1
|
Pyanova A, Serebryakov VN, Gagov H, Mladenov M, Schubert R. BK Channels in Tail Artery Vascular Smooth Muscle Cells of Normotensive (WKY) and Hypertensive (SHR) Rats Possess Similar Calcium Sensitivity But Different Responses to the Vasodilator Iloprost. Int J Mol Sci 2024; 25:7140. [PMID: 39000253 PMCID: PMC11241265 DOI: 10.3390/ijms25137140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
It has been reported that, in the spontaneously hypertensive rat (SHR) model of hypertension, different components of the G-protein/adenylate cyclase (AC)/Calcium-activated potassium channel of high conductance (BK) channel signaling pathway are altered differently. In the upstream part of the pathway (G-protein/AC), a comparatively low efficacy has been established, whereas downstream BK currents seem to be increased. Thus, the overall performance of this signaling pathway in SHR is elusive. For a better understanding, we focused on one aspect, the direct targeting of the BK channel by the G-protein/AC pathway and tested the hypothesis that the comparatively low AC pathway efficacy in SHR results in a reduced agonist-induced stimulation of BK currents. This hypothesis was investigated using freshly isolated smooth muscle cells from WKY and SHR rat tail artery and the patch-clamp technique. It was observed that: (1) single BK channels have similar current-voltage relationships, voltage-dependence and calcium sensitivity; (2) BK currents in cells with a strong buffering of the BK channel activator calcium have similar current-voltage relationships; (3) the iloprost-induced concentration-dependent increase of the BK current is larger in WKY compared to SHR; (4) the effects of activators of the PKA pathway, the catalytic subunit of PKA and the potent and selective cAMP-analogue Sp-5,6-DCl-cBIMPS on BK currents are similar. Thus, our data suggest that the lower iloprost-induced stimulation of the BK current in freshly isolated rat tail artery smooth muscle cells from SHR compared with WKY is due to the lower efficacy of upstream elements of the G-Protein/AC/BK channel pathway.
Collapse
MESH Headings
- Animals
- Rats, Inbred SHR
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Rats
- Calcium/metabolism
- Iloprost/pharmacology
- Rats, Inbred WKY
- Hypertension/metabolism
- Hypertension/drug therapy
- Vasodilator Agents/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Male
- Arteries/drug effects
- Arteries/metabolism
- Tail/blood supply
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Anastasia Pyanova
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany;
| | | | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, University of Ss. Cyril and Methodius, 1000 Skopje, North Macedonia;
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia
| | - Rudolf Schubert
- Physiology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany;
| |
Collapse
|
2
|
Hong J, Park Y. Microvascular Function and Exercise Training: Functional Implication of Nitric Oxide Signaling and Ion Channels. Pulse (Basel) 2024; 12:27-33. [PMID: 38572498 PMCID: PMC10987185 DOI: 10.1159/000538271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Background Exercise training elicits indubitable positive adaptation in microcirculation in health and disease populations. An inclusive overview of the current knowledge regarding the effects of exercise on microvascular function consolidates an in-depth understanding of microvasculature. Summary The main physiological function of microvasculature is to maintain optimal blood flow regulation to supply oxygen and nutrition during elevated physical demands in the cardiovascular system. There are several cellular and molecular alterations in resistance vessels in response to exercise intervention, an increase in nitric oxide-mediated vasodilation through the regulation of oxidative stress, inflammatory response, and ion channels in endothelial cells, thus increasing myogenic tone via voltage-gated Ca2+ channels in smooth muscle cells. Key Messages In the review, we postulate that exercise should be considered a medicine for people with diverse diseases through a comprehensive understanding of the cellular and molecular underlying mechanisms in microcirculation through exercise training.
Collapse
Affiliation(s)
- Junyoung Hong
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, TX, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yoonjung Park
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, TX, USA
| |
Collapse
|
3
|
Chronic exercise mediates epigenetic suppression of L-type Ca2+ channel and BKCa channel in mesenteric arteries of hypertensive rats. J Hypertens 2021; 38:1763-1776. [PMID: 32384389 DOI: 10.1097/hjh.0000000000002457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Regular exercise is a lifestyle intervention for controlling hypertension and has an improving effect on vascular function. Voltage-gated L-type Ca (LTCC) and large-conductance Ca-activated K (BKCa) channels are two principal mediators of vascular smooth muscle cell contractility and arterial tone. The present study tested the hypothesis that DNA methylation dynamics plays a key role in exercise-induced reprogramming and downregulation of LTCC and BKCa channel in mesenteric arteries from spontaneously hypertensive rats (SHRs). METHODS SHRs and Wistar-Kyoto (WKY) rats were subjected to exercise training or kept sedentary, and vascular molecular and functional properties were evaluated. RESULTS Exercise inhibited hypertension-induced upregulation of LTCC and BKCa channel function in mesenteric arteries by repressing LTCC α1c and BKCa β1 subunit expression. In accordance, exercise triggered hypermethylation of α1c and β1 gene in SHR, with concomitant decreasing TET1, increasing DNMT1 and DNMT3b expression in mesenteric arteries, as well as altering peripheral α-KG and S-adenosylmethionine/ S-adenosylhomocysteine ratio. Acting synergistically, these exercise-induced functional and molecular amelioration could allow for attenuating hypertension-induced elevation in arterial blood pressure. CONCLUSION Our results indicate that exercise suppresses LTCC and BKCa channel function via hypermethylation of α1c and β1 subunits, which contributes to the restoration of mesenteric arterial function and vasodilation during hypertension.
Collapse
|
4
|
Carullo G, Ahmed A, Trezza A, Spiga O, Brizzi A, Saponara S, Fusi F, Aiello F. Design, synthesis and pharmacological evaluation of ester-based quercetin derivatives as selective vascular K Ca1.1 channel stimulators. Bioorg Chem 2020; 105:104404. [PMID: 33142229 DOI: 10.1016/j.bioorg.2020.104404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022]
Abstract
Quercetin represents one of the most studied dietary flavonoids; it exerts a panel of pharmacological activities particularly on the cardiovascular system. Stimulation of vascular KCa1.1 channels contributes to its vasorelaxant activity, which is, however, counteracted in part by its concomitant stimulation of CaV1.2 channels. Therefore, several quercetin hybrid derivatives were designed and synthesized to produce a more selective KCa1.1 channel stimulator, then assessed both in silico and in vitro. All the derivatives interacted with the KCa1.1 channel with similar binding energy values. Among the selected derivatives, 1E was a weak vasodilator, though displaying an interesting CaV1.2 channel blocking activity. The lipoyl derivatives 1F and 3F, though showing pharmacological and electrophysiological features similar to those of quercetin, seemed to be more effective as KCa1.1 channel stimulators as compared to the parent compound. The strategy pursued demonstrated how different chemical substituents on the quercetin core can change/invert its effect on CaV1.2 channels or enhance its KCa1.1 channel stimulatory activity, thus opening new avenues for the synthesis of efficacious vasorelaxant quercetin hybrids.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Amer Ahmed
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| |
Collapse
|
5
|
Barrese V, Stott JB, Baldwin SN, Mondejar-Parreño G, Greenwood IA. SMIT (Sodium-Myo-Inositol Transporter) 1 Regulates Arterial Contractility Through the Modulation of Vascular Kv7 Channels. Arterioscler Thromb Vasc Biol 2020; 40:2468-2480. [PMID: 32787517 PMCID: PMC7505149 DOI: 10.1161/atvbaha.120.315096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: The SMIT1 (sodium:myo-inositol transporter 1) regulates myo-inositol movement into cells and responses to hypertonic stimuli. Alteration of myo-inositol levels has been associated with several diseases, including hypertension, but there is no evidence of a functional role of SMIT1 in the vasculature. Recent evidence showed that in the nervous system SMIT1 interacted and modulated the function of members of the Kv7 family of voltage-gated potassium channels, which are also expressed in the vasculature where they regulate arterial contractility. Therefore, in this study, we evaluated whether SMIT1 was functionally relevant in arterial smooth muscle. Approach and Results: Immunofluorescence and polymerase chain reaction experiments revealed that SMIT1 was expressed in rat renal and mesenteric vascular smooth muscle cells. Isometric tension recordings showed that incubation of renal arteries with raffinose and myo-inositol (which increases SMIT1 expression) reduced the contractile responses to methoxamine, an effect that was abolished by preincubation with the pan-Kv7 blocker linopirdine and by molecular knockdown of Kv7.4 and Kv7.5. Knockdown of SMIT1 increased the contraction of renal arteries induced by methoxamine, impaired the response to the Kv7.2–Kv7.5 activator ML213 but did not interfere with the relaxant responses induced by openers of other potassium channels. Proximity ligation assay showed that SMIT1 interacted with heteromeric channels formed by Kv7.4 and Kv7.5 proteins in both renal and mesenteric vascular smooth muscle cells. Patch-clamp experiments showed that incubation with raffinose plus myo-inositol increased Kv7 currents in vascular smooth muscle cells. Conclusions: SMIT1 protein is expressed in vascular smooth muscle cells where it modulates arterial contractility through an association with Kv7.4/Kv7.5 heteromers.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.).,Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, Italy (V.B.)
| | - Jennifer B Stott
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Samuel N Baldwin
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| | - Gema Mondejar-Parreño
- Department of Pharmacology and Toxicology. School of Medicine, Universidad Complutense de Madrid, Spain (G.M.-P.)
| | - Iain A Greenwood
- Vascular Research Centre, Institute of Molecular & Clinical Sciences, St George's, University of London, United Kingdom (V.B., J.B.S., S.N.B., I.A.G.)
| |
Collapse
|
6
|
Aerobic exercise-induced inhibition of PKCα/CaV1.2 pathway enhances the vasodilation of mesenteric arteries in hypertension. Arch Biochem Biophys 2019; 678:108191. [DOI: 10.1016/j.abb.2019.108191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023]
|
7
|
Zhang L, Zhang Y, Wu Y, Yu J, Zhang Y, Zeng F, Shi L. Role of the Balance of Akt and MAPK Pathways in the Exercise-Regulated Phenotype Switching in Spontaneously Hypertensive Rats. Int J Mol Sci 2019; 20:ijms20225690. [PMID: 31766280 PMCID: PMC6888552 DOI: 10.3390/ijms20225690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 12/26/2022] Open
Abstract
The mechanisms regulating vascular smooth muscle cell (VSMC) phenotype switching and the critical signal modulation affecting the VSMCs remain controversial. Physical exercise acts as an effective drug in preventing elevated blood pressure and improving vascular function. This study was designed to explore the influence of aerobic exercise on the suppression of VSMC phenotype switching by balancing of the Akt, also known as PKB (protein kinase B) and mitogen-activated protein kinase (MAPK) signaling pathways. Spontaneously hypertensive rats (SHRs) and normotensive rats were subjected to exercise treatment before measuring the vascular morphological and structural performances. Exercise induced reverse expression of VSMC protein markers (α-SM-actin, calponin, and osteopontin (OPN)) in spontaneously hypertensive rats. It is noteworthy that the low expression of phosphorylated Akt significantly decreased the expression of VSMC contractile phenotype markers (α-SM-actin and calponin) and increased the expression of the VSMC synthetic phenotype marker (OPN). However, the MAPK signal pathway exerts an opposite effect. VSMCs and whole vessels were treated by inhibitors, namely the p-Akt inhibitor, p-ERK inhibitor, and p-p38 MAPK inhibitors. VSMC phenotype markers were reversed. It is important to note that a significant reverse regulatory relationship was observed between the expression levels of MAPK and the contractile markers in both normotensive and spontaneously hypertensive rats. We demonstrate that aerobic exercise regulates the VSMC phenotype switching by balancing the Akt and MAPK signaling pathways in SHRs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Jingjing Yu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Yimin Zhang
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; (L.Z.); (Y.Z.); (Y.W.)
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- Correspondence: ; Tel.: +86-10-6298-9582
| |
Collapse
|
8
|
Li S, Chen Y, Zhang Y, Zhang H, Wu Y, He H, Gong L, Zeng F, Shi L. Exercise during pregnancy enhances vascular function via epigenetic repression of Ca V1.2 channel in offspring of hypertensive rats. Life Sci 2019; 231:116576. [PMID: 31211998 DOI: 10.1016/j.lfs.2019.116576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
AIMS Studies suggest that cardiovascular function in offspring can be epigenetically programmed by environmental changes during pregnancy. CaV1.2 channel plays a major role in the regulation of the vascular tone. This study investigated the effects and underlying mechanisms of exercise during pregnancy on CaV1.2 channel functional remodeling in hypertensive offspring. MAIN METHODS Exercise groups were subjected to swimming at the first day of pregnancy and on a regular schedule thereafter for 3 weeks. Their offspring (6-month-old, male) were tested for baseline blood pressure, cardiovascular response, and vascular tone of the mesenteric artery. Mesenteric artery smooth muscle cells were taken to study the whole-cell current of the CaV1.2 channel. Western blotting, RT-PCR and DNA bisulfite sequencing PCR were performed to study the protein, mRNA expression and DNA methylation of the CaV1.2 channel α1C subunit. KEY FINDINGS Exercise during pregnancy reduced the pressor response to norepinephrine and Bay K8644, and the depressor response to nifedipine in offspring of hypertensive rats. The level of the CaV1.2 channel in norepinephrine-induced vasoconstrictions decreased, and the whole-cell current of the CaV1.2 channel declined in the SHR-EX group. Further studies found that exercise during pregnancy reduced the protein and mRNA expression of the CaV1.2 channel α1C subunit and upregulated DNA methylation of the Cacna1c gene promoter region in the hypertensive offspring. SIGNIFICANCE These data suggest that exercise during pregnancy improves vascular functional remodeling in offspring of hypertensive rats, downregulating the CaV1.2 channel function and protein expression, a change that is most likely caused by DNA methylation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Huirong Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Hui He
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Lijing Gong
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
9
|
Maltsev AV, Evdokimovskii EV, Kokoz YM. Synergism of myocardial β-adrenoceptor blockade and I 1-imidazoline receptor-driven signaling: Kinase-phosphatase switching. Biochem Biophys Res Commun 2019; 511:363-368. [PMID: 30795862 DOI: 10.1016/j.bbrc.2019.02.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
Abstract
Recently identified imidazoline receptors of the first type (I1Rs) on the cardiomyocyte's sarcolemma open a new field in calcium signaling research. In particular, it is interesting to investigate their functional interaction with other well-known systems, such as β-adrenergic receptors. Here we investigated the effects of I1Rs activation on L-type voltage-gated Ca2+-currents under catecholaminergic stress induced by the application of β-agonist, isoproterenol. Pharmacological agonist of I1Rs (I1-agonist), rilmenidine, and the putative endogenous I1-ligand, agmatine, have been shown to effectively reduce Ca2+-currents potentiated by isoproterenol. Inhibitory analysis shows that the ability to suppress voltage-gated Ca2+-currents by rilmenidine and agmatine is fully preserved in the presence of the protein kinase A blocker (PKA), which indicates a PKA-independent mechanism of their action. The blockade of NO synthase isoforms with 7NI does not affect the intrinsic effects of agmatine and rilmenidine, which suggests NO-independent signaling pathways triggered by I1Rs. A nonspecific serine/threonine protein phosphatase (STPP) inhibitor, calyculin A, abrogates effects of rilmenidine or agmatine on the isoproterenol-induced Ca2+-currents. Direct measurements of phosphatase activity in the myocardial tissues showed that activation of the I1Rs leads to stimulation of STPP, which could be responsible for the I1-agonist influences. Obtained data clarify peripheral effects that occur during activation of the I1Rs under endogenous catecholaminergic stress, and can be used in clinical practice for more precise control of heart contractility in some cardiovascular pathologies.
Collapse
Affiliation(s)
- A V Maltsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino, Institutskaya, 3, 142290, Russia; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Butlerova 5А, 117485, Russia.
| | - E V Evdokimovskii
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino, Institutskaya, 3, 142290, Russia
| | - Y M Kokoz
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region, Pushchino, Institutskaya, 3, 142290, Russia
| |
Collapse
|
10
|
Li X, Feng X, Lu L, He A, Liu B, Zhang Y, Shi R, Liu Y, Chen X, Sun M, Xu Z. Prenatal hypoxia plus postnatal high-fat diet exacerbated vascular dysfunction via up-regulated vascular Cav1.2 channels in offspring rats. J Cell Mol Med 2018; 23:1183-1196. [PMID: 30556291 PMCID: PMC6349350 DOI: 10.1111/jcmm.14020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to examine whether and how postnatal high‐fat diet had additional impact on promoting vascular dysfunction in the offspring exposed to prenatal hypoxia. Methods and Results Pregnant Sprague‐Dawley rats were randomly assigned to hypoxia (10.5% oxygen) or normoxia (21% O2) groups from gestation days 5‐21. A subset of male offspring was placed on a high‐fat diet (HF, 45% fat) from 4‐16 weeks of age. Prenatal hypoxia induced a decrease in birth weight. In offspring‐fed HF diet, prenatal hypoxia was associated with increased fasting plasma triglyceride, total cholesterol, free fatty acids, and low‐density lipoprotein‐cholesterol. Compared with the other three groups, prenatal hypoxic offspring with high‐fat diet showed a significant increase in blood pressure, phenylephrine‐mediated vasoconstrictions, L‐type voltage‐gated Ca2+ (Cav1.2) channel currents, and elevated mRNA and protein expression of Cav1.2 α1 subunit in mesenteric arteries or myocytes. The large‐conductance Ca2+‐activated K+ (BK) channels currents and the BK channel units (β1, not α‐subunits) were significantly increased in mesenteric arteries or myocytes in HF offspring independent of prenatal hypoxia factor. Conclusion The results demonstrated that prenatal hypoxia followed by postnatal HF caused vascular dysfunction through ion channel remodelling in myocytes.
Collapse
Affiliation(s)
- Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ruixiu Shi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, Loma Linda, California
| |
Collapse
|
11
|
Qiu F, Liu X, Zhang Y, Wu Y, Xiao D, Shi L. Aerobic exercise enhanced endothelium-dependent vasorelaxation in mesenteric arteries in spontaneously hypertensive rats: the role of melatonin. Hypertens Res 2018; 41:718-729. [PMID: 29967417 DOI: 10.1038/s41440-018-0066-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Melatonin, a neuroendocrine hormone synthesized primarily by the pineal gland, provides various cardiovascular benefits. Regular physical activity is an effective non-pharmacological therapy for the prevention and control of hypertension. In the present study, we hypothesized that melatonin plays an important role in the aerobic exercise-induced increase of endothelium-dependent vasorelaxation in the mesenteric arteries (MAs) of spontaneously hypertensive rats (SHRs) in a melatonergic receptor-dependent manner. To test this hypothesis, we evaluated the vascular mechanical and functional properties in normotensive Wistar Kyoto (WKY), SHRs, and SHRs that were trained on a treadmill (SHR-EX) for 8 weeks. Exercise training produced a significant reduction in blood pressure and heart rate in SHR, which was significantly attenuated by the intraperitoneal administration of luzindole, a non-selective melatonin receptor (MT1/MT2) antagonist. Serum melatonin levels in the SHR group were significantly lower than those in the WKY group at 8:00-9:00 and 21:00-22:00, while exercise training reduced this difference. Endothelium-dependent vessel relaxation induced by acetylcholine was significantly blunted in SHR compared with age-matched WKY. Both exercise training and luzindole ameliorated this endothelium-dependent impairment of relaxation in hypertension. Immunohistochemistry and Western blotting showed that the protein expression of the MT2 receptor and eNOS, as well as their colocalization in the endothelial cell layer in SHRs, was significantly decreased; as exercise training suppressed this reduction. These results provide evidence that regular exercise has a beneficial effect on improving endothelium-dependent vasorelaxation in MAs, in which melatonin plays a critical role by acting on MT2 receptors to increase NO production and/or NO bioavailability.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Xiaodong Liu
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, 100084, Beijing, China.
| |
Collapse
|
12
|
Liu B, Shi R, Li X, Liu Y, Feng X, Chen X, Fan X, Zhang Y, Zhang W, Tang J, Zhou X, Li N, Lu X, Xu Z. Downregulation of L-Type Voltage-Gated Ca 2+, Voltage-Gated K +, and Large-Conductance Ca 2+-Activated K + Channels in Vascular Myocytes From Salt-Loading Offspring Rats Exposed to Prenatal Hypoxia. J Am Heart Assoc 2018; 7:JAHA.117.008148. [PMID: 29545262 PMCID: PMC5907567 DOI: 10.1161/jaha.117.008148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Prenatal hypoxia is suggested to be associated with increased risks of hypertension in offspring. This study tested whether prenatal hypoxia resulted in salt‐sensitive offspring and its related mechanisms of vascular ion channel remodeling. Methods and Results Pregnant rats were housed in a normoxic (21% O2) or hypoxic (10.5% O2) chamber from gestation days 5 to 21. A subset of male offspring received a high‐salt diet (8% NaCl) from 4 to 12 weeks after birth. Blood pressure was significantly increased only in the salt‐loading offspring exposed to prenatal hypoxia, not in the offspring that received regular diets and in control offspring provided with high‐salt diets. In mesenteric artery myocytes from the salt‐loading offspring with prenatal hypoxia, depolarized resting membrane potential was associated with decreased density of L‐type voltage‐gated Ca2+ (Cav1.2) and voltage‐gated K+ channel currents and decreased calcium sensitive to the large‐conductance Ca2+‐activated K+ channels. Protein expression of the L‐type voltage‐gated Ca2+ α1C subunit, large‐conductance calcium‐activated K+ channel (β1, not α subunits), and voltage‐gated K+ channel (KV2.1, not KV1.5 subunits) was also decreased in the arteries of salt‐loading offspring with prenatal hypoxia. Conclusions The results demonstrated that chronic prenatal hypoxia may program salt‐sensitive hypertension in male offspring, providing new information of ion channel remodeling in hypertensive myocytes. This information paves the way for early prevention and treatments of salt‐induced hypertension related to developmental problems in fetal origins.
Collapse
Affiliation(s)
- Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ruixiu Shi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiaorong Fan
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiyuan Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China .,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA
| |
Collapse
|
13
|
Liao J, Zhang Y, Wu Y, Zeng F, Shi L. Akt modulation by miR-145 during exercise-induced VSMC phenotypic switching in hypertension. Life Sci 2018. [PMID: 29522767 DOI: 10.1016/j.lfs.2018.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIMS This study investigated whether long-term exercise can influence vascular smooth muscle cells (VSMCs) phenotypic switching in mesenteric arteries of hypertensive rats, with a focus on the modulation of protein kinase B (PKB/Akt) signaling by microRNA-145 (miR-145). MAIN METHODS In the exercise intervention experiment, mesenteric arteries from 3-month-old spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were isolated for histological observation, phenotypic marker analysis, Akt phosphorylation quantification, and miR-145 evaluation after being subjected to moderate-intensity treadmill training (E) or being sedentary (C) for 8 weeks. In the transfection experiment, VSMCs were harvested to determine Akt phosphorylation and mRNA expressions of the upstream and downstream signaling molecules. KEY FINDINGS Calponin, a VSMC contractile marker, was significantly up-regulated in SHR-E relative to SHR-C (P < 0.05); while osteopontin (OPN), a dedifferentiation marker, was down-regulated in SHR-E relative to SHR-C (P < 0.05). Exercise significantly normalized the expression of miR-145 and significantly enhanced Akt phosphorylation (P < 0.05). In VSMCs over-expressing miR-145, Akt phosphorylation was significantly decreased (P < 0.05) with inhibited mRNA of both insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor substrate 1 (IRS-1). In VSMCs transfected with miR-145 inhibitor, Akt phosphorylation and mRNA of IGF-1R and IRS-1 were all down-regulated. miR-145 did not exhibit a clear effect on p70 ribosomal kinase (p70S6K), the downstream of Akt, following the transfections. SIGNIFICANCE Overall, exercise remodels arterioles in hypertension and induces VSMCs maintaining contractile phenotype, in which miR-145 appears to be involved by inversely regulating Akt signaling via its upstream signals.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/prevention & control
- MicroRNAs/physiology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Physical Conditioning, Animal/physiology
- Proto-Oncogene Proteins c-akt/physiology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
Collapse
Affiliation(s)
- Jingwen Liao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China; Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ying Wu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China.
| |
Collapse
|
14
|
Zhang Z, Wen Y, Du J, Yu Y, Liu S, Wu X, Zhao H. Effects of mechanical stretch on the functions of BK and L-type Ca 2+ channels in vascular smooth muscle cells. J Biomech 2017; 67:18-23. [PMID: 29248193 DOI: 10.1016/j.jbiomech.2017.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 09/14/2017] [Accepted: 11/16/2017] [Indexed: 11/18/2022]
Abstract
It is well recognized that pathologically increased mechanical stretch plays a critical role in vascular remodeling during hypertension. However, how the stretch modulates the functions of ion channels of vascular smooth muscle cells (VSMCs) remains to be elucidated. Here, we demonstrated the effects of mechanical stretch on the activity of large conductance calcium, voltage-activated potassium (BK) and L-type Ca2+ channels. In comparison with 5% stretch (physiological), 15% stretch (pathological) upregulated the current density of L-type Ca2+ and BK channels as well as the frequency and amplitude of calcium oscillation in VSMCs. 15% stretch also increased the open probability and mean open time of the BK channel compared with 5% stretch. BK and L-type Ca2+ channels participated in the mechanical stretch-modulated calcium oscillation. Our results suggested that during hypertension, pathological stretch altered the activity of BK and L-type Ca2+ channels and manipulated the calcium oscillation of VSMCs.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yuqiao Wen
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong 614000, China
| | - Jing Du
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yang Yu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Sisi Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xiaoan Wu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hucheng Zhao
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong 614000, China; Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
BKCa channel activity and vascular contractility alterations with hypertension and aging via β1 subunit promoter methylation in mesenteric arteries. Hypertens Res 2017; 41:96-103. [DOI: 10.1038/hr.2017.96] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 01/14/2023]
|
16
|
Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BK Ca channels. J Mol Endocrinol 2017; 59:219-233. [PMID: 28676563 DOI: 10.1530/jme-17-0028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/03/2017] [Indexed: 01/14/2023]
Abstract
Melatonin, synthesized primarily by the pineal gland, is a neuroendocrine hormone with high membrane permeability. The vascular effects of melatonin, including vasoconstriction and vasodilation, have been demonstrated in numerous studies. However, the mechanisms underlying these effects are not fully understood. Large-conductance Ca2+-activated K+ (BKCa) channels are expressed broadly on smooth muscle cells and play an important role in vascular tone regulation. This study explored the mechanisms of myocyte BKCa channels and endothelial factors underlying the action of melatonin on the mesenteric arteries (MAs). Vascular contractility and patch-clamp studies were performed on myocytes of MAs from Wistar rats. Melatonin induced significant vasodilation on MAs. In the presence of Nω-nitro-l-arginine methyl ester (l-NAME), a potent endothelial oxide synthase (eNOS) inhibitor, melatonin elicited concentration-dependent relaxation, with lowered pIC50 The effect of melatonin was significantly attenuated in the presence of BKCa channel blocker iberiotoxin or MT1/MT2 receptor antagonist luzindole in both (+) l-NAME and (-) l-NAME groups. In the (+) l-NAME group, iberiotoxin caused a parallel rightward shift of the melatonin concentration-relaxation curve, with pIC50 lower than that of luzindole. Both inside-out and cell-attached patch-clamp recordings showed that melatonin significantly increased the open probability, mean open time and voltage sensitivity of BKCa channels. In a cell-attached patch-clamp configuration, the melatonin-induced enhancement of BKCa channel activity was significantly suppressed by luzindole. These findings indicate that in addition to the activation of eNOS, melatonin-induced vasorelaxation of MAs is partially attributable to its direct (passing through the cell membrane) and indirect (via MT1/MT2 receptors) activation of the BKCa channels on mesenteric arterial myocytes.
Collapse
MESH Headings
- Animals
- Gene Expression
- Ion Channel Gating/drug effects
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics
- Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism
- Male
- Melatonin/metabolism
- Melatonin/pharmacology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Vasodilation/drug effects
- Vasodilation/genetics
Collapse
Affiliation(s)
- T Zhao
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - H Zhang
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - C Jin
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - F Qiu
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - Y Wu
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| | - L Shi
- Department of Exercise PhysiologyBeijing Sport University, Beijing, China
| |
Collapse
|
17
|
ZHANG Y, CHEN Y, ZHANG L, LU N, SHI L. Aerobic Exercise of Low to Moderate Intensity Corrects Unequal Changes in BKCa Subunit Expression in the Mesenteric Arteries of Spontaneously Hypertensive Rats. Physiol Res 2017; 66:219-233. [DOI: 10.33549/physiolres.933407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accumulating evidence indicates that hypertension is associated with “ion channel remodeling” of vascular smooth muscle cells (VSMCs). The objective of this study was to determine the effects of exercise intensity/volume on hypertension-associated changes in large-conductance Ca2+-activated K+ (BKCa) channels in mesenteric arteries (MAs) from spontaneously hypertensive rats (SHR). Male SHRs were randomly assigned to three groups: a low-intensity aerobic exercise group (SHR-L: 14 m/min), a moderate-intensity aerobic exercise group (SHR-M: 20 m/min), and a sedentary group (SHR). Age-matched Wistar-Kyoto rats (WKYs) were used as normotensive controls. Exercise groups completed an 8-week exercise program. Elevation of the α and β1 proteins was unequal in MA myocytes from SHRs, with the β1 subunit increasing more than the α subunit. BKCa contribution to vascular tone regulation was higher in the myocytes and arteries of SHRs compared to WKYs. SHR BKCa channel subunit protein expression, β1/α ratio, whole cell current density and single-channel open probability was also increased compared with WKYs. Aerobic exercise lowered systemic blood pressure and normalized hypertension-associated BKCa alterations to normotensive control levels in the SHRs. These effects were more pronounced in the moderate-intensity group than in the low-intensity group. There is a dose-effect for aerobic exercise training in the range of low to moderate-intensity and accompanying volume for the correction of the pathological adaptation of BKCa channels in myocytes of MAs from SHR.
Collapse
Affiliation(s)
| | | | | | | | - L. SHI
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
18
|
Zhao H, Yu Y, Wu X, Liu S, Liu B, Du J, Li B, Jiang L, Feng X. A Role of BK Channel in Regulation of Ca 2+ Channel in Ventricular Myocytes by Substrate Stiffness. Biophys J 2017; 112:1406-1416. [PMID: 28402883 PMCID: PMC5389963 DOI: 10.1016/j.bpj.2017.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022] Open
Abstract
Substrate stiffness is crucial for diverse cell functions, but the mechanisms conferring cells with mechanosensitivity are still elusive. By tailoring substrate stiffness with 10-fold difference, we showed that L-type voltage-gated Ca2+ channel current density was greater in chick ventricular myocytes cultured on the stiff substrate than on the soft substrate. Blockage of the BK channel increased the Ca2+ current density on the soft substrate and consequently eliminated substrate stiffness regulation of the Ca2+ channel. The expression of the BK channel, including the STREX-containing α-subunit that forms stretch-activated BK channel in myocytes and the BK channel function in myocytes (and also in HEK293 cells heterologously expressing STREX-containing α- and β1-subunits) was reduced in cells cultured on the stiff substrate. Furthermore, in HEK293 cells coexpressing the cardiac CaV1.2 channel and STREX-containing BK channel, the Ca2+ current density was greater in cells on the stiff substrate, which was not observed in cells expressing the CaV1.2 channel alone or coexpressing with the STREX-deleted BK channel. These results provide strong evidence to show that the stretch-activated BK channel plays a key role in functional regulation of cardiac voltage-gated Ca2+ channel by substrate stiffness, revealing, to our knowledge, a novel mechanosensing mechanism in ventricular myocytes.
Collapse
Affiliation(s)
- Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Yang Yu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Xiaoan Wu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Sisi Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Bailin Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jing Du
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Linhua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom; Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Xiqiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
De Moudt S, Leloup A, Van Hove C, De Meyer G, Fransen P. Isometric Stretch Alters Vascular Reactivity of Mouse Aortic Segments. Front Physiol 2017; 8:157. [PMID: 28360864 PMCID: PMC5352655 DOI: 10.3389/fphys.2017.00157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/28/2017] [Indexed: 02/02/2023] Open
Abstract
Most vaso-reactive studies in mouse aortic segments are performed in isometric conditions and at an optimal preload, which is the preload corresponding to a maximal contraction by non-receptor or receptor-mediated stimulation. In general, this optimal preload ranges from about 1.2 to 8.0 mN/mm, which according to Laplace's law roughly correlates with transmural pressures of 10-65 mmHg. For physiologic transmural pressures around 100 mmHg, preloads of 15.0 mN/mm should be implemented. The present study aimed to compare vascular reactivity of 2 mm mouse (C57Bl6) aortic segments preloaded at optimal (8.0 mN/mm) vs. (patho) physiological (10.0-32.5 mN/mm) preload. Voltage-dependent contractions of aortic segments, induced by increasing extracellular K+, and contractions by α1-adrenergic stimulation with phenylephrine (PE) were studied at these preloads in the absence and presence of L-NAME to inhibit basal release of NO from endothelial cells (EC). In the absence of basal NO release and with higher than optimal preload, contractions evoked by depolarization or PE were attenuated, whereas in the presence of basal release of NO PE-, but not depolarization-induced contractions were preload-independent. Phasic contractions by PE, as measured in the absence of external Ca2+, were decreased at higher than optimal preload suggestive for a lower contractile SR Ca2+ content at physiological preload. Further, in the presence of external Ca2+, contractions by Ca2+ influx via voltage-dependent Ca2+ channels were preload-independent, whereas non-selective cation channel-mediated contractions were increased. The latter contractions were very sensitive to the basal release of NO, which itself seemed to be preload-independent. Relaxation by endogenous NO (acetylcholine) of aortic segments pre-contracted with PE was preload-independent, whereas relaxation by exogenous NO (diethylamine NONOate) displayed higher sensitivity at high preload. Results indicated that stretching aortic segments to higher than optimal preload depolarizes the SMC and causes Ca2+ unloading of the contractile SR, making them extremely sensitive to small changes in the basal release of NO from EC as can occur in hypertension or arterial stiffening.
Collapse
Affiliation(s)
- Sofie De Moudt
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp Antwerp, Belgium
| | - Arthur Leloup
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp Antwerp, Belgium
| | - Cor Van Hove
- Laboratory of Pharmacology, Faculty of Medicine and Health Sciences, University of Antwerp Antwerp, Belgium
| | - Guido De Meyer
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp Antwerp, Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp Antwerp, Belgium
| |
Collapse
|
20
|
Liao J, Zhang Y, Ye F, Zhang L, Chen Y, Zeng F, Shi L. Epigenetic regulation of L-type voltage-gated Ca 2+ channels in mesenteric arteries of aging hypertensive rats. Hypertens Res 2016; 40:441-449. [PMID: 27881847 DOI: 10.1038/hr.2016.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/18/2016] [Accepted: 10/16/2016] [Indexed: 01/26/2023]
Abstract
Accumulating evidence has shown that epigenetic regulation is involved in hypertension and aging. L-type voltage-gated Ca2+ channels (LTCCs), the dominant channels in vascular myocytes, greatly contribute to arteriole contraction and blood pressure (BP) control. We investigated the dynamic changes and epigenetic regulation of LTCC in the mesenteric arteries of aging hypertensive rats. LTCC function was evaluated by using microvascular rings and whole-cell patch-clamp in the mesenteric arteries of male Wistar-Kyoto rats and spontaneously hypertensive rats at established hypertension (3 month old) and an aging stage (16 month old), respectively. The expression of the LTCC α1C subunit was determined in the rat mesenteric microcirculation. The expression of miR-328, which targets α1C mRNA, and the DNA methylation status at the promoter region of the α1C gene (CACNA1C) were also determined. In vitro experiments were performed to assess α1C expression after transfection of the miR-328 mimic into cultured vascular smooth muscle cells (VSMCs). The results showed that hypertension superimposed with aging aggravated BP and vascular remodeling. Both LTCC function and expression were significantly increased in hypertensive arteries and downregulated with aging. miR-328 expression was inhibited in hypertension, but increased with aging. There was no significant difference in the mean DNA methylation of CACNA1C among groups, whereas methylation was enhanced in the hypertensive group at specific sites on a CpG island located upstream of the gene promoter. Overexpression of miR-328 inhibited the α1C level of cultured VSMCs within 48 h. The results of the present study indicate that the dysfunction of LTCCs may exert an epigenetic influence at both pre- and post-transcriptional levels during hypertension pathogenesis and aging progression. miR-328 negatively regulated LTCC expression in both aging and hypertension.
Collapse
Affiliation(s)
- Jingwen Liao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China.,Department of Sport and Health Sciences, Guangzhou Institute of Physical Education, Guangzhou, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fang Ye
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lin Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
21
|
|
22
|
Exercise intensity-dependent reverse and adverse remodeling of voltage-gated Ca2+ channels in mesenteric arteries from spontaneously hypertensive rats. Hypertens Res 2015; 38:656-65. [DOI: 10.1038/hr.2015.56] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/11/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
|