1
|
Zhu C, Xu J, Lin J, Liu J, Yu E. Double-strand-break repair protein rad21 homolog/Synaptotagmin-7 alleviates Alzheimer's disease in mice by promoting M2 polarization of microglia. Brain Res Bull 2024; 214:110994. [PMID: 38830486 DOI: 10.1016/j.brainresbull.2024.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Synaptotagmin-7 (SYT7) has been proposed as an innovative therapeutic strategy for treating cognitive impairment, while its contribution to Alzheimer's disease (AD) alleviation remains unclear. In this study, we investigated the role and potential mechanisms of SYT7 in AD. APP/PS1 mice were induced as an AD mouse model, and RNA-sequencing was conducted to analyze the transcriptomic differences between the brain tissues of AD mice and controls. SYT7, which was the most significantly differentially expressed gene in the RNA-sequencing, was found to be reduced in AD-like mice, and overexpression of SYT7 alleviated cognitive dysfunction and attenuated neuroinflammation and neuronal loss in the hippocampal tissues of mice with AD. Transcription factor double-strand-break repair protein rad21 homolog (RAD21) bound to the promoter of SYT7 to activate SYT7 transcription. SYT7 and RAD21 were expressed in microglia. SYT7 and RAD21 both promoted M2 polarization of microglia, while silencing of SYT7 repressed the M2 polarization of microglia in the presence of RAD21 overexpression. Overall, our results indicate that RAD21 mediated transcriptional activation of SYT7 to promote M2 polarization of microglia, thereby alleviating AD-like symptoms in mice, which might provide prospective cues for developing therapeutic strategies to improve cognitive impairment and AD course.
Collapse
Affiliation(s)
- Cheng Zhu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Jiaxi Xu
- Department of General Psychiatric, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 311122, PR China
| | - Jixin Lin
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiahong Liu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Enyan Yu
- Department of Clinical Psychology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310005, PR China.
| |
Collapse
|
2
|
Tang C, Zhang Y. Detailed role of Let-7e in human diseases. Pathol Res Pract 2024; 260:155436. [PMID: 39018928 DOI: 10.1016/j.prp.2024.155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
As part of the epigenetic machinery, microRNAs (miRNAs) are extensively utilized by eukaryotes. By modulating gene expression in a variety of ways, these short RNAs mediate crucial physiological processes. This suggests that abnormalities in miRNA biogenesis and expression can be traced back to a variety of diseases. In addition, miRNAs are promising clinical candidates, especially for preclinical diagnosis. The Let family of miRNAs was one of the first to be discovered. As a prominent member of this category, extensive research has been conducted on Let-7e. The vast majority of evidence indicates an association between let-7e dysregulation and the onset and progression of disease, including malignancies. Because their effect depends on the genetic profile of disease and the affected tissue, different miRNAs play diverse roles in various diseases. However, what counts in miRNA studies is that just one miRNA may target numerous mRNAs in a cell at the exact time, therefore summarizing the effect of a single miRNA in human diseases can provide better insights into disease detection and treatment. The goal of this study is to gain a deeper understanding of how let-7e functions in human cells so that it can be utilized more effectively in clinical settings for diagnosis, prognosis, and treatment. We have reviewed the research on let-7e, focusing on the molecular underpinnings of biological processes controlled by this miRNA that contribute to the development and etiology of numerous disorders.
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuling Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
3
|
Cipriano GL, Schepici G, Mazzon E, Anchesi I. Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways. Int J Mol Sci 2024; 25:2255. [PMID: 38396932 PMCID: PMC10889752 DOI: 10.3390/ijms25042255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple sclerosis (MS) is a degenerative condition characterized by axonal damage and demyelination induced by autoreactive immune cells that occur in the Central Nervous System (CNS). The interaction between epigenetic changes and genetic factors can be widely involved in the onset, development, and progression of the disease. Although numerous efforts were made to discover new therapies able to prevent and improve the course of MS, definitive curative treatments have not been found yet. However, in recent years, it has been reported that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), acting as gene expression regulators, could be used as potential therapeutic targets or biomarkers to diagnose and fight MS. In this review, we discussed the role of miRNAs, lncRNAs, and circRNAs, as well as their expression level changes and signaling pathways that are related to preclinical and human MS studies. Hence, the investigation of ncRNAs could be important to provide additional information regarding MS pathogenesis as well as promote the discovery of new therapeutic strategies or biomarkers.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Strada Statale 113, Contrada Casazza, 98124 Messina, Italy; (G.L.C.); (G.S.); (I.A.)
| | | |
Collapse
|
4
|
Jian H, Wang F, Wang Y, Dou L. Clinical Significance of MicroRNA-330-3p in Plasma Level for Acute Cerebral Infarction. Cerebrovasc Dis 2023; 53:411-419. [PMID: 37778331 DOI: 10.1159/000533605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION The present study was to investigate the clinical role of miR-330-3p in acute cerebral infarction (ACI), including its diagnostic and prognostic potential. Preliminary exploration of its target genes was archived by bioinformatics analysis. METHODS miR-330-3p in plasma of the patients with ACI and controls were quantified by real-time quantitative PCR. The 1-month prognosis of the ACI patients was evaluated by the Glasgow Outcome Scale (GOS). The correlation between the plasma levels of miR-330-3p and the GOS scores was tested by Pearson correlation analysis. The receiver operating characteristic (ROC) curves were established based on the expression level of miR-330-3p in different groups. The miR-330-3p-targeting genes were analyzed using Venn diagram, protein-protein interaction network, and Gene Ontology enrichment analysis. RESULTS miR-330-3p was significantly increased in the plasma of ACI patients compared with that in healthy controls, and ROC curve revealed its diagnostic value for ACI. miR-330-3p was significantly increased in the plasma of patients with poor 1-month prognosis compared with those with good 1-month prognosis. miR-330-3p expression was negatively correlated with GOS score, suggesting its potential to predict the 1-month prognosis for ACI. One-year survival analysis revealed surviving patients had lower levels of miR-330-3p than the deceased. miR-330-3p was proven to predict the death of patients with ACI. The miR-330-3p-targeting genes were associated with synapse-related Gene Ontology terms. CONCLUSION miR-330-3p was upregulated in the plasma of patients with ACI, making it a promising diagnostic and prognostic marker for patients with ACI. miR-330-3p could facilitate synaptic plasticity following cerebral infarction.
Collapse
Affiliation(s)
- Huiru Jian
- The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Fei Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ying Wang
- Department of Medical Record Room, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Liping Dou
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Freiría-Martínez L, Iglesias-Martínez-Almeida M, Rodríguez-Jamardo C, Rivera-Baltanás T, Comís-Tuche M, Rodrígues-Amorím D, Fernández-Palleiro P, Blanco-Formoso M, Diz-Chaves Y, González-Freiria N, Suárez-Albo M, Martín-Forero-Maestre M, Durán Fernández-Feijoo C, Fernández-Lorenzo JR, Concheiro Guisán A, Olivares JM, Spuch C. Human Breast Milk microRNAs, Potential Players in the Regulation of Nervous System. Nutrients 2023; 15:3284. [PMID: 37513702 PMCID: PMC10384760 DOI: 10.3390/nu15143284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Human milk is the biological fluid with the highest exosome amount and is rich in microRNAs (miRNAs). These are key regulators of gene expression networks in both normal physiologic and disease contexts, miRNAs can influence many biological processes and have also shown promise as biomarkers for disease. One of the key aspects in the regeneration of the nervous system is that there are practically no molecules that can be used as potential drugs. In the first weeks of lactation, we know that human breast milk must contain the mechanisms to transmit molecular and biological information for brain development. For this reason, our objective is to identify new modulators of the nervous system that can be used to investigate neurodevelopmental functions based on miRNAs. To do this, we collected human breast milk samples according to the time of delivery and milk states: mature milk and colostrum at term; moderate and very preterm mature milk and colostrum; and late preterm mature milk. We extracted exosomes and miRNAs and realized the miRNA functional assays and target prediction. Our results demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function. We found 132 different miRNAs were identified across all samples. Sixty-nine miRNAs had significant differential expression after paired group comparison. These miRNAs are implicated in gene regulation of dopaminergic/glutamatergic synapses and neurotransmitter secretion and are related to the biological process that regulates neuron projection morphogenesis and synaptic vesicle transport. We observed differences according to the delivery time and with less clarity according to the milk type. Our data demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function.
Collapse
Affiliation(s)
- Luis Freiría-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
| | - María Comís-Tuche
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Daniela Rodrígues-Amorím
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
| | - María Blanco-Formoso
- Department of Physical Chemistry, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | | | - María Suárez-Albo
- Neonatal Intensive Care Unit, Alvaro Cunqueiro Hospital, 36312 Vigo, Spain
| | | | | | | | | | - Jose Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- CIBERSAM (Network Biomedical Research Center on Mental Health), 28029 Madrid, Spain
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- CIBERSAM (Network Biomedical Research Center on Mental Health), 28029 Madrid, Spain
| |
Collapse
|
6
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
7
|
Impact of the Voltage-Gated Calcium Channel Antagonist Nimodipine on the Development of Oligodendrocyte Precursor Cells. Int J Mol Sci 2023; 24:ijms24043716. [PMID: 36835129 PMCID: PMC9960570 DOI: 10.3390/ijms24043716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While most of the current treatment strategies focus on immune cell regulation, except for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine, an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data indicate that nimodipine does not have any effect on myelin-related gene and protein expression. Furthermore, nimodipine treatment did not result in any morphological changes in these cells. However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control. Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number of mature oligodendrocytes (* p≤ 0.05). Taken together, nimodipine seems to have different positive effects on OPCs and mature oligodendrocytes.
Collapse
|
8
|
Role and Dysregulation of miRNA in Patients with Parkinson's Disease. Int J Mol Sci 2022; 24:ijms24010712. [PMID: 36614153 PMCID: PMC9820759 DOI: 10.3390/ijms24010712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative synucleinopathy that has a not yet fully understood molecular pathomechanism behind it. The role of risk genes regulated by small non-coding RNAs, or microRNAs (miRNAs), has also been highlighted in PD, where they may influence disease progression and comorbidities. In this case-control study, we analyzed miRNAs on peripheral blood mononuclear cells by means of RNA-seq in 30 participants, with the aim of identifying miRNAs differentially expressed in PD compared to age-matched healthy controls. Additionally, we investigated the pathways influenced by differentially expressed miRNAs and assessed whether a specific pathway could potentially be associated with PD susceptibility (enrichment analyses performed using the Ingenuity Pathway Analysis tools). Overall, considering that the upregulation of miRNAs might be related with the downregulation of their messenger RNA targets, and vice versa, we found several putative targets of dysregulated miRNAs (i.e., upregulated: hsa-miR-1275, hsa-miR-23a-5p, hsa-miR-432-5p, hsa-miR-4433b-3p, and hsa-miR-4443; downregulated: hsa-miR-142-5p, hsa-miR-143-3p, hsa-miR-374a-3p, hsa-miR-542-3p, and hsa-miR-99a-5p). An inverse connection between cancer and neurodegeneration, called "inverse comorbidity", has also been noted, showing that some genes or miRNAs may be expressed oppositely in neurodegenerative disorders and in some cancers. Therefore, it may be reasonable to consider these miRNAs as potential diagnostic markers and outcome measures.
Collapse
|
9
|
Muñoz-San Martín M, Gómez I, Quiroga-Varela A, Gonzalez-del Río M, Robles Cedeño R, Álvarez G, Buxó M, Miguela A, Villar LM, Castillo-Villalba J, Casanova B, Quintana E, Ramió-Torrentà L. miRNA Signature in CSF From Patients With Primary Progressive Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200069. [PMID: 36724195 PMCID: PMC9743264 DOI: 10.1212/nxi.0000000000200069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Primary progressive multiple sclerosis (PPMS) displays a highly variable disease progression with a characteristic accumulation of disability, what makes difficult its diagnosis and efficient treatment. The identification of microRNAs (miRNAs)-based signature for the early detection in biological fluids could reveal promising biomarkers to provide new insights into defining MS clinical subtypes and potential therapeutic strategies. The objective of this cross-sectional study was to describe PPMS miRNA profiles in CSF and serum samples compared with other neurologic disease individuals (OND) and relapsing-remitting MS (RRMS). METHODS First, a screening stage analyzing multiple miRNAs in few samples using OpenArray plates was performed. Second, individual quantitative polymerase chain reactions (qPCRs) were used to validate specific miRNAs in a greater number of samples. RESULTS A specific profile of dysregulated circulating miRNAs (let-7b-5p and miR-143-3p) was found downregulated in PPMS CSF samples compared with OND. In addition, in serum samples, miR-20a-5p and miR-320b were dysregulated in PPMS against RRMS and OND, miR-26a-5p and miR-485-3p were downregulated in PPMS vs RRMS, and miR-142-5p was upregulated in RRMS compared with OND. DISCUSSION We described a 2-miRNA signature in CSF of PPMS individuals and several dysregulated miRNAs in serum from patients with MS, which could be considered valuable candidates to be further studied to unravel their actual role in MS. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that specific miRNA profiles accurately distinguish PPMS from RRMS and other neurologic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ester Quintana
- From the Neuroinflammation and Neurodegeneration Group (M.M.-S.M., I.G., A.Q.-V., M.G.R., R.R.C., G.Á., A.M., E.Q., L.R.-T.), Girona Biomedical Research Institute (IDIBGI), Salt, Spain; CERCA Programme/Generalitat de Catalunya; Neurology Department (R.R.C., G.Á., L.R.-T.), Girona Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Red Española de Esclerosis Múltiple (REEM) (R.R.C., E.Q., L.R.-T.) Medical Sciences Department (R.R.C., E.Q., L.R.-T.), University of Girona (UdG), Spain; Girona Biomedical Research Institute (IDIBGI) (M.B.), Spain; Immunology Department (L.M.V.), Hospital Ramón y Cajal, Madrid, Spain; IRYCIS; and Unitat de Neuroimmunologia, Hospital Universitari i Politècnic La Fe.València (J.C.-V., B.C.).
| | - Lluís Ramió-Torrentà
- From the Neuroinflammation and Neurodegeneration Group (M.M.-S.M., I.G., A.Q.-V., M.G.R., R.R.C., G.Á., A.M., E.Q., L.R.-T.), Girona Biomedical Research Institute (IDIBGI), Salt, Spain; CERCA Programme/Generalitat de Catalunya; Neurology Department (R.R.C., G.Á., L.R.-T.), Girona Neuroimmunology and Multiple Sclerosis Unit, Dr. Josep Trueta University Hospital and Santa Caterina Hospital; Red Española de Esclerosis Múltiple (REEM) (R.R.C., E.Q., L.R.-T.) Medical Sciences Department (R.R.C., E.Q., L.R.-T.), University of Girona (UdG), Spain; Girona Biomedical Research Institute (IDIBGI) (M.B.), Spain; Immunology Department (L.M.V.), Hospital Ramón y Cajal, Madrid, Spain; IRYCIS; and Unitat de Neuroimmunologia, Hospital Universitari i Politècnic La Fe.València (J.C.-V., B.C.).
| |
Collapse
|
10
|
Elkjaer ML, Röttger R, Baumbach J, Illes Z. A Systematic Review of Tissue and Single Cell Transcriptome/Proteome Studies of the Brain in Multiple Sclerosis. Front Immunol 2022; 13:761225. [PMID: 35309325 PMCID: PMC8924618 DOI: 10.3389/fimmu.2022.761225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating and degenerative disease of the central nervous system (CNS). Although inflammatory responses are efficiently treated, therapies for progression are scarce and suboptimal, and biomarkers to predict the disease course are insufficient. Cure or preventive measures for MS require knowledge of core pathological events at the site of the tissue damage. Novelties in systems biology have emerged and paved the way for a more fine-grained understanding of key pathological pathways within the CNS, but they have also raised questions still without answers. Here, we systemically review the power of tissue and single-cell/nucleus CNS omics and discuss major gaps of integration into the clinical practice. Systemic search identified 49 transcriptome and 11 proteome studies of the CNS from 1997 till October 2021. Pioneering molecular discoveries indicate that MS affects the whole brain and all resident cell types. Despite inconsistency of results, studies imply increase in transcripts/proteins of semaphorins, heat shock proteins, myelin proteins, apolipoproteins and HLAs. Different lesions are characterized by distinct astrocytic and microglial polarization, altered oligodendrogenesis, and changes in specific neuronal subtypes. In all white matter lesion types, CXCL12, SCD, CD163 are highly expressed, and STAT6- and TGFβ-signaling are increased. In the grey matter lesions, TNF-signaling seems to drive cell death, and especially CUX2-expressing neurons may be susceptible to neurodegeneration. The vast heterogeneity at both cellular and lesional levels may underlie the clinical heterogeneity of MS, and it may be more complex than the current disease phenotyping in the clinical practice. Systems biology has not solved the mystery of MS, but it has discovered multiple molecules and networks potentially contributing to the pathogenesis. However, these results are mostly descriptive; focused functional studies of the molecular changes may open up for a better interpretation. Guidelines for acceptable quality or awareness of results from low quality data, and standardized computational and biological pipelines may help to overcome limited tissue availability and the “snap shot” problem of omics. These may help in identifying core pathological events and point in directions for focus in clinical prevention.
Collapse
Affiliation(s)
- Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
12
|
Tang Q, Lu B, He J, Chen X, Fu Q, Han H, Luo C, Yin H, Qin Z, Lyu D, Zhang L, Zhou M, Yao K. Exosomes-loaded thermosensitive hydrogels for corneal epithelium and stroma regeneration. Biomaterials 2021; 280:121320. [PMID: 34923312 DOI: 10.1016/j.biomaterials.2021.121320] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Abstract
Corneal damage forms scar tissue and manifests as permanent corneal opacity, which is the main cause of visual impairment caused by corneal diseases. To treat these diseases, herein, we developed a novel approach based on the exosome derived from induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) combined with a thermosensitive hydrogel, which reduces scar formation and accelerates the healing process. We found that a thermosensitive chitosan-based hydrogels (CHI hydrogel) sustained-release iPSC-MSC exosomes can effectively promote the repair of damaged corneal epithelium and stromal layer, downregulating mRNA expression coding for the three most enriched collagens (collagen type I alpha 1, collagen type V alpha 1 and collagen type V alpha 2) in corneal stroma and reducing scar formation in vivo. Furthermore, iPSC-MSCs secrete exosomes that contain miR-432-5p, which suppresses translocation-associated membrane protein 2 (TRAM2), a vital modulator of the collagen biosynthesis in the corneal stromal stem cells to avert the deposition of extracellular matrix (ECM). Our findings indicate that iPSC-MSCs secrete miRNA-containing exosomes to promote corneal epithelium and stroma regeneration, and that miR-432-5p can prevent ECM deposition via a mechanism most probably linked to direct repression of its target gene TRAM2. Overall, our exosomes-based thermosensitive CHI hydrogel, is a promising technology for clinical therapy of various corneal diseases.
Collapse
Affiliation(s)
- Qiaomei Tang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Houfa Yin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Zhenwei Qin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Danni Lyu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Lifang Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Wang H. MicroRNAs, Multiple Sclerosis, and Depression. Int J Mol Sci 2021; 22:ijms22157802. [PMID: 34360568 PMCID: PMC8346048 DOI: 10.3390/ijms22157802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system that affects the brain and spinal cord. There are several disease courses in MS including relapsing–remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). Up to 50% of MS patients experience depressive disorders. Major depression (MD) is a serious comorbidity of MS. Many dysfunctions including neuroinflammation, peripheral inflammation, gut dysbiosis, chronic oxidative and nitrosative stress, and neuroendocrine and mitochondrial abnormalities may contribute to the comorbidity between MS and MD. In addition to these actions, medical treatment and microRNA (miRNA) regulation may also be involved in the mechanisms of the comorbidity between MS and MD. In the study, I review many common miRNA biomarkers for both diseases. These common miRNA biomarkers may help further explore the association between MS and MD.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
14
|
Tripathi A, Pandit I, Perles A, Zhou Y, Cheng F, Dutta R. Identifying miRNAs in multiple sclerosis gray matter lesions that correlate with atrophy measures. Ann Clin Transl Neurol 2021; 8:1279-1291. [PMID: 33978322 PMCID: PMC8164853 DOI: 10.1002/acn3.51365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 03/27/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS). Though MS was initially considered to be a white matter demyelinating disease, myelin loss in cortical gray matter has been reported in all disease stages. We previously identified microRNAs (miRNAs) in white matter lesions (WMLs) that are detected in serum from MS patients. However, miRNA expression profiles in gray matter lesions (GMLs) from progressive MS brains are understudied. METHODS We used a combination of global miRNAs and gene expression profiling of GMLs and independent validation using real-time quantitative polymerase chain reaction (RT-qPCR), immuno-in situ hybridization, and immunohistochemistry. RESULTS Compared to matched myelinated gray matter (GM) regions, we identified 82 miRNAs in GMLs, of which 10 were significantly upregulated and 17 were significantly downregulated. Among these 82 miRNAs, 13 were also detected in serum and importantly were associated with brain atrophy in MS patients. The predicted target mRNAs of these miRNAs belonged to pathways associated with axonal guidance, TGF-β signaling, and FOXO signaling. Further, using state-of-the-art human protein-protein interactome network analysis, we mapped the four key GM atrophy-associated miRNAs (hsa-miR-149*, hsa-miR-20a, hsa-miR-29c, and hsa-miR-25) to their target mRNAs that were also changed in GMLs. INTERPRETATION Our study identifies miRNAs altered in GMLs in progressive MS brains that correlate with atrophy measures. As these miRNAs were also detected in sera of MS patients, these could act as markers of GML demyelination in MS.
Collapse
Affiliation(s)
- Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Ishani Pandit
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aaron Perles
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feixiong Cheng
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology. Proc Natl Acad Sci U S A 2021; 118:2011574118. [PMID: 33879606 PMCID: PMC8092379 DOI: 10.1073/pnas.2011574118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs), a type of small noncoding RNAs (sncRNAs), has frequently been associated with multiple sclerosis (MS). However, most studies have focused on peripheral blood, and few investigated other classes of sncRNAs. To address this, we analyzed all classes of sncRNAs in matching peripheral blood mononuclear cells, plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from MS patients and controls. We demonstrate widespread alterations of small nuclear (snRNA)–derived RNAs, small nucleolar-derived RNAs (sdRNAs), transfer RNA–derived fragments, and miRNAs, particularly in CSF cells. The striking contrast between the periphery and central nervous system and between relapse and remission phases of disease highlights the importance of sncRNA-mediated mechanisms in MS, in particular alternative splicing and mRNA translation. Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.
Collapse
|
16
|
Teuber-Hanselmann S, Worm K, Macha N, Junker A. MGMT-Methylation in Non-Neoplastic Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms22083845. [PMID: 33917711 PMCID: PMC8068191 DOI: 10.3390/ijms22083845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Quantifying O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation plays an essential role in assessing the potential efficacy of alkylating agents in the chemotherapy of malignant gliomas. MGMT promoter methylation is considered to be a characteristic of subgroups of certain malignancies but has also been described in various peripheral inflammatory diseases. However, MGMT promoter methylation levels have not yet been investigated in non-neoplastic brain diseases. This study demonstrates for the first time that one can indeed detect slightly enhanced MGMT promoter methylation in individual cases of inflammatory demyelinating CNS diseases such as multiple sclerosis and progressive multifocal leucencephalopathy (PML), as well as in other demyelinating diseases such as central pontine and exptrapontine myelinolysis, and diseases with myelin damage such as Wallerian degeneration. In this context, we identified a reduction in the expression of the demethylase TET1 as a possible cause for the enhanced MGMT promoter methylation. Hence, we show for the first time that MGMT hypermethylation occurs in chronic diseases that are not strictly associated to distinct pathogens, oncogenic viruses or neoplasms but that lead to damage of the myelin sheath in various ways. While this gives new insights into epigenetic and pathophysiological processes involved in de- and remyelination, which might offer new therapeutic opportunities for demyelinating diseases in the future, it also reduces the specificity of MGMT hypermethylation as a tumor biomarker.
Collapse
Affiliation(s)
- Sarah Teuber-Hanselmann
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Karl Worm
- Institute of Pathology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nicole Macha
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
- Correspondence: ; Tel.: +49-201-723-3315
| |
Collapse
|
17
|
Walsh AD, Nguyen LT, Binder MD. miRNAs in Microglia: Important Players in Multiple Sclerosis Pathology. ASN Neuro 2021; 13:1759091420981182. [PMID: 33517686 PMCID: PMC7863159 DOI: 10.1177/1759091420981182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system and important regulators of brain homeostasis. Central to this role is a dynamic phenotypic plasticity that enables microglia to respond to environmental and pathological stimuli. Importantly, different microglial phenotypes can be both beneficial and detrimental to central nervous system health. Chronically activated inflammatory microglia are a hallmark of neurodegeneration, including the autoimmune disease multiple sclerosis (MS). By contrast, microglial phagocytosis of myelin debris is essential for resolving inflammation and promoting remyelination. As such, microglia are being explored as a potential therapeutic target for MS. MicroRNAs (miRNAs) are short non-coding ribonucleic acids that regulate gene expression and act as master regulators of cellular phenotype and function. Dysregulation of certain miRNAs can aberrantly activate and promote specific polarisation states in microglia to modulate their activity in inflammation and neurodegeneration. In addition, miRNA dysregulation is implicated in MS pathogenesis, with circulating biomarkers and lesion specific miRNAs identified as regulators of inflammation and myelination. However, the role of miRNAs in microglia that specifically contribute to MS progression are still largely unknown. miRNAs are being explored as therapeutic agents, providing an opportunity to modulate microglial function in neurodegenerative diseases such as MS. This review will focus firstly on elucidating the complex role of microglia in MS pathogenesis. Secondly, we explore the essential roles of miRNAs in microglial function. Finally, we focus on miRNAs that are implicated in microglial processes that contribute directly to MS pathology, prioritising targets that could inform novel therapeutic approaches to MS.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Linda T Nguyen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
18
|
Baulina N, Kiselev I, Favorova O. Imprinted Genes and Multiple Sclerosis: What Do We Know? Int J Mol Sci 2021; 22:1346. [PMID: 33572862 PMCID: PMC7866243 DOI: 10.3390/ijms22031346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system that arises from interplay between non-genetic and genetic risk factors. The epigenetics functions as a link between these factors, affecting gene expression in response to external influence, and therefore should be extensively studied to improve the knowledge of MS molecular mechanisms. Among others, the epigenetic mechanisms underlie the establishment of parent-of-origin effects that appear as phenotypic differences depending on whether the allele was inherited from the mother or father. The most well described manifestation of parent-of-origin effects is genomic imprinting that causes monoallelic gene expression. It becomes more obvious that disturbances in imprinted genes at the least affecting their expression do occur in MS and may be involved in its pathogenesis. In this review we will focus on the potential role of imprinted genes in MS pathogenesis.
Collapse
Affiliation(s)
- Natalia Baulina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ivan Kiselev
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
| | - Olga Favorova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
19
|
Wolfes AC, Dean C. The diversity of synaptotagmin isoforms. Curr Opin Neurobiol 2020; 63:198-209. [PMID: 32663762 DOI: 10.1016/j.conb.2020.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
The synaptotagmin family of molecules is known for regulating calcium-dependent membrane fusion events. Mice and humans express 17 synaptotagmin isoforms, where most studies have focused on isoforms 1, 2, and 7, which are involved in synaptic vesicle exocytosis. Recent work has highlighted how brain function relies on additional isoforms, with roles in postsynaptic receptor endocytosis, vesicle trafficking, membrane repair, synaptic plasticity, and protection against neurodegeneration, for example, in addition to the traditional concept of synaptotagmin-mediated neurotransmitter release - in neurons as well as glia, and at different timepoints. In fact, it is not uncommon for the same isoform to feature several splice isoforms, form homo- and heterodimers, and function in different subcellular locations and cell types. This review aims to highlight the diversity of synaptotagmins, offers a concise summary of key findings on all isoforms, and discusses different ways of grouping these.
Collapse
Affiliation(s)
- Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK; UK Dementia Research Institute at Imperial College, London, UK
| | - Camin Dean
- German Center for Neurodegenerative Diseases, Charité University of Medicine - Berlin, 10117 Berlin, Germany.
| |
Collapse
|
20
|
Teuber-Hanselmann S, Meinl E, Junker A. MicroRNAs in gray and white matter multiple sclerosis lesions: impact on pathophysiology. J Pathol 2020; 250:496-509. [PMID: 32073139 DOI: 10.1002/path.5399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of the CNS, hallmarked by inflammation and demyelination. Early stages of the disease frequently show active lesions containing numerous foamy macrophages and inflammatory cells. Disease progression is highlighted by increasing numbers of mixed active/inactive or inactive lesions showing sparse inflammation and pronounced astrogliosis. Furthermore, gray matter lesions increase in number and extent during disease progression. MicroRNAs (miRNAs) comprise a group of several thousand (in humans more than 2000), small non-coding RNA molecules with a fundamental influence on about one-third of all protein-coding genes. Furthermore, miRNAs have been detected in body fluids, including spinal fluid, and they are assumed to participate in intercellular communications. Several studies have determined miRNA profiles from dissected white and gray matter lesions of autoptic MS patients. In this review, we summarize in detail the current knowledge of individual miRNAs in gray and white matter lesions of MS patients and present the concepts of MS tissue lesion development based on the altered miRNA profiles. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| |
Collapse
|