: 10.3389/fncel.2023.1308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, we demonstrated that the corpora amylacea (CA), a glycoprotein-rich aggregate frequently found in aged brains, accumulates in the ischemic hippocampus and that osteopontin (OPN) mediates the entire process of CA formation. Therefore, this study aimed to elucidate the mechanisms by which astrocytes and microglia participate in CA formation during the late phase (4-12 weeks) of brain ischemia. Based on various morphological analyses, including immunohistochemistry, in situ hybridization, immunoelectron microscopy, and correlative light and electron microscopy, we propose that astrocytes are the primary cells responsible for CA formation after ischemia. During the subacute phase after ischemia, astrocytes, rather than microglia, express Opn messenger ribonucleic acid and OPN protein, a surrogate marker and key component of CA. Furthermore, the specific localization of OPN in the Golgi complex suggests that it is synthesized and secreted by astrocytes. Astrocytes were in close proximity to type I OPN deposits, which accumulated in the mitochondria of degenerating neurons before fully forming the CA (type III OPN deposits). Throughout CA formation, astrocytes remained closely attached to OPN deposits, with their processes exhibiting well-developed gap junctions. Astrocytic cytoplasmic protein S100β, a calcium-binding protein, was detected within the fully formed CA. Additionally, ultrastructural analysis revealed direct contact between astroglial fibrils and the forming facets of the CA. Overall, we demonstrated that astrocytes play a central role in mediating CA formation from the initial stages of OPN deposit accumulation to the evolution of fully formed CA following transient ischemia in the hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Won Hwang
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Lalwani RC, Volmar CH, Wahlestedt C, Webster KA, Shehadeh LA. Contextualizing the Role of Osteopontin in the Inflammatory Responses of Alzheimer's Disease. Biomedicines 2023; 11:3232. [PMID: 38137453 PMCID: PMC10741223 DOI: 10.3390/biomedicines11123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive accumulations of extracellular amyloid-beta (Aβ) aggregates from soluble oligomers to insoluble plaques and hyperphosphorylated intraneuronal tau, also from soluble oligomers to insoluble neurofibrillary tangles (NFTs). Tau and Aβ complexes spread from the entorhinal cortex of the brain to interconnected regions, where they bind pattern recognition receptors on microglia and astroglia to trigger inflammation and neurotoxicity that ultimately lead to neurodegeneration and clinical AD. Systemic inflammation is initiated by Aβ's egress into the circulation, which may be secondary to microglial activation and can confer both destructive and reparative actions. Microglial activation pathways and downstream drivers of Aβ/NFT neurotoxicity, including inflammatory regulators, are primary targets for AD therapy. Osteopontin (OPN), an inflammatory cytokine and biomarker of AD, is implicated in Aβ clearance and toxicity, microglial activation, and inflammation, and is considered to be a potential therapeutic target. Here, using the most relevant works from the literature, we review and contextualize the evidence for a central role of OPN and associated inflammation in AD.
Collapse
Affiliation(s)
- Roshni C. Lalwani
- Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Claude-Henry Volmar
- Department of Psychiatry, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.-H.V.); (C.W.)
- Center for Therapeutic Innovation, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.-H.V.); (C.W.)
- Center for Therapeutic Innovation, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Keith A. Webster
- Integene International Holdings, LLC, Miami, FL 33137, USA;
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Everglades BioPharma, Houston, TX 77098, USA
| | - Lina A. Shehadeh
- Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Napolitano A, De Michieli L, Sinigiani G, Berno T, Cipriani A, Spiezia L. Thromboembolic and Bleeding Events in Transthyretin Amyloidosis and Coagulation System Abnormalities: A Review. J Clin Med 2023; 12:6640. [PMID: 37892778 PMCID: PMC10607836 DOI: 10.3390/jcm12206640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Transthyretin amyloidosis (ATTR) is a group of diseases caused by the deposition of insoluble fibrils derived from misfolded transthyretin, which compromises the structure and function of various organs, including the heart. Thromboembolic events and increased bleeding risk are among the most important complications of ATTR, though the underlying mechanisms are not yet fully understood. Transthyretin plays a complex role in the coagulation cascade, contributing to the activation and regulation of the coagulation and fibrinolytic systems. The prevalence of atrial fibrillation, cardiac mechanical dysfunction, and atrial myopathy in patients with ATTR may contribute to thrombosis, though such events may also occur in patients with a normal sinus rhythm and rarely in properly anticoagulated patients. Haemorrhagic events are modest and mainly linked to perivascular amyloid deposits with consequent capillary fragility and coagulation anomalies, such as labile international-normalised ratio during anticoagulant therapy. Therefore, it is paramount to carefully stratify the thrombotic and haemorrhagic risks, especially when initiating anticoagulant therapy. Our review aims to ascertain the prevalence of thromboembolic and haemorrhagic events in ATTR and identify potential risk factors and predictors and their impact on antithrombotic therapy.
Collapse
Affiliation(s)
- Angela Napolitano
- General Internal Medicine & Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy;
| | - Laura De Michieli
- Department of Cardiothoracic and Vascular Sciences & Public Health, Padova University Hospital, 35128 Padova, Italy; (L.D.M.); (G.S.); (A.C.)
| | - Giulio Sinigiani
- Department of Cardiothoracic and Vascular Sciences & Public Health, Padova University Hospital, 35128 Padova, Italy; (L.D.M.); (G.S.); (A.C.)
| | - Tamara Berno
- Haematology Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy;
| | - Alberto Cipriani
- Department of Cardiothoracic and Vascular Sciences & Public Health, Padova University Hospital, 35128 Padova, Italy; (L.D.M.); (G.S.); (A.C.)
| | - Luca Spiezia
- General Internal Medicine & Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy;
| |
Collapse
|
5
|
Fang C, Magaki SD, Kim RC, Kalaria RN, Vinters HV, Fisher M. Arteriolar neuropathology in cerebral microvascular disease. Neuropathol Appl Neurobiol 2023; 49:e12875. [PMID: 36564356 DOI: 10.1111/nan.12875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Cerebral microvascular disease (MVD) is an important cause of vascular cognitive impairment. MVD is heterogeneous in aetiology, ranging from universal ageing to the sporadic (hypertension, sporadic cerebral amyloid angiopathy [CAA] and chronic kidney disease) and the genetic (e.g., familial CAA, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL] and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy [CARASIL]). The brain parenchymal consequences of MVD predominantly consist of lacunar infarcts (lacunes), microinfarcts, white matter disease of ageing and microhaemorrhages. MVD is characterised by substantial arteriolar neuropathology involving ubiquitous vascular smooth muscle cell (SMC) abnormalities. Cerebral MVD is characterised by a wide variety of arteriolar injuries but only a limited number of parenchymal manifestations. We reason that the cerebral arteriole plays a dominant role in the pathogenesis of each type of MVD. Perturbations in signalling and function (i.e., changes in proliferation, apoptosis, phenotypic switch and migration of SMC) are prominent in the pathogenesis of cerebral MVD, making 'cerebral angiomyopathy' an appropriate term to describe the spectrum of pathologic abnormalities. The evidence suggests that the cerebral arteriole acts as both source and mediator of parenchymal injury in MVD.
Collapse
Affiliation(s)
- Chuo Fang
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA
| | - Shino D Magaki
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ronald C Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine Medical Center, 101 The City Drive South Shanbrom Hall (Building 55), Room 121, Orange, 92868, California, USA.,Department of Pathology & Laboratory Medicine, University of California, Irvine, Orange, California, USA
| |
Collapse
|
6
|
Davis J, Xu F, Zhu X, Van Nostrand WE. rTg-D: A novel transgenic rat model of cerebral amyloid angiopathy Type-2. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100133. [PMID: 36324401 PMCID: PMC9616389 DOI: 10.1016/j.cccb.2022.100133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Background Cerebral amyloid angiopathy (CAA) is common disorder of the elderly, a prominent comorbidity of Alzheimer's disease, and causes vascular cognitive impairment and dementia. Previously, we generated a transgenic rat model of capillary CAA type-1 that develops many pathological features of human disease. However, a complementary rat model of larger vessel CAA type-2 disease has been lacking. Methods A novel transgenic rat model (rTg-D) was generated that produces human familial CAA Dutch E22Q mutant amyloid β-protein (Aβ) in brain and develops larger vessel CAA type-2. Quantitative biochemical and pathological analyses were performed to characterize the progression of CAA and associated pathologies in aging rTg-D rats. Results rTg-D rats begin to accumulate Aβ in brain and develop varying levels of larger vessel CAA type-2, in the absence of capillary CAA type-1, starting around 18 months of age. Larger vessel CAA was mainly composed of the Aβ40 peptide and most prominent in surface leptomeningeal/pial vessels and arterioles of the cortex and thalamus. Cerebral microbleeds and small vessel occlusions were present mostly in the thalamic region of affected rTg-D rats. In contrast to capillary CAA type-1 the amyloid deposited within the walls of larger vessels of rTg-D rats did not promote perivascular astrocyte and microglial responses or accumulate the Aβ chaperone apolipoprotein E. Conclusion Although variable in severity, the rTg-D rats specifically develop larger vessel CAA type-2 that reflects many of the pathological features of human disease and provide a new model to investigate the pathogenesis of this condition.
Collapse
Key Words
- AD, Alzheimer's disease
- Amyloid β protein
- ApoE, Apolipoprotein E
- Aβ, Amyloid β-protein
- AβPP, Amyloid β-protein precursor
- CAA, Cerebral amyloid angiopathy
- Cerebral amyloid angiopathy
- Dutch mutation
- GFAP, Glial fibrillary acidic protein
- ICH, Intracerebral hemorrhage
- Iba-1, Ionized calcium-binding adapter molecule 1
- Microbleed
- Small vessel disease
- Transgenic rat
- VCID, Vascular cognitive impairment and dementia
- WT, Wild-type
Collapse
Affiliation(s)
- Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Xiaoyue Zhu
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - William E. Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, United States
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, United States
| |
Collapse
|
7
|
Maheshwari U, Huang SF, Sridhar S, Keller A. The Interplay Between Brain Vascular Calcification and Microglia. Front Aging Neurosci 2022; 14:848495. [PMID: 35309892 PMCID: PMC8924545 DOI: 10.3389/fnagi.2022.848495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, University of Zürich, Zurich, Switzerland
- Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zurich, Switzerland
- *Correspondence: Annika Keller,
| |
Collapse
|
8
|
Matveeva MV, Samoylova YG, Oleynik OA, Ratkina KR, Tonkikh OS, Podchinenova DV, Kudlay DA. The Role Of Osteopontin In Patients With Type 2 Diabetes And Cognitive Impairment. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background — type 2 diabetes is associated with obesity and cardiovascular disease; in combination with dysmetabolic and proinflammatory pathophysiological mechanisms, it leads to cognitive impairment. Objective — analysis of the osteopontin role in formation of cognitive disorders in patients with type 2 diabetes. Material and Methods — the study complies with generally accepted ethical rules; it was approved by the Ethics Committee of Siberian State Medical University. It involved 50 patients with type 2 diabetes, who were divided into groups depending on the presence of cognitive impairment; the control group consisted of 25 subjects. All patients underwent general clinical examination, blood sampling for biochemical parameters, and plasma osteopontin content assessment. Magnetic resonance imaging (MRI) was performed on SIGNA Creator E magnetic resonance imaging system, GE Healthcare, 1.5 T, China. The employed techniques included dynamic contrast and arterial spin labeling, proton spectroscopy, tractography. SPSS Statistics software was used for statistical analysis. Results — osteopontin levels were higher in patients with excess weight, hyperglycemia, hyperuricemia, dyslipidemia, and cognitive impairment; and in neuroimaging studies with microangiopathy, based on perfusion MRI, with impaired white matter integration, as well as with neurometabolism of choline, creatine and phosphocreatine metabolites in the hippocampus, as well as their NAA/Cr, NAA/Cho, Cho/Cr ratios (p≤0.05). Conclusion — patients with type 2 diabetes, along with cognitive and metabolic disorders, exhibited elevated levels of osteopontin, which was also associated with impaired cerebral vascularization in general, and white matter organization, as well as neurometabolism in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dmitry A. Kudlay
- Russian Academy of Sciences, Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
10
|
Rasing I, Voigt S, Koemans EA, van Zwet E, de Kruijff PC, van Harten TW, van Etten ES, van Rooden S, van der Weerd L, van Buchem MA, van Osch MJP, Greenberg SM, van Walderveen MAA, Terwindt GM, Wermer MJH. Occipital Cortical Calcifications in Cerebral Amyloid Angiopathy. Stroke 2021; 52:1851-1855. [PMID: 33813865 DOI: 10.1161/strokeaha.120.033286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ingeborg Rasing
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Emma A Koemans
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Erik van Zwet
- Biomedical Data Sciences (E.v.Z.), Leiden University Medical Center, the Netherlands
| | - Paul C de Kruijff
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Thijs W van Harten
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Ellis S van Etten
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Sanneke van Rooden
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Louise van der Weerd
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands.,Human Genetics (L.v.d.W.), Leiden University Medical Center, the Netherlands
| | - Mark A van Buchem
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Matthias J P van Osch
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston (S.M.G.)
| | - Marianne A A van Walderveen
- Radiology (T.W.v.H., S.v.R., L.v.d.W., M.A.v.B., M.J.P.v.O., M.A.A.v.M.), Leiden University Medical Center, the Netherlands
| | - Gisela M Terwindt
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Marieke J H Wermer
- Departments of Neurology (I.R., S.V., E.A.K., P.C.d.K., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
11
|
Vinters HV, Magaki SD, Williams CK. Neuropathologic Findings in Chronic Kidney Disease (CKD). J Stroke Cerebrovasc Dis 2021; 30:105657. [PMID: 33579545 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/30/2020] [Accepted: 01/31/2021] [Indexed: 12/24/2022] Open
Abstract
Studying the neuropathologic autopsy findings in subjects with chronic kidney disease (CKD) or chronic renal failure (CRF) is difficult for several reasons: etiology of the CKD may be heterogeneous, affected patients may have one or more major co-morbidities that themselves can cause significant neurologic disease, and agonal events may result in significant findings that were of minimal significance earlier in a patient's life. We studied the constellation of neuropathologic abnormalities in 40 autopsy brains originating from subjects of ages 34-95 years (no children in the study). The most common pathologic change was that of ischemic infarcts (cystic, lacunar and/or microinfarcts), which were seen in over half of subjects. These were associated with both large artery atherosclerosis and arteriolosclerosis (A/S), the latter finding being present in 29/40 subjects. Charcot-Bouchard microaneurysms were present in the brains of three subjects, in one case associated with severe amyloid angiopathy. Microvascular calcinosis (medial sclerosis in the case of arterioles) was seen in the basal ganglia (n=8) and/or endplate region of the hippocampus (n=7) and occasional ischemic infarcts in one brain showed severe calcification. Sequelae of cerebrovascular disease (especially A/S or microvascular disease) are a common neuropathologic substrate for neurologic disability and brain lesions in this complex group of patients. Regulation of calcium metabolism within brain microvessel walls may be worthy of further research in both human brain specimens and animal models.
Collapse
Affiliation(s)
- Harry V Vinters
- Department of Pathology & Laboratory Medicine; Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, 90095-1732, United States.
| | | | | |
Collapse
|
12
|
Boraldi F, Lofaro FD, Losi L, Quaglino D. Dermal Alterations in Clinically Unaffected Skin of Pseudoxanthoma elasticum Patients. J Clin Med 2021; 10:jcm10030500. [PMID: 33535391 PMCID: PMC7867076 DOI: 10.3390/jcm10030500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Pseudoxanthoma elasticum (PXE), due to rare sequence variants in the ABCC6 gene, is characterized by calcification of elastic fibers in several tissues/organs; however, the pathomechanisms have not been completely clarified. Although it is a systemic disorder on a genetic basis, it is not known why not all elastic fibers are calcified in the same patient and even in the same tissue. At present, data on soft connective tissue mineralization derive from studies performed on vascular tissues and/or on clinically affected skin, but there is no information on patients’ clinically unaffected skin. Methods: Skin biopsies from clinically unaffected and affected areas of the same PXE patient (n = 6) and from healthy subjects were investigated by electron microscopy. Immunohistochemistry was performed to evaluate p-SMAD 1/5/8 and p-SMAD 2/3 expression and localization. Results: In clinically unaffected skin, fragmented elastic fibers were prevalent, whereas calcified fibers were only rarely observed at the ultrastructural level. p-SMAD1/5/8 and p-SMAD2/3 were activated in both affected and unaffected skin. Conclusion: These findings further support the concept that fragmentation/degradation is necessary but not sufficient to cause calcification of elastic fibers and that additional local factors (e.g., matrix composition, mechanical forces and mesenchymal cells) contribute to create the pro-osteogenic environment.
Collapse
|
13
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|