1
|
Wu Y, Ding C, Liu C, Dan L, Xu H, Li X, Li Y, Song X, Zhang D. Schisandrol A, the Major Active Constitute in Schisandra chinensis: A Review of Its Preparation, Biological Activities, and Pharmacokinetics Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:717-752. [PMID: 38716620 DOI: 10.1142/s0192415x24500290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Schisandra chinensis (S. chinensis) has a long history as a traditional Chinese medicine that is astringent, beneficial to vital energy, tonifies the kidney, tranquilizes the heart, etc. Significantly, Schisandrol A (SA) is extracted from S. chinensis and shows surprising and satisfactory biological activity, including anti-inflammatory, hepatoprotective, cardiovascular protection, and antitumor properties, among others. SA has a more pronounced protective effect on central damaged nerves among its numerous pharmacological effects, improving neurodegenerative diseases such as Alzheimer's and Parkinson's through the protection of damaged nerve cells and the enhancement of anti-oxidant capacity. Pharmacokinetic studies have shown that SA has a pharmacokinetic profile with a rapid absorption, wide distribution, maximal concentration in the liver, and primarily renal excretion. However, hepatic and intestinal first-pass metabolism can affect SA's bioavailability. In addition, the content of SA, as an index component of S. chinensis Pharmacopoeia, should not be less than 0.40%, and the content of SA in S. chinensis compound formula was determined with the help of high-performance liquid chromatography (HPLC), which is a stable and reliable method, and it can lay a foundation for the subsequent quality control. Therefore, this paper systematically reviews the preparation, pharmacological effects, pharmacokinetic properties, and content determination of SA with the goal of updating and deepening the understanding of SA, as well as providing a theoretical basis for the study of SA at a later stage.
Collapse
Affiliation(s)
- Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chao Ding
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Chenwang Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Linwei Dan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Haonan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xinzhuo Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang 712046, P. R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang 712046, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang 712046, P. R. China
| |
Collapse
|
2
|
Wang X, Wang X, Yao H, Shen C, Geng K, Xie H. A comprehensive review on Schisandrin and its pharmacological features. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:783-794. [PMID: 37658213 DOI: 10.1007/s00210-023-02687-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Schisandrin stands as one of the primary active compounds within the widely used traditional medicinal plant Schisandra chinensis (Turcz.) Baill. This compound exhibits sedative, hypnotic, anti-aging, antioxidant, and immunomodulatory properties, showcasing its effectiveness across various liver diseases while maintaining a favorable safety profile. However, the bioavailability of schisandrin is largely affected by hepatic and intestinal first-pass metabolism, which limits the clinical efficacy of schisandrin. In this paper, we review the various pharmacological effects and related mechanisms of schisandrin, in order to provide reference for subsequent drug research and promote its medicinal value.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Hui Yao
- Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
3
|
Nieoczym D, Banono NS, Stępnik K, Kaczor AA, Szybkowski P, Esguerra CV, Kukula-Koch W, Gawel K. In Silico Analysis, Anticonvulsant Activity, and Toxicity Evaluation of Schisandrin B in Zebrafish Larvae and Mice. Int J Mol Sci 2023; 24:12949. [PMID: 37629132 PMCID: PMC10455331 DOI: 10.3390/ijms241612949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of Schisandra chinensis extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous pentylenetetrazole test in mice. Schisandrin B crosses the blood-brain barrier, which we confirmed in our in silico and in vivo analyses; however, the low level of its unbound fraction in the mouse brain tissue may explain the observed lack of anticonvulsant activity. Molecular docking revealed that the anticonvulsant activity of the compound in larval zebrafish might have been due to its binding to a benzodiazepine site within the GABAA receptor and/or the inhibition of the glutamate NMDA receptor. Although schisandrin B showed a beneficial anticonvulsant effect, toxicological studies revealed that it caused serious developmental impairment in zebrafish larvae, underscoring its teratogenic properties. Further detailed studies are needed to precisely identify the properties, pharmacological effects, and safety of schisandrin B.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Nancy Saana Banono
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3/243, 20-031 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland;
| | - Przemysław Szybkowski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090 Lublin, Poland;
- Clinical Provincial Hospital No. 2 St. Jadwiga Krolowej in Rzeszow, Lwowska St. 60, 35-301 Rzeszow, Poland
| | - Camila Vicencio Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway; (N.S.B.); (C.V.E.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki St. 1, 20-093 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Tian Y, Xie Y, Guo Z, Feng P, You Y, Yu Q. 17β-oestradiol inhibits ferroptosis in the hippocampus by upregulating DHODH and further improves memory decline after ovariectomy. Redox Biol 2023; 62:102708. [PMID: 37116254 PMCID: PMC10163677 DOI: 10.1016/j.redox.2023.102708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Ovariectomy (OVX) conducted before the onset of natural menopause is considered to bringing forward and accelerate the process of ageing-associated neurodegeneration. However, the mechanisms underlying memory decline and other cognitive dysfunctions following OVX are unclear. Given that iron accumulates during ageing and after OVX, we hypothesized that excess iron accumulation in the hippocampus would cause ferroptosis-induced increased neuronal degeneration and death associated with memory decline. In the current study, female rats that underwent OVX showed decreased dihydroorotate dehydrogenase (DHODH) expression and reduced performance in the Morris water maze (MWM). We used primary cultured hippocampal cells to explore the ferroptosis resistance-inducing effect of 17β-oestradiol (E2). The data supported a vital role of DHODH in neuronal ferroptosis. Specifically, E2 alleviated ferroptosis induced by erastin and ferric ammonium citrate (FAC), which can be blocked by brequinar (BQR). Further in vitro studies showed that E2 reduced lipid peroxidation levels and improved the behavioural performance of OVX rats. Our research interprets OVX-related neurodegeneration with respect to ferroptosis, and both our in vivo and in vitro data show that E2 supplementation exerts beneficial antiferroptotic effects by upregulating DHODH. Our data demonstrate the utility of E2 supplementation after OVX and provide a potential target, DHODH, for which hormone therapy has not been available.
Collapse
Affiliation(s)
- Ying Tian
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Yuan Xie
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Penghui Feng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Yang You
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
5
|
Huang SY, Su ZY, Han YY, Liu L, Shang YJ, Mai ZF, Zeng ZW, Li CH. Cordycepin improved the cognitive function through regulating adenosine A 2A receptors in MPTP induced Parkinson's disease mice model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154649. [PMID: 36634379 DOI: 10.1016/j.phymed.2023.154649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD), the most common neurodegenerative disorder, primarily affects dopaminergic neurons in the substantia nigra (SN). In addition to severe motor dysfunction, PD patients appear apparent cognitive impairments in the late stage. Cognitive dysfunction is accompanied by synaptic transmission damage in the hippocampus. Cordycepin has been reported to alleviate cognitive impairments in neurodegenerative diseases. PURPOSE The study aimed to estimate the protection roles of cordycepin on cognitive dysfunction in PD model and explore the potential mechanisms. METHODS 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the PD model in vivo and in vitro experiments. In the in vivo experiments, the C57BL / 6 mice were intraperitoneally injected with MPTP and intragastric administration with cordycepin. Open field test (OFT) was used to estimate the exercise ability. Spontaneous alternation behavioral (SAB) and morris water maze (MWM) tests were used to evaluate the learning and memory abilities. The hippocampal slices from C57BL / 6 and Kunming mice in the in vitro experiments were used to record field excitatory postsynaptic potential (fEPSP) by electrophysiological methods. Western blotting was used to examine the level of tyrosine hydroxylase (TH) in the in vivo experiments and the levels of adenosine A1 and A2A receptors (A1R and A2AR) in the in vitro experiments, respectively. The drugs of MPTP, cordycepin, DPCPX and SCH58261 were perfused through dissolving in artificial cerebrospinal fluid. RESULTS Cordycepin could significantly reduce the impairments on motor, exploration, spatial learning and memory induce by MPTP. MPTP reduced the amplitude of LTP in hippocampal CA1 area but cordycepin could improve LTP amplitudes. Cordycepin at dosage of 20 mg/kg also increased the TH level in SN. In the in vitro experiments, MPTP inhibited synaptic transmission in hippocampal Schaffer-CA1 pathway with a dose-dependent relationship, while cordycepin could reverse the inhibition of synaptic transmission. Furthermore, the roles of cordycepin on synaptic transmission could been attenuated in the presence of the antagonists of A1R and A2AR, DPCPX and SCH58261, respectively. Interestingly, the level of A2AR rather than A1R in hippocampus was significantly decreased in the cordycepin group as compared to the control. CONCLUSION The present study has showed that cordycepin could improve cognitive function in the PD model induced by MPTP through regulating the adenosine A2A receptors. These findings were helpful to provide a new strategy for the dementia caused by Parkinson's disease.
Collapse
Affiliation(s)
- Shu-Yi Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zong-Ying Su
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zi-Fan Mai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhi-Wei Zeng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Douglass A, Dattilo M, Feola AJ. Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma. Cell Mol Neurobiol 2023; 43:79-97. [PMID: 34981287 PMCID: PMC9250947 DOI: 10.1007/s10571-021-01179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive loss of visual function and retinal ganglion cells (RGC). Current epidemiological, clinical, and basic science evidence suggest that estrogen plays a role in the aging of the optic nerve. Menopause, a major biological life event affecting all women, coincides with a decrease in circulating sex hormones, such as estrogen. While 59% of the glaucomatous population are females, sex is not considered a risk factor for developing glaucoma. In this review, we explore whether menopause is a sex-specific risk factor for glaucoma. First, we investigate how menopause is defined as a sex-specific risk factor for other pathologies, including cardiovascular disease, osteoarthritis, and bone health. Next, we discuss clinical evidence that highlights the potential role of menopause in glaucoma. We also highlight preclinical studies that demonstrate larger vision and RGC loss following surgical menopause and how estrogen is protective in models of RGC injury. Lastly, we explore how surgical menopause and estrogen signaling are related to risk factors associated with developing glaucoma (e.g., intraocular pressure, aqueous outflow resistance, and ocular biomechanics). We hypothesize that menopause potentially sets the stage to develop glaucoma and therefore is a sex-specific risk factor for this disease.
Collapse
Affiliation(s)
- Amber Douglass
- grid.484294.7Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA USA
| | - Michael Dattilo
- grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA 30322 USA ,grid.414026.50000 0004 0419 4084Department of Ophthalmology, Atlanta Veterans Affairs Medical Center, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Andrew J. Feola
- grid.484294.7Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA USA ,grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA 30322 USA ,grid.213917.f0000 0001 2097 4943Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| |
Collapse
|
7
|
Zhou X, Zhao S, Liu T, Yao L, Zhao M, Ye X, Zhang X, Guo Q, Tu P, Zeng K. Schisandrol A protects AGEs-induced neuronal cells death by allosterically targeting ATP6V0d1 subunit of V-ATPase. Acta Pharm Sin B 2022; 12:3843-3860. [PMID: 36213534 PMCID: PMC9532558 DOI: 10.1016/j.apsb.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/24/2022] [Indexed: 12/26/2022] Open
|
8
|
Chen ZH, Han YY, Shang YJ, Zhuang SY, Huang JN, Wu BY, Li CH. Cordycepin Ameliorates Synaptic Dysfunction and Dendrite Morphology Damage of Hippocampal CA1 via A1R in Cerebral Ischemia. Front Cell Neurosci 2022; 15:783478. [PMID: 35002628 PMCID: PMC8740211 DOI: 10.3389/fncel.2021.783478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Cordycepin exerted significant neuroprotective effects and protected against cerebral ischemic damage. Learning and memory impairments after cerebral ischemia are common. Cordycepin has been proved to improve memory impairments induced by cerebral ischemia, but its underlying mechanism has not been revealed yet. The plasticity of synaptic structure and function is considered to be one of the neural mechanisms of learning and memory. Therefore, we investigated how cordycepin benefits dendritic morphology and synaptic transmission after cerebral ischemia and traced the related molecular mechanisms. The effects of cordycepin on the protection against ischemia were studied by using global cerebral ischemia (GCI) and oxygen-glucose deprivation (OGD) models. Behavioral long-term potentiation (LTP) and synaptic transmission were observed with electrophysiological recordings. The dendritic morphology and histological assessment were assessed by Golgi staining and hematoxylin-eosin (HE) staining, respectively. Adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR) were evaluated with western blotting. The results showed that cordycepin reduced the GCI-induced dendritic morphology scathing and behavioral LTP impairment in the hippocampal CA1 area, improved the learning and memory abilities, and up-regulated the level of A1R but not A2AR. In the in vitro experiments, cordycepin pre-perfusion could alleviate the hippocampal slices injury and synaptic transmission cripple induced by OGD, accompanied by increased adenosine content. In addition, the protective effect of cordycepin on OGD-induced synaptic transmission damage was eliminated by using an A1R antagonist instead of A2AR. These findings revealed that cordycepin alleviated synaptic dysfunction and dendritic injury in ischemic models by modulating A1R, which provides new insights into the pharmacological mechanisms of cordycepin for ameliorating cognitive impairment induced by cerebral ischemia.
Collapse
Affiliation(s)
- Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China.,Panyu Central Hospital, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Si-Yi Zhuang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jun-Ni Huang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- Ministry of Education (MOE) Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Geng LM, Jiang JG. The neuroprotective effects of formononetin: Signaling pathways and molecular targets. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
10
|
Kawabe M, Hayashi A, Komatsu M, Inui A, Shiozaki K. Ninjinyoeito improves anxiety behavior in neuropeptide Y deficient zebrafish. Neuropeptides 2021; 87:102136. [PMID: 33721592 DOI: 10.1016/j.npep.2021.102136] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Anxiety induced by excess mental or physical stress is deeply involved in the onset of human psychiatric diseases such as depression, bipolar disorder, and panic disorder. Recently, Kampo medicines have received focus as antidepressant drugs for clinical use because of their synergistic and additive effects. Thus, we evaluated the anxiolytic activity of Ninjinyoeito (NYT) using neuropeptide Y-knockout (NPY-KO) zebrafish that exhibit severe anxiety responses to acute stress. Adult NPY-KO zebrafish were fed either a 3% NYT-supplemented or normal diet (i.e., the control diet) for four days and were then examined via behavioral tests. After short-term cold stress (10 °C, 2 s) was applied, control-fed NPY-KO zebrafish exhibited anxiety behaviors such as freezing, erratic movement, and increased swimming time along the tank wall. On the other hand, NYT-fed NPY-KO zebrafish significantly suppressed these anxiety behaviors, accompanied by a downregulation of tyrosine hydroxylase levels and phosphorylation of extracellular signal-regulated kinases in the brain. To understand the responsible component(s) in NYT, twelve kinds of herbal medicines that composed NYT were tested in behavioral trials with the zebrafish. Among them, nine significantly reduced freezing behavior in NPY-KO zebrafish. In particular, Schisandra fruit induced the most potent effect on abnormal zebrafish behavior, even in the lower amount (0.3% equivalent to NYT), followed by Atractylodes rhizome and Cinnamon bark. Subsequently, four lignans uniquely found in Schisandra fruit (i.e., gomisin A, gomisin N, schizandrin, and schizandrin B) were investigated for their anxiolytic activity in NPY-KO zebrafish. As a result, schizandrin was identified as a responsible compound in the anxiolytic effect of NYT. These results suggest that NYT has a positive effect on mental stress-induced anxiety and may be a promising therapeutic for psychiatric diseases.
Collapse
Affiliation(s)
- Momoko Kawabe
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Akito Hayashi
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Akio Inui
- Department of Pharmacological Sciences of Herbal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Department of Food Life Science, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
11
|
Can Dexmedetomidine Be Effective in the Protection of Radiotherapy-Induced Brain Damage in the Rat? Neurotox Res 2021; 39:1338-1351. [PMID: 34057703 DOI: 10.1007/s12640-021-00379-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Approximately 7 million people are reported to be undergoing radiotherapy (RT) at any one time in the world. However, it is still not possible to prevent damage to secondary organs that are off-target. This study, therefore, investigated the potential adverse effects of RT on the brain, using cognitive, histopathological, and biochemical methods, and the counteractive effect of the α2-adrenergic receptor agonist dexmedetomidine. Thirty-two male Sprague Dawley rats aged 5-6 months were randomly allocated into four groups: untreated control, and RT, RT + dexmedetomidine-100, and RT + dexmedetomidine-200-treated groups. The passive avoidance test was applied to all groups. The RT groups received total body X-ray irradiation as a single dose of 8 Gy. The rats were sacrificed 24 h after X-ray irradiation, and following the application of the passive avoidance test. The brain tissues were subjected to histological and biochemical evaluation. No statistically significant difference was found between the control and RT groups in terms of passive avoidance outcomes and 8-hydroxy-2'- deoxyguanosine (8-OHdG) positivity. In contrast, a significant increase in tissue MDA and GSH levels and positivity for TUNEL, TNF-α, and nNOS was observed between the control and the irradiation groups (p < 0.05). A significant decrease in these values was observed in the groups receiving dexmedetomidine. Compared with the control group, gradual elevation was determined in GSH levels in the RT group, followed by the RT + dexmedetomidine-100 and RT + dexmedetomidine-200 groups. Dexmedetomidine may be beneficial in countering the adverse effects of RT in the cerebral and hippocampal regions.
Collapse
|
12
|
Liu L, Li M, Xu M, Wang Z, Zeng Z, Li Y, Zhang Y, You R, Li CH, Guan YQ. Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson's disease mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111028. [PMID: 32994016 DOI: 10.1016/j.msec.2020.111028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by motor and non-motor symptoms, primarily affecting dopaminergic neurons (DAergic neurons) in substantia nigra (SN). However, it is still very challenging to identify new drugs that not only inhibit motor dysfunction but also improve non-motor dysfunction. It has been identified as a potential PD treatment that the inhibition of α-syn aggregation could decrease the death of DAergic neurons in SN. In this study, we synthesized gold nanoparticle composites (NPs) that were loaded with plasmid DNA (pDNA) to inhibit α-syn expression. In vivo, our results showed that NPs improved tyrosine hydroxylase (TH) levels and decreased aggregation of α-syn in the SN. Additionally, NPs attenuated motor dysfunction and exploration ability declined. Moreover, NPs reversed the inhibition of long-term potentiation (LTP) and improved non-motor dysfunction in PD mice. These results indicated that NPs had significantly neuroprotective effects not only in motor, but also in non-motor dysfunction to PD mice, providing a new strategy for gene therapy in PD.
Collapse
Affiliation(s)
- Li Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Mingchao Li
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Mingze Xu
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Zhen Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Zhi Zeng
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Yunqing Li
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Yi Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Rong You
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
13
|
Jing S, Liu C, Lin H, Zhang X, Wang F, Gao J, Sun J, Chen J, Wang C, Li H. Schisantherin A Improves the Learning and Memory by Reducing the Phosphorylation of Tau Protein of the Hippocampus in AD Mice. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19900687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Memory disorders are the main symptoms of aging and Alzheimer’s disease and seriously affect the quality of life. Schisandra, as a famous traditional Chinese medicine, has been used for modulating “the internal organs” for a thousand years. The total lignans from Schisandra have been scientifically proved to improve learning and memory ability. Since it is unclear which monomer in Schisandra total lignans exerts such a function, we evaluated the potential effects of Schisantherin A (SCA), the main monomer from Schisandra, on improving learning ability and memory in amyloid β-protein (Aβ1-42)-induced Alzheimer’s disease (AD) model mice. We found that SCA (5 mg/kg) significantly prolonged the latency and reduced the number of errors in a step-through test. SCA significantly shortened the time of finding the platform and increased the number of crossing the platform and the residence time in a Morris water maze test. SCA increased superoxide dismutase activities and reduced the Malondialdehyde level of the hippocampal tissue, suggesting its role in reducing oxidative stress in the AD mice. Furthermore, we found that SCA significantly decreased the hyperphosphorylation of Tau by altering glycogen synthase kinase-3β (GSK-3β) phosphorylation on Tyr216 and Ser9. Our results revealed the mechanism underlying SCA-mediated learning and memory improvement by regulating GSK-3β activity and lowering the hyperphosphorylation of Tau protein in the hippocampus of AD mice.
Collapse
Affiliation(s)
- Shu Jing
- Department of General Surgery, Affiliated Hospital of Beihua University, Jilin, China
| | - Cong Liu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Huijiao Lin
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Fei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Jiaqi Gao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
14
|
Zhang X, Zhao Y, Bai D, Yuan X, Cong S. Schizandrin protects H9c2 cells against lipopolysaccharide‐induced injury by downregulating Smad3. J Biochem Mol Toxicol 2019; 33:e22301. [PMID: 30801894 DOI: 10.1002/jbt.22301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Xuehua Zhang
- Department of PediatricsJining No.1 People's HospitalJining China
- Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical UniversityJining China
| | - Yanyan Zhao
- Department of EndocrinologyJining Hospital of TCMJining China
| | - Dong Bai
- Department of PediatricsJining No.1 People's HospitalJining China
| | - Xiutai Yuan
- Department of PediatricsJining No.1 People's HospitalJining China
| | - Shan Cong
- Department of PediatricsJining No.1 People's HospitalJining China
| |
Collapse
|
15
|
Atsumi T, Yokoyama Y, Yokogawa T, Makino T, Ohtsuka I. Effects of crushed Schisandra Fruit on the content of lignans in Kampo decoction. J Nat Med 2018; 73:381-387. [PMID: 30535786 DOI: 10.1007/s11418-018-1271-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
Arboreous fruit of Schisandra chinensis Baillon, Schisandra Fruit (SF), is a crude drug used in Japanese traditional Kampo medicine. The marker compounds of SF for quality control are lignans, such as schizandrin (Sz) and gomisin A (GmA). Kampo formulation containing SF is usually prepared as decoctions in the dosage form of whole crude drug (W), as its size is small enough to measure using a spoon. However, in some traditional books, it has been described that SF must be used in the dosage form of crushed or cut pieces (Cr). In this study, we evaluated the transferring ratio of lignans from SF to the decoction, and the stability and taste of the decoctions of shoseiryuto (SST) and ninjin'yoeito (NYT) using each dosage form, i.e., Cr and W, of SF. The transferring ratio of Sz and GmA was significantly higher in the decoction prepared with the Cr form than that prepared using the W form in both SST and NYT. The concentration of Sz and GmA in the decoctions was stable when maintained at 4 °C for 35 days. The taste of SST decoction prepared using the Cr form was more acidic, harsher, and bitterer than SST decoction prepared using the W form, and the taste of NYT decoction prepared using the Cr form was harsher than NYT decoction prepared using the W form. In conclusion, when SF is used in Kampo prescription, crushing the fruits and seeds can increase its effectiveness.
Collapse
Affiliation(s)
- Toshiyuki Atsumi
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka, Miyazaki, 8828508, Japan.
| | - Yumi Yokoyama
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka, Miyazaki, 8828508, Japan
| | - Takami Yokogawa
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka, Miyazaki, 8828508, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 4678603, Japan
| | - Isao Ohtsuka
- Laboratory of Pharmacognosy, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka, Miyazaki, 8828508, Japan
| |
Collapse
|
16
|
Liu C, Sun W, Li N, Gao J, Yu C, Wang C, Sun J, Jing S, Chen J, Li H. Schisantherin A Improves Learning and Memory of Mice with D-Galactose-Induced Learning and Memory Impairment Through Its Antioxidation and Regulation of p19/p53/p21/Cyclin D1/CDK4/RB Gene Expressions. J Med Food 2018; 21:678-688. [PMID: 29851371 DOI: 10.1089/jmf.2017.4090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Schisantherin A (SCA) was evaluated for possible function in restoring the learning and memory impairment induced by D-galactose in mice. ICR mice were treated with D-galactose subcutaneously (220 mg·kg-1), and followed by SCA in different doses (1.25, 2.50 and 5.00 mg·kg-1, administered orally) for 42 days. Effects of SCA on learning and memory were examined by step-through tests and Morris water maze tests. The activity of superoxide dismutase (SOD), the content of malondialdehyde (MDA) in the peripheral blood and hippocampus of mice were assayed by water-soluble tetrazolium-1 (WST-1) and thiobarbituric acid (TBA) methods. The contents of 8 hydroxy deoxy guanosine (8-OHdG) in the hippocampus of mice were detected by immunosorbent assay methods, respectively. Quantitative real-time PCR and Western Blot were respectively used to detect the expression of p19, p53, p21, cyclin D1, CDK4 and RB genes, and the phosphorylation of RB in the hippocampus of mice. We found that SCA significantly improved the learning and memory impairment induced by D-galactose in mice. After SCA treatment, SOD activity was increased and the content of MDA was decreased in both peripheral blood and hippocampus of mice. 8-OHDG content was also decreased in the hippocampus of mice. Furthermore, the expression of p19, p53 and p21 genes was reduced and the expression of cyclin D1 and CDK4 and the phosphorylation of RB protein were elevated in the hippocampus. SCA may improve the learning and memory impairment induced by D-galactose by enhancing the antioxidant capacity, and regulating the expression of p19/p53/p21/cyclinD1/CDK4 genes, and the phosphorylation of RB protein in the hippocampus of mice.
Collapse
Affiliation(s)
- Cong Liu
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| | - Weijing Sun
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| | - Ning Li
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| | - Jiaqi Gao
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| | - Chunyan Yu
- 2 Department of Pathology, College of Basic Medicine, Beihua University , Jilin, China
| | - Chunmei Wang
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| | - Jinghui Sun
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| | - Shu Jing
- 3 Department of General Surgery, Affiliated Hospital of Beihua University , Jilin, China
| | - Jianguang Chen
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| | - He Li
- 1 Department of Pharmacology, College of Pharmacy, Beihua University , Jilin, China
| |
Collapse
|
17
|
Wattanathorn J, Kirisattayakul W, Suriharn B, Lertrat K. Functional Drink Containing the Extracts of Purple Corn Cob and Pandan Leaves, the Novel Cognitive Enhancer, Increases Spatial Memory and Hippocampal Neuron Density Through the Improvement of Extracellular Signal Regulated Protein Kinase Expression, Cholinergic Function, and Oxidative Status in Ovariectomized Rats. Rejuvenation Res 2018; 21:431-441. [PMID: 29847217 DOI: 10.1089/rej.2017.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Due to requirement of novel memory enhancer for menopausal women, this study aimed to determine safety and effect of the functional drink containing the extracts of purple corn cob and pandan leaves (PCP) on memory and brain changes in experimental menopause induced by bilateral ovariectomy (OVX). Acute toxicity of PCP was carried out in female Wistar rats. The results showed that LD50 was more than 2000 mg/kg BW. To determine the cognitive enhancing effect of PCP, OVX rats were orally treated with PCP at the doses of 20, 40, and 80 mg/kg BW for 28 days. The spatial memory was assessed every 7 days throughout the study period. At the end of the study, oxidative stress status, acetylcholinesterase (AChE) activity, monoamine oxidase (MAO) activity, neuronal density, and extracellular signal regulated protein kinase 1 and 2 (ERK1/2) signaling in hippocampus were measured. The improved spatial memory, ERK1/2 expression, and neuron density in dentate gyrus of hippocampus were observed in PCP-treated rats. In addition, a reduction of AChE activity was also observed. Unfortunately, no improved oxidative stress status was observed. Taken altogether, PCP exerts the memory-enhancing effect partly through the suppression of AChE and the increase in ERK signaling in the hippocampus.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- 1 Department of Physiology, Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand .,2 Integrative Complementary Alternative Medicine Research and Development Center, Khon Kaen University , Khon Kaen, Thailand
| | - Woranan Kirisattayakul
- 2 Integrative Complementary Alternative Medicine Research and Development Center, Khon Kaen University , Khon Kaen, Thailand .,3 Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University , Khon Kaen, Thailand
| | - Bhalang Suriharn
- 4 Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University , Khon Kaen, Thailand
| | - Kamol Lertrat
- 4 Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University , Khon Kaen, Thailand
| |
Collapse
|
18
|
Wu Y, Li ZC, Yao LQ, Li M, Tang M. Schisandrin B alleviates acute oxidative stress via modulation of the Nrf2/Keap1-mediated antioxidant pathway. Appl Physiol Nutr Metab 2018; 44:1-6. [PMID: 29742356 DOI: 10.1139/apnm-2018-0251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Schisandrin B (Sch B), one of the main effective components of the dried fruit of Schisandra chinensis, protects neurons from oxidative stress in the central nervous system. Here we investigated the neuroprotective effect of Sch B against damage caused by acute oxidative stress and attempted to define the possible mechanisms. Using the elevated plus maze and open field test, we found that forced swimming, an acute stressor, significantly induced anxiety-like behavior that was alleviated by oral Sch B treatment. In addition, the Sch B treatment reduced toxicity, malondialdehyde levels, and production of reactive oxygen species, an important factor for neuron damage. Antioxidants under the control of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, such as superoxide dismutase and glutathione, were significantly increased by Sch B treatment. Moreover, a higher percentage of intact cells in the amygdala of treated mice, revealed by Nissl staining, further verified the neuroprotective effect of Sch B. Several proteins, such as Nrf2 and its endogenous inhibitor Kelch-like ECH-associated protein 1 (Keap1), were abnormally expressed in mice subjected to forced swimming, but this abnormal expression was significantly reversed by Sch B treatment. Our results suggest that Sch B may be a potential therapeutic agent against anxiety associated with oxidative stress. The possible mechanism is neuroprotection through enhanced antioxidant activity.
Collapse
Affiliation(s)
- Ying Wu
- a Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Zheng-Cai Li
- b Department of Ear-Nose-Throat, Kunming Children's Hospital, Kunming, Yunnan 650101, China
| | - Li-Qing Yao
- a Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Mai Li
- a Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Mei Tang
- a Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| |
Collapse
|
19
|
Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed Pharmacother 2017; 97:958-968. [PMID: 29136774 DOI: 10.1016/j.biopha.2017.10.145] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023] Open
Abstract
Schisandra chinensis fruits have been traditionally used for thousands of years in Korea, China and Japan to treat various ailments. The fruits contain a variety of bioactive metabolites, especially lignan components have been reported to have various biological activities and have potential in the treatment of numerous neurodegenerative diseases. The lignans from S. chinensis are mainly grouped under dibenzocyclooctadiene lignans. Previous studies have reported that the crude extracts and the isolated pure lignan components effectively protect the neuronal cell damage and significantly enhance the cognitive performances. The experimental findings support the extracts and lignan components from S. chinensis can be used as new therapeutic agents to treat various neurodegenerative diseases. In the current review, we highlight the lignans from S. chinensis as promising resources for the development of natural and effective agents for neuroprotective and cognitive enhancement effects. The lignan extracts and individual compounds from S. chinensis were summarized in relation to their neuroprotective and cognitive enhancement activities.
Collapse
Affiliation(s)
- Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ponnuvel Deepa
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Minju Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Songmun Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|