1
|
Villalard B, Boltjes A, Reynaud F, Imbaud O, Thoinet K, Timmerman I, Croze S, Theoulle E, Atzeni G, Lachuer J, Molenaar JJ, Tytgat GAM, Delloye-Bourgeois C, Castellani V. Neuroblastoma plasticity during metastatic progression stems from the dynamics of an early sympathetic transcriptomic trajectory. Nat Commun 2024; 15:9570. [PMID: 39500881 DOI: 10.1038/s41467-024-53776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Despite their indisputable importance in neuroblastoma (NB) pathology, knowledge of the bases of NB plasticity and heterogeneity remains incomplete. They may be rooted in developmental trajectories of their lineage of origin, the sympatho-adrenal neural crest. We find that implanting human NB cells in the neural crest of the avian embryo allows recapitulating the metastatic sequence until bone marrow involvement. Using deep single cell RNA sequencing, we characterize transcriptome states of NB cells and their dynamics over time and space, and compare them to those of fetal sympatho-adrenal tissues and patient tumors and bone marrow samples. Here we report remarkable transcriptomic proximities restricted to an early sympathetic neuroblast branch that co-exist with phenotypical adaptations over disease progression and recapitulate intratumor and interpatient heterogeneity. Combining avian and patient datasets, we identify a list of genes upregulated during bone marrow involvement and associated with growth dependency, validating the relevance of our multimodal approach.
Collapse
Affiliation(s)
- Benjamin Villalard
- Université Claude Bernard Lyon 1, MeLis, CNRS UMR 5284, INSERM U1314, Faculté de Médecine et de Pharmacie - 8 avenue Rockefeller, F-69008, Lyon, France
- Cancer Research Center of Lyon (CRCL), CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1 - 28 rue Laennec, F-69008, Lyon, France
| | - Arjan Boltjes
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Florie Reynaud
- Université Claude Bernard Lyon 1, MeLis, CNRS UMR 5284, INSERM U1314, Faculté de Médecine et de Pharmacie - 8 avenue Rockefeller, F-69008, Lyon, France
- Cancer Research Center of Lyon (CRCL), CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1 - 28 rue Laennec, F-69008, Lyon, France
| | - Olivier Imbaud
- Université Claude Bernard Lyon 1, MeLis, CNRS UMR 5284, INSERM U1314, Faculté de Médecine et de Pharmacie - 8 avenue Rockefeller, F-69008, Lyon, France
| | - Karine Thoinet
- Université Claude Bernard Lyon 1, MeLis, CNRS UMR 5284, INSERM U1314, Faculté de Médecine et de Pharmacie - 8 avenue Rockefeller, F-69008, Lyon, France
| | - Ilse Timmerman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Séverine Croze
- ProfileXpert, Claude Bernard Lyon 1 University, SFR santé LYON-EST, UCBL-INSERM US 7-CNRS UMS 3453, 69008, Lyon, France
| | - Emy Theoulle
- Université Claude Bernard Lyon 1, MeLis, CNRS UMR 5284, INSERM U1314, Faculté de Médecine et de Pharmacie - 8 avenue Rockefeller, F-69008, Lyon, France
| | - Gianluigi Atzeni
- Cellenion SASU - Bioserra 2 - 60 avenue Rockefeller, F-69008, Lyon, France
| | - Joël Lachuer
- ProfileXpert, Claude Bernard Lyon 1 University, SFR santé LYON-EST, UCBL-INSERM US 7-CNRS UMS 3453, 69008, Lyon, France
- Cancer Research Center of Lyon (CRCL), CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1 - 28 rue Laennec, F-69008, Lyon, France
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of pharmaceutical sciences. University of Utrecht, Utrecht, The Netherlands
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Céline Delloye-Bourgeois
- Université Claude Bernard Lyon 1, MeLis, CNRS UMR 5284, INSERM U1314, Faculté de Médecine et de Pharmacie - 8 avenue Rockefeller, F-69008, Lyon, France.
- Cancer Research Center of Lyon (CRCL), CNRS UMR5286, INSERM U1052, Université Claude Bernard Lyon 1 - 28 rue Laennec, F-69008, Lyon, France.
| | - Valérie Castellani
- Université Claude Bernard Lyon 1, MeLis, CNRS UMR 5284, INSERM U1314, Faculté de Médecine et de Pharmacie - 8 avenue Rockefeller, F-69008, Lyon, France.
| |
Collapse
|
2
|
Chen S, Liao J, Li J, Wang S. GPC2 promotes prostate cancer progression via MDK-mediated activation of PI3K/AKT signaling pathway. Funct Integr Genomics 2024; 24:127. [PMID: 39014225 PMCID: PMC11252201 DOI: 10.1007/s10142-024-01406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Prostate cancer is a major medical problem for men worldwide. Advanced prostate cancer is currently incurable. Recently, much attention was paid to the role of GPC2 in the field of oncology. Nevertheless, there have been no investigations of GPC2 and its regulatory mechanism in prostate cancer. Here, we revealed a novel action of GPC2 and a tumor promoting mechanism in prostate cancer. GPC2 was upregulated in prostate cancer tissues and cell lines. Higher expression of GPC2 was correlated with higher Gleason score, lymphatic metastasis, and worse overall survival in prostate cancer patients. Decreased expression of GPC2 inhibited cell proliferation, migration, and invasion in prostate cancer, whereas GPC2 overexpression promoted these properties. Mechanistically, GPC2 promoted the activation of PI3K/AKT signaling pathway through MDK. The rescue assay results in prostate cancer cells demonstrated that overexpression of MDK could attenuate GPC2 knockdown induced inactivation of PI3K/AKT signaling and partly reverse GPC2 knockdown induced inhibition of cell proliferation, migration, and invasion. In all, our study identified GPC2 as an oncogene in prostate cancer. GPC2 promoted prostate cancer cell proliferation, migration, and invasion via MDK-mediated activation of PI3K/AKT signaling pathway. GPC2 might be a promising prognosis predictor and potential therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Jiaxing Liao
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Juhua Li
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China
| | - Saihui Wang
- Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, China.
| |
Collapse
|
3
|
Neumaier EE, Rothhammer V, Linnerbauer M. The role of midkine in health and disease. Front Immunol 2023; 14:1310094. [PMID: 38098484 PMCID: PMC10720637 DOI: 10.3389/fimmu.2023.1310094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis with important functions related to growth, proliferation, survival, migration, angiogenesis, reproduction, and repair. Recent research has indicated that MDK functions as a key player in autoimmune disorders of the central nervous system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target for the treatment of brain tumors, acute injuries, and other CNS disorders. This review summarizes the modes of action and immunological functions of MDK both in the peripheral immune compartment and in the CNS, particularly in the context of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration. Moreover, we discuss the role of MDK as a central mediator of neuro-immune crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the therapeutic potential of MDK and discuss potential therapeutic approaches for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
4
|
Elhady SS, Habib ES, Abdelhameed RFA, Goda MS, Hazem RM, Mehanna ET, Helal MA, Hosny KM, Diri RM, Hassanean HA, Ibrahim AK, Eltamany EE, Abdelmohsen UR, Ahmed SA. Anticancer Effects of New Ceramides Isolated from the Red Sea Red Algae Hypnea musciformis in a Model of Ehrlich Ascites Carcinoma: LC-HRMS Analysis Profile and Molecular Modeling. Mar Drugs 2022; 20:md20010063. [PMID: 35049918 PMCID: PMC8778197 DOI: 10.3390/md20010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Different classes of phytochemicals were previously isolated from the Red Sea algae Hypnea musciformis as sterols, ketosteroids, fatty acids, and terpenoids. Herein, we report the isolation of three fatty acids-docosanoic acid 4, hexadecenoic acid 5, and alpha hydroxy octadecanoic acid 6-as well as three ceramides-A (1), B (2), and C (3)-with 9-methyl-sphinga-4,8-dienes and phytosphingosine bases. Additionally, different phytochemicals were determined using the liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS) technique. Ceramides A (1) and B (2) exhibited promising in vitro cytotoxic activity against the human breast adenocarcinoma (MCF-7) cell line when compared with doxorubicin as a positive control. Further in vivo study and biochemical estimation in a mouse model of Ehrlich ascites carcinoma (EAC) revealed that both ceramides A (1) and B (2) at doses of 1 and 2 mg/kg, respectively, significantly decreased the tumor size in mice inoculated with EAC cells. The higher dose (2 mg/kg) of ceramide B (2) particularly expressed the most pronounced decrease in serum levels of vascular endothelial growth factor -B (VEGF-B) and tumor necrosis factor-α (TNF-α) markers, as well as the expression levels of the growth factor midkine in tumor tissue relative to the EAC control group. The highest expression of apoptotic factors, p53, Bax, and caspase 3 was observed in the same group that received 2 mg/kg of ceramide B (2). Molecular docking simulations suggested that ceramides A (1) and B (2) could bind in the deep grove between the H2 helix and the Ser240-P250 loop of p53, preventing its interaction with MDM2 and leading to its accumulation. In conclusion, this study reports the cytotoxic, apoptotic, and antiangiogenic effects of ceramides isolated from the Red Sea algae Hypnea musciformis in an experimental model of EAC.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Reem M. Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt;
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hashim A. Hassanean
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
- Correspondence: or ; Tel.: +20-010-92638387
| |
Collapse
|
5
|
Harkin C, Cobice D, Brockbank S, Bolton S, Johnston F, Strzelecka A, Watt J, Kurth MJ, Lamont JV, Fitzgerald P, Moore T, Ruddock MW. Biomarkers for Detecting Kidney Dysfunction in Type-2 Diabetics and Diabetic Nephropathy Subjects: A Case-Control Study to Identify Potential Biomarkers of DN to Stratify Risk of Progression in T2D Patients. Front Endocrinol (Lausanne) 2022; 13:887237. [PMID: 35846341 PMCID: PMC9276980 DOI: 10.3389/fendo.2022.887237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Currently there are no biomarkers that are predictive of when patients with type-2 diabetes (T2D) will progress to more serious kidney disease i.e., diabetic nephropathy (DN). Biomarkers that could identify patients at risk of progression would allow earlier, more aggressive treatment intervention and management, reducing patient morbidity and mortality. MATERIALS AND METHODS Study participants (N=88; control n=26; T2D n=32; DN n=30) were recruited from the renal unit at Antrim Area Hospital, Antrim, UK; Whiteabbey Hospital Diabetic Clinic, Newtownabbey, UK; Ulster University (UU), Belfast, UK; and the University of the Third Age (U3A), Belfast, UK; between 2019 and 2020. Venous blood and urine were collected with a detailed clinical history for each study participant. RESULTS In total, 13/25 (52.0%) biomarkers measured in urine and 25/34 (73.5%) biomarkers measured in serum were identified as significantly different between control, T2D and DN participants. DN patients, were older, smoked more, had higher systolic blood pressure and higher serum creatinine levels and lower eGFR function. Serum biomarkers significantly inversely correlated with eGFR. CONCLUSION This pilot-study identified several serum biomarkers that could be used to predict progression of T2D to more serious kidney disease: namely, midkine, sTNFR1 and 2, H-FABP and Cystatin C. Our results warrant confirmation in a longitudinal study using a larger patient cohort.
Collapse
Affiliation(s)
- Carla Harkin
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom
| | - Diego Cobice
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom
| | - Simon Brockbank
- Randox Laboratories Ltd, Clinical Studies Group, Randox Science Park, Antrim, United Kingdom
| | | | | | - Anna Strzelecka
- Diabetes Clinic, Whiteabbey Hospital, Newtownabbey, United Kingdom
| | - Joanne Watt
- Randox Laboratories Ltd, Clinical Studies Group, Randox Science Park, Antrim, United Kingdom
| | - Mary Jo Kurth
- Randox Laboratories Ltd, Clinical Studies Group, Randox Science Park, Antrim, United Kingdom
| | - John V. Lamont
- Randox Laboratories Ltd, Clinical Studies Group, Randox Science Park, Antrim, United Kingdom
| | - Peter Fitzgerald
- Randox Laboratories Ltd, Clinical Studies Group, Randox Science Park, Antrim, United Kingdom
| | - Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom
| | - Mark W. Ruddock
- Randox Laboratories Ltd, Clinical Studies Group, Randox Science Park, Antrim, United Kingdom
- *Correspondence: Mark W. Ruddock,
| |
Collapse
|
6
|
Yu W, Wu P, Wang F, Miao L, Han B, Jiang Z. Construction of Novel Methylation-Driven Gene Model and Investigation of PARVB Function in Glioblastoma. Front Oncol 2021; 11:705547. [PMID: 34568031 PMCID: PMC8461318 DOI: 10.3389/fonc.2021.705547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is characterized by widespread genetic and transcriptional heterogeneity. Aberrant DNA methylation plays a vital role in GBM progression by regulating gene expression. However, little is known about the role of methylation and its association with prognosis in GBM. Our aim was to explore DNA methylation-driven genes (DMDGs) and provide evidence for survival prediction and individualized treatment of GBM patients. Methods Use of the MethylMix R package identified DMDGs in GBM. The prognostic signature of DMDGs based on the risk score was constructed by multivariate Cox regression analysis. Receiver operating characteristics (ROC) curve and C-index were applied to assess the predictive performance of the DMDG prognostic signature. The predictive ability of the multigene signature model was validated in TCGA and CGGA cohorts. Finally, the role of DMDG β-Parvin (PARVB) was explored in vitro. Results The prognostic signature of DMDGs was constructed based on six genes (MDK, NMNAT3, PDPN, PARVB, SERPINB1, and UPP1). The low-risk cohort had significantly better survival than the high-risk cohort (p < 0.001). The area under the curve of the ROC of the six-gene signature was 0.832, 0.927, and 0.980 within 1, 2, and 3 years, respectively. The C-index of 0.704 indicated superior specificity and sensitivity. The six-gene model has been demonstrated to be an independent prognostic factor for GBM. In addition, joint survival analysis indicated that the MDK, NMNAT3, PARVB, SERPINB1, and UPP1 genes were significantly associated with prognosis and therapeutic targets for GBM. Importantly, our DMDG prognostic model was more suitable and accurate for low-grade gliomas. Finally, we verified that PARVB induced epithelial-mesenchymal transition partially through the JAK2/STAT3 pathway, which in turn promoted GBM cell proliferation, migration, and invasion. Conclusion This study demonstrated the potential value of the prognostic signature of DMDGs and provided important bioinformatic and potential therapeutic target data to facilitate individualized treatment for GBM, and to elucidate the specific mechanism by which PARVB promotes GBM progression.
Collapse
Affiliation(s)
- Wanli Yu
- Department of Neurosurgery, Gaoxin Hospital of the First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.,Anhui Key Laboratory of Brain Function and Diseases, Hefei, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Miao
- Central Laboratory, Gaoxin Hospital of the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiqun Jiang
- Department of Neurosurgery, Gaoxin Hospital of the First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Serum midkine as non-invasive biomarker for detection and prognosis of non-small cell lung cancer. Sci Rep 2021; 11:14616. [PMID: 34272441 PMCID: PMC8285415 DOI: 10.1038/s41598-021-94272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022] Open
Abstract
Lung cancer continues to be the leading cause for cancer-related deaths in men and women worldwide. Sufficient screening tools enabling early diagnosis are essential to improve patient outcomes. The aim of this study was to evaluate serum midkine (S-MK) both as a diagnostic and prognostic biomarker in non-small cell lung cancer (NSCLC). This single-center analysis included 59 NSCLC patients counting 30 squamous cell cancers and 29 adenocarcinomas. Preoperative S-MK concentration was determined using ELISA. Patients were followed up to five years. S-MK was found to be significantly overexpressed in patients with NSCLC compared to healthy controls (p < 0.001). The discriminative power of S-MK to differentiate NSCLC subjects from controls was fairly high with an area under the receiver operating characteristic curve of 0.83 (p < 0.001). Optimal sensitivity of 92% and reasonable specificity of 68% was reached at a threshold of 416 pg/ml S-MK. Patients with high S-MK concentration showed a significantly shorter overall survival compared to patients with low S-MK expression (p < 0.05). In conclusion, S-MK is overexpressed in patients with NSCLC and serves as an independent prognostic factor for overall survival. S-MK may thus be considered as an additional non-invasive biomarker not only for NSCLC screening but also for outcome prediction.
Collapse
|
8
|
Meier T, Timm M, Montani M, Wilkens L. Gene networks and transcriptional regulators associated with liver cancer development and progression. BMC Med Genomics 2021; 14:41. [PMID: 33541355 PMCID: PMC7863452 DOI: 10.1186/s12920-021-00883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. METHODS Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. RESULTS Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. CONCLUSION Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.
Collapse
Affiliation(s)
- Tatiana Meier
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany.
| | - Max Timm
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Clinic for Laryngology, Rhinology and Otology, Medical School Hanover, Hanover, Germany
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Institute of Human Genetics, Medical School Hanover, Hanover, Germany
| |
Collapse
|
9
|
López-Valero I, Dávila D, González-Martínez J, Salvador-Tormo N, Lorente M, Saiz-Ladera C, Torres S, Gabicagogeascoa E, Hernández-Tiedra S, García-Taboada E, Mendiburu-Eliçabe M, Rodríguez-Fornés F, Sánchez-Domínguez R, Segovia JC, Sánchez-Gómez P, Matheu A, Sepúlveda JM, Velasco G. Midkine signaling maintains the self-renewal and tumorigenic capacity of glioma initiating cells. Am J Cancer Res 2020; 10:5120-5136. [PMID: 32308772 PMCID: PMC7163450 DOI: 10.7150/thno.41450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive forms of cancer. It has been proposed that the presence within these tumors of a population of cells with stem-like features termed Glioma Initiating Cells (GICs) is responsible for the relapses that take place in the patients with this disease. Targeting this cell population is therefore an issue of great therapeutic interest in neuro-oncology. We had previously found that the neurotrophic factor MIDKINE (MDK) promotes resistance to glioma cell death. The main objective of this work is therefore investigating the role of MDK in the regulation of GICs. Methods: Assays of gene and protein expression, self-renewal capacity, autophagy and apoptosis in cultures of GICs derived from GBM samples subjected to different treatments. Analysis of the growth of GICs-derived xenografts generated in mice upon blockade of the MDK and its receptor the ALK receptor tyrosine kinase (ALK) upon exposure to different treatments. Results: Genetic or pharmacological inhibition of MDK or ALK decreases the self-renewal and tumorigenic capacity of GICs via the autophagic degradation of the transcription factor SOX9. Blockade of the MDK/ALK axis in combination with temozolomide depletes the population of GICs in vitro and has a potent anticancer activity in xenografts derived from GICs. Conclusions: The MDK/ALK axis regulates the self-renewal capacity of GICs by controlling the autophagic degradation of the transcription factor SOX9. Inhibition of the MDK/ALK axis may be a therapeutic strategy to target GICs in GBM patients.
Collapse
|
10
|
Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene 2019; 39:2040-2054. [PMID: 31801970 DOI: 10.1038/s41388-019-1124-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Midkine is a heparin-binding growth factor, originally reported as the product of a retinoic acid-responsive gene during embryogenesis, but currently viewed as a multifaceted factor contributing to both normal tissue homeostasis and disease development. Midkine is abnormally expressed at high levels in various human malignancies and acts as a mediator for the acquisition of critical hallmarks of cancer, including cell growth, survival, metastasis, migration, and angiogenesis. Several studies have investigated the role of midkine as a cancer biomarker for the detection, prognosis, and management of cancer, as well as for monitoring the response to cancer treatment. Moreover, several efforts are also being made to elucidate its underlying mechanisms in therapeutic resistance and immunomodulation within the tumor microenvironment. We hereby summarize the current knowledge on midkine expression and function in cancer development and progression, and highlight its promising potential as a cancer biomarker and as a future therapeutic target in personalized cancer medicine.
Collapse
|
11
|
Herradon G, Ramos-Alvarez MP, Gramage E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front Pharmacol 2019; 10:377. [PMID: 31031625 PMCID: PMC6474308 DOI: 10.3389/fphar.2019.00377] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M Pilar Ramos-Alvarez
- Departmento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
12
|
Zhang D, Ding L, Li Y, Ren J, Shi G, Wang Y, Zhao S, Ni Y, Hou Y. Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci Rep 2017; 7:16231. [PMID: 29176691 PMCID: PMC5701200 DOI: 10.1038/s41598-017-13431-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023] Open
Abstract
Midkine (MK) is a heparin-binding growth factor that promotes carcinogenesis and chemoresistance. The tumour microenvironment (TME) can affect chemotherapy sensitivity. However, the role of stromal-derived MK, especially in cancer-associated fibroblasts (CAFs), is unclear. Here, we confirmed that MK decreased cisplatin-induced cell death in oral squamous cell carcinoma (OSCC) cells, ovarian cancer cells and lung cancer cells. We also isolated primary CAFs (n = 3) from OSCC patients and found that CAFs secreted increased levels of MK, which abrogated cisplatin-induced cell death. Moreover, MK increased the expression of lncRNA ANRIL in the tumour cells. Normal tissues, matched tumour-adjacent tissues and OSCC tissues were analysed (n = 60) and showed that lncRNA ANRIL was indeed overexpressed during carcinogenesis and correlated with both high TNM stage and lymph node metastasis (LNM). Furthermore, lncRNA ANRIL knockdown in tumour cells inhibited proliferation, induced apoptosis and increased cisplatin cytotoxicity of the tumour cells via impairment of the drug transporters MRP1 and ABCC2, which could be restored by treatment with human MK in a caspase-3/BCL-2-dependent manner. In conclusion, we firstly describe that CAFs in the TME contribute to the high level of MK in tumours and that CAF-derived MK can promote cisplatin resistance via the elevated expression of lncRNA ANRIL.
Collapse
Affiliation(s)
- Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yong Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Shuli Zhao
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Yanhong Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature 2017; 546:676-680. [PMID: 28658220 DOI: 10.1038/nature22977] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Cutaneous melanoma is a type of cancer with an inherent potential for lymph node colonization, which is generally preceded by neolymphangiogenesis. However, sentinel lymph node removal does not necessarily extend the overall survival of patients with melanoma. Moreover, lymphatic vessels collapse and become dysfunctional as melanomas progress. Therefore, it is unclear whether (and how) lymphangiogenesis contributes to visceral metastasis. Soluble and vesicle-associated proteins secreted by tumours and/or their stroma have been proposed to condition pre-metastatic sites in patients with melanoma. Still, the identities and prognostic value of lymphangiogenic mediators remain unclear. Moreover, our understanding of lymphangiogenesis (in melanomas and other tumour types) is limited by the paucity of mouse models for live imaging of distal pre-metastatic niches. Injectable lymphatic tracers have been developed, but their limited diffusion precludes whole-body imaging at visceral sites. Vascular endothelial growth factor receptor 3 (VEGFR3) is an attractive 'lymphoreporter' because its expression is strongly downregulated in normal adult lymphatic endothelial cells, but is activated in pathological situations such as inflammation and cancer. Here, we exploit this inducibility of VEGFR3 to engineer mouse melanoma models for whole-body imaging of metastasis generated by human cells, clinical biopsies or endogenously deregulated oncogenic pathways. This strategy revealed early induction of distal pre-metastatic niches uncoupled from lymphangiogenesis at primary lesions. Analyses of the melanoma secretome and validation in clinical specimens showed that the heparin-binding factor midkine is a systemic inducer of neo-lymphangiogenesis that defines patient prognosis. This role of midkine was linked to a paracrine activation of the mTOR pathway in lymphatic endothelial cells. These data support the use of VEGFR3 reporter mice as a 'MetAlert' discovery platform for drivers and inhibitors of metastasis.
Collapse
|
14
|
Aynacıoğlu AŞ, Bilir A, Kadomatsu K. Dual inhibition of P-glycoprotein and midkine may increase therapeutic effects of anticancer drugs. Med Hypotheses 2017; 107:26-28. [PMID: 28915956 DOI: 10.1016/j.mehy.2017.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/15/2017] [Indexed: 02/06/2023]
Abstract
Multidrug resistance (MDR) to chemotherapy may significantly affect the outcome of cancer treatment. ATP-dependent drug efflux pumps, including P-glycoprotein (P-gp), contribute to the resistance of various chemotherapeutic agents. Overexpression of P-gp in tumor cells induces chemoresistance via pumping the anticancer drugs out of the cells. In addition to taking part in many biological processes such as development, reproduction and repair, midkine (MK) also plays important roles in the pathogenesis of malignant diseases as well as in the regulation of MDR. Although, the mechanisms of action of P-gp and MK are different, overexpression of both proteins prevents the accumulation of many chemotherapeutics in tumor cells, leading to decreased therapeutic effects of anticancer drugs. Therefore, identification of the result of dual inhibition of P-gp and MK in overcoming chemoresistance may enhance the likelihood for a more efficient chemotherapy.
Collapse
Affiliation(s)
- A Şükrü Aynacıoğlu
- Department of Medical Pharmacology, İstanbul Aydın University, Medical Faculty, Florya Main Campus, Küçükçekmece, 34295 İstanbul, Turkey.
| | - Ayhan Bilir
- Department of Histology and Embryology, İstanbul Aydın University, Medical Faculty, Florya Main Campus, Küçükçekmece, 34295 İstanbul, Turkey
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
HWANG HYUNJUNG, JUNG SEUNGHEE, LEE HYUNGCHUL, HAN NAKYUNG, BAE INHWA, LEE MINYOUNG, HAN YOUNGHOON, KANG YOUNGSUN, LEE SUJAE, PARK HEONJOO, KO YOUNGGYU, LEE JAESEON. Identification of novel therapeutic targets in the secretome of ionizing radiation-induced senescent tumor cells. Oncol Rep 2015; 35:841-50. [DOI: 10.3892/or.2015.4473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
|
16
|
Tang SL, Gao YL, Chen XB. Wnt/β-catenin up-regulates Midkine expression in glioma cells. Int J Clin Exp Med 2015; 8:12644-12649. [PMID: 26550177 PMCID: PMC4612862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Abstract
Midkine, also known as neurite growth-promoting factor 2 (NEGF2), plays an important role in cell proliferation, apoptosis and differentiation. Recent studies have shown that Midkine is up-regulated in several types of human cancers. However, the molecular mechanism for its up-regulation remains poorly understood. Activation of Wnt/β-catenin signaling is viewed as crucial for multiple tumor growth and metastasis, including glioma. In the present study, we found that Wnt3a administration or transfection of a constitutively activated β-catenin promoted Midkine expression in glioma cells. We further identified a TCF/LEF binding site, with which beta-catenin interacts, on the proximal promoter region of Midkine gene, by luciferase reporter and chromatin immunoprecipitation assays. Thus, our results suggest a previously unknown Wnt/β-catenin/Midkine molecular network controlling glioma development.
Collapse
Affiliation(s)
- Shi-Lei Tang
- Department of Neurosurgery, Huaihe Hospital, Henan UniversityKaifeng 475000, China
| | - Yuan-Lin Gao
- Department of Neurology, Kaifeng Central HospitalKaifeng 475000, China
| | - Xiao-Bing Chen
- Department of Neurosurgery, Huaihe Hospital, Henan UniversityKaifeng 475000, China
| |
Collapse
|
17
|
Xu C, Zhu S, Wu M, Zhao Y, Han W, Yu Y. The therapeutic effect of rhMK on osteoarthritis in mice, induced by destabilization of the medial meniscus. Biol Pharm Bull 2015; 37:1803-10. [PMID: 25366485 DOI: 10.1248/bpb.b14-00470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is a worldwide disease in aged people, causing not only physical suffering to the patients themselves, but also a great burden on their families and on society. Here we used a mouse OA model induced by destabilization of the medial meniscus (DMM), and studied the therapeutic effect of recombinant human midkine (rhMK) on this OA model. Our results indicated that the DMM surgery induced mechanical allodynia and locomotor activity obstacles, together with cartilage injury in the C57BL/6 mice. The rhMK treatment mitigated the OA related mechanical allodynia, improved locomotor activity capacity, and prevented degradation of the cartilage. Considering the safety issue of rhMK used as a biologic, we also inspected the main organs in the rhMK treated mice throughout the process and found no pathological change. These results suggest that rhMK could be used as a biologic to treat OA or OA related pain.
Collapse
Affiliation(s)
- Chuanying Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University
| | | | | | | | | | | |
Collapse
|
18
|
Luo J, Wang X, Xia Z, Yang L, Ding Z, Chen S, Lai B, Zhang N. Transcriptional factor specificity protein 1 (SP1) promotes the proliferation of glioma cells by up-regulating midkine (MDK). Mol Biol Cell 2015; 26:430-9. [PMID: 25428991 PMCID: PMC4310735 DOI: 10.1091/mbc.e14-10-1443] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Midkine (MDK) expression is associated with the proliferation of many cancers, including glioma. However, the upstream signaling that leads to MDK accumulation remains elusive. This study investigates the molecular mechanism that induces MDK overexpression in human glioma. The Repository for Molecular Brain Neoplasia Data was analyzed to identify potential MDK regulators. Expression of MDK and specificity protein 1 (SP1) was compared in glioma specimens. Chromatin immunoprecipitation assay was used to confirm the transcriptional regulation. MDK-force-expressed, SP1-silenced glioma cells were used to test rescue effects in vitro and in vivo. MDK and SP1 expression in gliomas was significantly higher than in adjacent tissues and was positively correlated in glioma clinical samples and cell lines. The promoter of the human MDK gene has a putative SP1 binding site. SP1 binds to the promoter of the MDK gene and directly regulates MDK expression. MDK or SP1 gene silencing inhibited the proliferation of glioma cells and reduced the tumor volume in nude mice. Overexpression of MDK in SP1-silenced cells could partially rescue the SP1 inhibition effects in vivo and in vitro. SP1 directly up-regulated the expression of MDK, and the SP1-MDK axis cooperated in glioma tumorigenesis.
Collapse
Affiliation(s)
- Jingyan Luo
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhibo Xia
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixuan Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiming Ding
- Department of Neurosurgery, Huang Pu Division, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Shiyuan Chen
- Department of Neurology and Northwestern Brain Tumor Institute, Center of Genetic Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Bingquan Lai
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
19
|
Kiyonari S, Kadomatsu K. Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opin Drug Discov 2014; 10:53-62. [DOI: 10.1517/17460441.2015.974544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Muramatsu T, Kadomatsu K. Midkine: an emerging target of drug development for treatment of multiple diseases. Br J Pharmacol 2014; 171:811-3. [PMID: 24460672 DOI: 10.1111/bph.12571] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Midkine is a multifunctional factor and has anti-apoptotic, migration-promoting, angiogenic, anti-microbial and other activities. Midkine ameliorates ischemic injury in the heart and brain, enhances oocyte maturation, and is involved in neurogenesis. On the other hand, midkine is an important factor in the etiology of various diseases, especially those with inflammatory backgrounds. Furthermore, midkine is overexpressed in most malignant tumors and plays roles in their invasive phenotypes as well as in their resistance to chemotherapeutics. Therefore, midkine itself is expected to be useful for the treatment of brain and heart diseases, while midkine inhibitors are promising for the treatment of malignant tumors, multiple sclerosis, restenosis, renal diseases, hypertension and osteoporosis. Blood levels of midkine are also expected to be helpful as disease markers, especially as cancer markers. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 470-0195, Japan
| | | |
Collapse
|