1
|
Alonso-Navarro H, García-Martín E, Agúndez JAG, Jiménez-Jiménez FJ. Essential tremor - drug treatments present and future. Expert Rev Neurother 2025; 25:43-56. [PMID: 39648495 DOI: 10.1080/14737175.2024.2439514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION The main treatment options for essential tremor (ET), which is probably one of the most common movement disorders, have been propranolol and primidone, for many years. This review aims to synthesize therapeutic attempts with other drugs. AREAS COVERED We have reviewed the current state of the pharmacological treatment of ET, both in patients and in experimental models of this disease, with special emphasis on the data published in the last 5 years. Based on the results in experimental models of ET, proposals have been made for future alternative therapeutic options. EXPERT OPINION The use of drugs other than propranolol and primidone has not shown a greater degree of efficacy than these in the treatment of ET, although according to certain evidence-based guidelines topiramate and phenobarbital could be alternative drugs. The results on the effectiveness of other drugs have been variable. For patients with refractory ET, especially those with head tremor, local injections with botulinum toxin A may be useful. According to the results of various experimental models, T calcium channel blockers, modulators of GABAA receptors (GABAARs), GABAB receptors (GABABRs), and glutamatergic neurotransmission, and drugs that decrease the expression of LINGO-1 could be interesting options for the future, among others.
Collapse
Affiliation(s)
| | - Elena García-Martín
- UNEx, ARADyAL Instituto de Salud, University Institute of Molecular Pathology Biomarkers, Carlos III, Cáceres, Spain
| | - José A G Agúndez
- UNEx, ARADyAL Instituto de Salud, University Institute of Molecular Pathology Biomarkers, Carlos III, Cáceres, Spain
| | | |
Collapse
|
2
|
Loomis S, Samoylenko E, Virley D, McCreary AC. Nabiximols (NBX) suppresses tremor in a rat Harmaline model of essential tremor. Exp Neurol 2024; 382:114988. [PMID: 39368533 DOI: 10.1016/j.expneurol.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Essential tremor (ET) is one of the most prevalent movement disorders; despite this, there remains an unmet need for novel therapies. The treatment of rats with harmaline modulates the rhythmicity of inferior olivary neurons, resulting in generalized tremor with a frequency of 9-12 Hz in rats, comparable to that of human ET (4-12 Hz). PURPOSE Interestingly, cannabinoids reduce tremor, therefore we have assessed the cannabinoid nabiximols (NBX; marketed as Sativex) a complex botanical drug mixture, in the harmaline-rat model of ET. METHOD We tested the effects of acute (single dose) and subchronic (10 days) treatment of NBX (at 5.2, 10.4 and 20.8 mg kg-1 p.o.) administered prior to harmaline and acute NBX (20.8 mg kg-1) administered post-harmaline in male SD rats. Propranolol (20 mg kg-1 i.p.) was used as a positive control. Observed Scoring (OS) was carried out prior to placement in a tremor-monitoring apparatus for the calculation of Tremor Index (TI) and Motion Power Percentage (MPP). RESULTS Acute and subchronic NBX significantly attenuated harmaline-induced tremor at 10.4 and 20.8 mg kg-1, respectively, for each parameter (OS, TI, and MPP) when administered pre-harmaline as did propranolol (20 mg kg-1). NBX did not attenuate harmaline-induced tremor when administered post-harmaline. CONCLUSIONS These data suggest efficacy of acute and subchronic NBX to reduce tremors, based on OS, TI and MPP readouts if administered prior to harmaline. These data are the first to indicate the preclinical effects of an oral botanical cannabinoid formulation, NBX, in an animal model of ET.
Collapse
Affiliation(s)
- Sally Loomis
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK.
| | - Elena Samoylenko
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | - David Virley
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | | |
Collapse
|
3
|
Abbassian H, Ilaghi M, Amleshi RS, Whalley BJ, Shabani M. Modulation of CB1 cannabinoid receptor alters the electrophysiological properties of cerebellar Purkinje cells in harmaline-induced essential tremor. IBRO Neurosci Rep 2024; 17:196-206. [PMID: 39262634 PMCID: PMC11388168 DOI: 10.1016/j.ibneur.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
Essential tremor (ET) is one of the most common motor disorders with debilitating effects on the affected individuals. The endocannabinoid system is widely involved in cerebellar signaling. Therefore, modulation of cannabinoid-1 receptors (CB1Rs) has emerged as a novel target for motor disorders. In this study, we aimed to assess whether modulation of cannabinoid receptors (CBRs) could alter the electrophysiological properties of Purkinje cells (PCs) in the harmaline-induced ET model. Male Wistar rats were assigned to control, harmaline (30 mg/kg), CBR agonist WIN 55,212-2 (WIN; 1 mg/kg), CB1R antagonists AM251 (1 mg/kg) and rimonabant (10 mg/kg). Spontaneous activity and positive and negative evoked potentials of PCs were evaluated using whole-cell patch clamp recording. Findings demonstrated that harmaline exposure induced alterations in the spontaneous and evoked firing behavior of PCs, as evidenced by a significant decrease in the mean number of spikes and half-width of action potential in spontaneous activity. WIN administration exacerbated the electrophysiological function of PCs, particularly in the spontaneous activity of PCs. However, CB1R antagonists provided protective effects against harmaline-induced electrophysiological changes in the spontaneous activity of PCs. Our findings reinforce the pivotal role of the endocannabinoid system in the underlying electrophysiological mechanisms of cerebellar disorders and suggest that antagonism of CB1R might provide therapeutic utility.
Collapse
Affiliation(s)
- Hassan Abbassian
- Mashhad Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Ilaghi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saboori Amleshi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Benjamin Jason Whalley
- Department of Pharmacy, School of Chemistry, Food & Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK
- Revelstone Consulting LLC, 1001 New Jersey Ave SE, Washington, DC, 20003
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Ranjbar H, Soti M, Kohlmeier KA, Sheibani V, Ahmadi-Zeidabadi M, Rafiepour K, Shabani M. The cannabinoid antagonist, AM251 attenuates ataxia related deficiencies in a cerebellar ataxic model. Int J Neurosci 2024; 134:522-529. [PMID: 36120979 DOI: 10.1080/00207454.2022.2126771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Aim: Disruption in cerebellar inputs, as well as dysfunction of Purkinje cells (PCs), causes a change in the timing of electrical signaling in the cerebellum resulting in disorders such as cerebellar ataxia. Although much clinical and molecular genetics research has been conducted to understand this disorder, there is no specific treatment for cerebellar ataxia. As cannabinoid type 1 receptors (CB1Rs) are highly expressed in the cerebellum and have been suggested as a therapeutic strategy, we determined whether AM251, a cannabinoid receptor antagonist, was neuroprotective of PCs in a rat cerebellar ataxic model.Materials and methods: To this end, we conducted behavioral and histological tests in the 3-acetylpyridine (3AP) rat cerebellar ataxia model, to explore whether AM251 was protective against induction of ataxia and cell death.Results: Rats with chemical degeneration of the inferior olive induced by 3AP (55 mg/kg, i.p.) clearly showed cerebellar ataxic symptoms. The locomotor activity and motor coordination of the ataxic animals were clearly disrupted compared to the control group. Further, histological analysis showed cell death and PCs degenerated with loss of cell membrane integrity associated with 3AP. Pre-treatment by AM251 improved the locomotor activity of the ataxic animals, and AM251 almost prevented PCs neuronal degeneration.Conclusion: Our data which show protection of cerebellar PCs and motor improvement in the ataxic rat model by treatment with AM251 suggests that targeting cannabinoid receptors should be considered for therapeutic intervention in cerebellar ataxia.HIGHLIGHTS:AM251 was protective against induction of ataxia and cell death.CBR antagonist typically ameliorated 3AP induced Ataxia.AM251 affected explorative and gait disturbances induced by 3AP.CBR antagonist improved impairments of anxiety-like behaviors following 3AP.
Collapse
Affiliation(s)
- Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vahid Sheibani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kiana Rafiepour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Shabani M, Soti M, Ranjbar H, Naderi R. Abscisic acid ameliorates motor disabilities in 6-OHDA-induced mice model of Parkinson's disease. Heliyon 2023; 9:e18473. [PMID: 37576242 PMCID: PMC10412891 DOI: 10.1016/j.heliyon.2023.e18473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a myriad of symptoms, encompassing both motor disabilities and cognitive impairments. Recent research has shown that abscisic acid (ABA) is a phytohormone found in various brain regions of several mammals and exhibits neuroprotective properties. To investigate the effects of ABA on cognitive and motor disorders, a mouse model of PD was utilized. The administration of 6-hydroxydopamine (6-OHDA) to the lateral ventricles was conducted, with ABA (10 and 15 μg/mouse, i. c.v.) being administered for one week after the 6-OHDA injection for 4 days. Motor and cognitive performance were evaluated through the use of open field, rotarod, wire grip, and shuttle box tests. The results indicated that cognitive function and motor disorders were significantly impaired in 6-OHDA-treated animals. However, in mice treated with 6-OHDA, ABA (15 μg/mouse) significantly reversed balance and muscle strength deficits. It should be noted that the administration of ABA did not significantly improve cognitive impairment or rearing in Parkinsonism mice. Therefore, the findings suggest that ABA plays a crucial role in protecting mice from motor disabilities caused by 6-OHDA.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Modulation of the CB1 cannabinoid receptor has potential therapeutic utility in the 3-acetylpyridine cerebellar ataxia rat model. Exp Brain Res 2022; 240:2339-2348. [PMID: 35859208 DOI: 10.1007/s00221-022-06415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Cerebellar ataxia is a neurodegenerative disorder leading to severe motor incoordination. Recently, it has been suggested that cannabinoids play a role in modulating ataxic symptoms. To understand the possible therapeutic effect of cannabinoids for the management of cerebellar ataxia, we used cannabinoid agonist/antagonists to target the cannabinoid type 1 receptor (CB1R) in the 3 acetyl pyridine (3AP) rat model of ataxia. The role of the CB1R was examined using three different doses of the CB1R agonist, WIN-55,212-2 (WIN; 0.1, 0.5, 1 mg/kg) administrated 30 min prior to 3AP (55 mg/kg, i.p.) which leads to motor impairment through destruction of the inferior olive. In some groups, the CB1R antagonist AM251 (1 mg/kg) was given in combination with WIN. Locomotor activity and motor coordination were impaired by 3AP, and the application of WIN did not ameliorate this effect. However, the abnormal gait, rearing and grooming caused by 3AP were prevented by co-administration of AM251 with WIN. While the addition of the CB1R antagonist improved some ataxic symptoms, there was no effect of AM251 on balance or locomotor activity when co-administrated with WIN. Behavioral testing indicated that not only did WIN fail to exert any protective effect on ataxic symptoms; it exacerbated ataxic symptoms, suggesting that CB1R agonists may not be the ideal therapeutic drug in this disorder. When taken together, the findings from the present study indicate that cannabinoid modulation of ataxia symptoms may not act solely through CB1Rs and other cannabinoid receptors should be considered in future studies.
Collapse
|
7
|
Shabani M, Naderi R. Phytohormone abscisic acid elicits positive effects on harmaline-induced cognitive and motor disturbances in a rat model of essential tremor. Brain Behav 2022; 12:e2564. [PMID: 35591769 PMCID: PMC9120731 DOI: 10.1002/brb3.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Essential tremor (ET) as a neurological disorder is accompanied by cognitive and motor disturbances. Despite the high incidence of ET, the drug treatment of ET remains unsatisfactory. Recently, abscisic acid (ABA) has been reported to have positive neurophysiological effects in mammals. Here, the effects of ABA on harmaline-induced motor and cognitive impairments were investigated in rats. METHODS Male Wistar rats weighing 120-140 g were divided into control, harmaline (30 mg/kg, ip), ABA vehicle (DMSO+normal saline), and ABA (10 μg/rat, icv, 30 min before harmaline injection) groups. Exploratory, balance and motor performance, anxiety, and cognitive function were assessed using footprint, open field, wire grip, rotarod, and shuttle box tests. RESULTS The results indicated that ABA (10 μg/rat) can improve harmaline-induced tremor in rats. The administration of ABA significantly increased time spent on wire grip and rotarod. In addition, ABA had a promising effect against the cognitive impairments induced by harmaline. CONCLUSION Taken together, ABA has positive effects on locomotor and cognitive impairments induced by tremor. However, further studies are required to determine the exact mechanisms of ABA on the ET.
Collapse
Affiliation(s)
- Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reyhaneh Naderi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Urbi B, Corbett J, Hughes I, Owusu MA, Thorning S, Broadley SA, Sabet A, Heshmat S. Effects of Cannabis in Parkinson's Disease: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:495-508. [PMID: 34958046 DOI: 10.3233/jpd-212923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The legalization of cannabis in many countries has allowed many Parkinson's disease (PD) patients to turn to cannabis as a treatment. As such there is a growing interest from the PD community to be properly guided by evidence regarding potential treatment benefits of cannabis. This systematic review and meta-analysis aims to compile the best available evidence to help guide patients and their family, clinicians and researchers make informed decisions. A systematic search of the literature was conducted in June 2021. Five randomized controlled studies and eighteen non-randomized studies investigated cannabis treatment in PD patients. No compelling evidence was found to recommend the use of cannabis in PD patients. However, a potential benefit was identified with respect to alleviation of PD related tremor, anxiety, pain, improvement of sleep quality and quality of life. Given the relative paucity of well-designed randomized studies, there is an identified need for further investigation, particularly in these areas.
Collapse
Affiliation(s)
- Berzenn Urbi
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia.,School of Medicine, Griffith University, QLD, Australia
| | - Joel Corbett
- Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Ian Hughes
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Maame Amma Owusu
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Sarah Thorning
- Office for Research Governance and Development, Gold Coast Hospital and Health Service, QLD, Australia
| | - Simon A Broadley
- School of Medicine, Griffith University, QLD, Australia.,Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Arman Sabet
- School of Medicine, Griffith University, QLD, Australia.,Department of Neurology, Gold Coast Hospital and Health Service, QLD, Australia
| | - Saman Heshmat
- School of Medicine, Griffith University, QLD, Australia.,UQCCR, Centre for Clinical Research, University of Queensland, QLD Australia
| |
Collapse
|
9
|
Maneshian M, Nasirinezhad F, Mohammadi F, Behzadi M, Asadi-Shekaari M, Shabani M. Minocycline Mitigation of Tremor Syndrome and Defect of Cognitive and Balance Induced by Harmaline. Basic Clin Neurosci 2021; 12:255-268. [PMID: 34925722 PMCID: PMC8672663 DOI: 10.32598/bcn.12.2.1980.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction: Minocycline has anti-inflammatory, anti-apoptotic, and anti-oxidant effects. Preclinical data suggest that minocycline could be beneficial for treating common neurological disorders, including Parkinson disease and multiple sclerosis. Methods: In this study, the effects of minocycline on harmaline-induced motor and cognitive impairments were studied in male Wistar rats. The rats were divided into four groups of ten animals each. Harmaline was used for the induction of Essential Tremor (ET). Minocycline (90 mg/kg, IP) was administered 30 minutes before the saline or harmaline. Tremor intensity, spontaneous locomotor activity, passive avoidance memory, anxiety-related behaviors, and motor function were assessed in the rats. Results: The results showed that minocycline could recover tremor intensity and step width but failed to recuperate the motor balance. The memory impairments observed in harmaline-treated rats were somewhat reversed by administration of minocycline. The cerebellum and inferior olive nucleus were studied for neuronal degeneration using histochemistry and transmission electron microscopy techniques. Harmaline caused ultrastructural changes and neuronal cell loss in inferior olive and cerebellar Purkinje cells. Minocycline exhibited neuroprotective changes on cerebellar Purkinje cells and inferior olivary neurons. Conclusion: These results open new therapeutic perspectives for motor and memory impairments in ET. However, further studies are needed to clarify the exact mechanisms.
Collapse
Affiliation(s)
- Marzieh Maneshian
- Department of Physiology, Physiological Research Center, Iran University of Medical Sciences, Tehran, Iran.,Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, Physiological Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Santos de Alencar S, Crippa JAS, Brito MCM, Pimentel ÂV, Cecilio Hallak JE, Tumas V. A single oral dose of cannabidiol did not reduce upper limb tremor in patients with essential tremor. Parkinsonism Relat Disord 2021; 83:37-40. [PMID: 33465546 DOI: 10.1016/j.parkreldis.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Essential tremor (ET) is a common clinical syndrome characterized by action tremors affecting both upper limbs that can compromise manual tasks' execution and impair functional and social performance. The primary pharmacological treatment is symptomatic, but effective medicines are somewhat limited. There is a clear need to find new effective therapies for the treatment of ET. Cannabidiol (CBD) is a modulator of CB1 receptor and CB1 agonists can reduce tremors in experimental models. We hypothesized that a single acute CBD intake would reduce tremors in ET patients. We performed a randomized, controlled, double-blind, crossover study on 19 patients with ET. They were 10 males and 9 females, had mean 63 years of age, and mean 23 years of disease duration and had insufficient control of their tremors with the usual pharmacological treatment. They ingested a single oral dose of CBD (300 mg) or placebo in two experimental sessions performed 2-weeks apart. Patients were evaluated immediately before and after oral ingestion (60 min and 210 min), using the Fahn-Tolosa-Marin clinical scale. There was no carryover effect. There were no significant differences in upper limb tremors score, specific motor task tremor scores (writing and drawing/pouring) or clinical impression of change after treatment with placebo or CBD. In conclusion, a single 300 mg oral dose of CBD had no significant effect on the severity of upper limb tremors of ET patients. Our findings did not exclude the possibility that chronic treatment with CBD could have a symptomatic effect.
Collapse
Affiliation(s)
| | - José Alexandre S Crippa
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | | | - Ângela V Pimentel
- Ribeirão Preto Medical School Hospital, University of São Paulo, Brazil.
| | | | - Vitor Tumas
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
11
|
Ramshini E, Sheykhzade M, Dabiri S, Shabani M. Cannabinoid CB1 receptor mediates METH-induced electrophysiological and morphological alterations in cerebellum Purkinje cells. Hum Exp Toxicol 2020; 40:940-951. [PMID: 33249856 DOI: 10.1177/0960327120975448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous studies on cannabinoid type1 receptor (CB1R) activation on Methamphetamine (METH)-induced neurodegeneration and locomotion impairments in male rats suggest an interaction between CB1Rs and METH. However, the role of these receptors in METH-neurotoxicity has not been fully identified. Therefore, the purpose of the present study is to investigate the involvement of CB1Rs in these effects. We conducted an electrophysiological study to evaluate functional interactions between METH and CB1Rs using whole-cell patch current clamp recording. Furthermore, we designed the Nissl staining protocol to assess the effect of METH on the basic cerebellar Purkinje cell structure. Our findings revealed that METH significantly increased the action potential half-width, spontaneous interspike intervals, first spike latency, and decreased the rebound action potential and spontaneous firing frequency. Using CB1R agonist and antagonist, our results showed a significant interaction with some of the electrophysiological alterations induced by METH. Further, Nissl staining revealed that the exposure to the combination of METH and SR141716A resulted in the necrotic cell death. Results of the current study raises the possibility that METH consumption profoundly affect the intrinsic membrane properties of cerebellar Purkinje neurons and cannabinoid system manipulations may counteract some of these effects. In summary, our findings provide further insights into the modulatory role of the endocannabinoid system in METH-induced neurologic changes, which can be used in the development of potential therapeutic interventions for METH dependence.
Collapse
Affiliation(s)
- Effat Ramshini
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran.,158777Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Sheykhzade
- 365660Department of Drug Design and Pharmacology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- 158777Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Ibrahim MF, Beevis JC, Empson RM. Essential Tremor - A Cerebellar Driven Disorder? Neuroscience 2020; 462:262-273. [PMID: 33212218 DOI: 10.1016/j.neuroscience.2020.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal tremors are the most common of all movement disorders. In this review we focus on the role of the cerebellum in Essential Tremor, a highly debilitating but poorly treated movement disorder. We propose a variety of mechanisms driving abnormal burst firing of deep cerebellar nuclei neurons as a key initiator of tremorgenesis in Essential Tremor. Targetting these mechanisms may generate more effective treatments for Essential Tremor.
Collapse
Affiliation(s)
- Mohamed Fasil Ibrahim
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand.
| | - Jessica C Beevis
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Ruth M Empson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
13
|
Fiani B, Sarhadi KJ, Soula M, Zafar A, Quadri SA. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol Sci 2020; 41:3085-3098. [PMID: 32556748 DOI: 10.1007/s10072-020-04514-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Cannabidiol (CBD), which is nonintoxicating pharmacologically relevant constituents of Cannabis, demonstrates several beneficial effects. It has been found to have antioxidative, anti-inflammatory, and neuroprotective effects. As the medicinal use of CBD is gaining popularity for treatment of various disorders, the recent flare-up of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology. Currently, as lot of clinical trials are underway, CBD demonstrates remarkable potential to become a supplemental therapy in various neurological conditions. It has shown promise in the treatment of neurological disorders such as anxiety, chronic pain, trigeminal neuralgia, epilepsy, and essential tremors as well as psychiatric disorders. While recent FDA-approved prescription drugs have demonstrated safety, efficacy, and consistency enough for regulatory approval in spasticity in multiple sclerosis (MS) and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges still remain. In the current review, the authors have shed light on the application of CBD in the management and treatment of various neurological disorders.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA, USA
| | | | - Marisol Soula
- New York University School of Medicine, New York, NY, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Syed A Quadri
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. An Update on the Neurochemistry of Essential Tremor. Curr Med Chem 2020; 27:1690-1710. [DOI: 10.2174/0929867325666181112094330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/03/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Background:
The pathophysiology and neurochemical mechanisms of essential
tremor (ET) are not fully understood, because only a few post-mortem studies have been reported,
and there is a lack of good experimental model for this disease.
Objective:
The main aim of this review is to update data regarding the neurochemical features
of ET. Alterations of certain catecholamine systems, the dopaminergic, serotonergic,
GABAergic, noradrenergic, and adrenergic systems have been described, and are the object of
this revision.
Methods:
For this purpose, we performed a literature review on alterations of the neurotransmitter
or neuromodulator systems (catecholamines, gammaaminobutyric acid or GABA,
excitatory amino acids, adenosine, T-type calcium channels) in ET patients (both post-mortem
or in vivo) or in experimental models resembling ET.
Results and Conclusion:
The most consistent data regarding neurochemistry of ET are related
with the GABAergic and glutamatergic systems, with a lesser contribution of adenosine
and dopaminergic and adrenergic systems, while there is not enough evidence of a definite
role of other neurotransmitter systems in ET. The improvement of harmaline-induced tremor
in rodent models achieved with T-type calcium channel antagonists, cannabinoid 1 receptor,
sphingosine-1-phosphate receptor agonists, and gap-junction blockers, suggests a potential
role of these structures in the pathogenesis of ET.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| | - José A.G. Agúndez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Caceres, Spain
| |
Collapse
|
15
|
Kosmowska B, Ossowska K, Konieczny J, Lenda T, Berghauzen-Maciejewska K, Wardas J. Inhibition of Excessive Glutamatergic Transmission in the Ventral Thalamic Nuclei by a Selective Adenosine A1 Receptor Agonist, 5′-Chloro-5′-Deoxy-(±)-ENBA Underlies its Tremorolytic Effect in the Harmaline-Induced Model of Essential Tremor. Neuroscience 2020; 429:106-118. [DOI: 10.1016/j.neuroscience.2019.12.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022]
|
16
|
Alonso-Navarro H, García-Martín E, Agúndez JA, Jiménez-Jiménez FJ. Current and Future Neuropharmacological Options for the Treatment of Essential Tremor. Curr Neuropharmacol 2020; 18:518-537. [PMID: 31976837 PMCID: PMC7457404 DOI: 10.2174/1570159x18666200124145743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Essential Tremor (ET) is likely the most frequent movement disorder. In this review, we have summarized the current pharmacological options for the treatment of this disorder and discussed several future options derived from drugs tested in experimental models of ET or from neuropathological data. METHODS A literature search was performed on the pharmacology of essential tremors using PubMed Database from 1966 to July 31, 2019. RESULTS To date, the beta-blocker propranolol and the antiepileptic drug primidone are the drugs that have shown higher efficacy in the treatment of ET. Other drugs tested in ET patients have shown different degrees of efficacy or have not been useful. CONCLUSION Injections of botulinum toxin A could be useful in the treatment of some patients with ET refractory to pharmacotherapy. According to recent neurochemical data, drugs acting on the extrasynaptic GABAA receptors, the glutamatergic system or LINGO-1 could be interesting therapeutic options in the future.
Collapse
Affiliation(s)
| | | | | | - Félix J. Jiménez-Jiménez
- Address correspondence to this author at the Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Madrid, Spain; Tel: +34636968395; Fax: +34913280704; E-mails: ;
| |
Collapse
|
17
|
Shahveisi K, Khazaie H, Farnia V, Khodamoradi M. REM sleep deprivation impairs retrieval, but not reconsolidation, of methamphetamine reward memory in male rats. Pharmacol Biochem Behav 2019; 185:172759. [PMID: 31415776 DOI: 10.1016/j.pbb.2019.172759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/06/2023]
Abstract
Susceptibility to interference can be a result of memory retrieval and reconsolidation. Given the fact that addiction develops through the neural mechanisms of learning and memory, it would not be surprising that a consolidated drug reward memory may also be susceptible to interference following retrieval/reconsolidation. Due to the critical role of sleep in memory consolidation, sleep deprivation (SD) has been shown to impair memory. Therefore, the major objective of this study was to investigate the effect of rapid eye movement (REM) sleep deprivation (RSD) on the retrieval and reconsolidation of methamphetamine (METH) reward memory in male rats. The animals were trained to acquire METH-induced CPP (2 mg/kg, i.p.). METH reward memory was then reactivated/retrieved in the drug-paired chamber during a drug-free (memory reactivation) session. A period of 48-h RSD paradigm using the multiple platform technique resulted in persistent deficits in the retrieval of METH reward memory. Nevertheless, the same protocol of RSD, which was conducted immediately after the memory reactivation, did not affect the reconsolidation of METH reward memory. Additionally, the RSD episode induced a temporary potentiation of METH-induced hyperlocomotion. Our findings would seem to suggest that sleep is involved in the retrieval, but not reconsolidation, of METH reward memory. The results may also demonstrate that RSD mimics the effects of METH on locomotor activity. The results of this study, therefore, support the idea that sleep is involved in the processing of METH reward memory which can be considered for further investigations to manage the relapse associated with drug-related memory.
Collapse
Affiliation(s)
- Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Farnia
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Ebrahimi-Ghiri M, Nasehi M, Zarrindast MR. Anxiolytic and antidepressant effects of ACPA and harmaline co-treatment. Behav Brain Res 2019; 364:296-302. [DOI: 10.1016/j.bbr.2019.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
|
19
|
Mohammadi F, Abedini Esfahlani M, Shabani M. Erythropoietin ameliorates harmaline-induced essential tremor and cognition disturbances. Neurosci Lett 2019; 704:153-158. [PMID: 30974232 DOI: 10.1016/j.neulet.2019.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023]
Abstract
There are conflicting reports concerning the association of motor disabilities with increased risk of mental disorders. This investigation will provide a good understanding about defining the possible association between tremor and risk of anxiety and cognitive alterations. Beside, a secondary objective of the current study was to determine the effect of erythropoietin (EPO) on harmaline-induced motor and cognitive impairments. Male Wistar rats were used for the present study. The animal model of Esential tremor (ET) was established by the intraperitoneal injection of harmaline. EPO (5000 U/kg, i.p.) administered to the animals 1 h prior to harmaline injection. Exploratory, balance, anxiety related behaviors and cognitive function were assessed using footprint, open field, wire grip, rotarod and shuttle box tests. Findings demonstrated EPO ameliorated tremor scores that was induced by harmaline. Harmaline impaired cognitive functions of the treated rats, whereas EPO showed a promising effect against the cognitive impairments induced by harmaline. EPO can be offered as a potential neuroprotective agent in the treatment of patients with ET that manifest locomotor and cognitive impairments; however, further studies are needed to clarify the exact mechanisms.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Abedini Esfahlani
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Aghaei I, Hajali V, Haghani M, Vaziri Z, Moosazadeh M, Shabani M. Peroxisome proliferator-activated receptor-γ activation attenuates harmaline-induced cognitive impairments in rats. J Clin Neurosci 2018; 59:276-283. [PMID: 30472346 DOI: 10.1016/j.jocn.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 01/31/2023]
Abstract
Cognitive and motor disturbances are serious concerns of the tremors induced by motor disorders. Despite the lack of effective clinical treatment, some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of tremor. Recent studies have shown that PPAR-γ agonists have neuroprotective effects. In the current study, the effects of pioglitazone (PIO), a peroxisome proliferator-activated receptor gamma agonist, on harmaline-induced motor and cognitive impairment were studied. Male Wistar rats were divided into vehicle (normal saline), PIO (20 mg/kg i.p.), harmaline (10 mg/kg, i.p.) and PIO + harmaline (PIO injected 2 h before harmaline) groups. Open field, rotarod, wire grip, foot print and Morris water maze tests were used to evaluate the motor and cognitive performance. The results indicated that administration of PIO attenuated harmaline-induced locomotor, anxiety-like behaviors, and spatial learning and memory impairments, but it partially decreased the tremor score. The neuroprotective and anxiolytic effects of PIO demonstrated in the current study can offer the PPAR-γ receptor agonism as a potential therapeutic agent in the treatment of patients with tremor that manifest mental dysfunction.
Collapse
Affiliation(s)
- Iraj Aghaei
- Department of Neuroscience, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahid Hajali
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoud Haghani
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Vaziri
- Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmmod Moosazadeh
- Health Sciences Research Center, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shabani
- Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman
| |
Collapse
|
21
|
Rahmani MR, Shamsizadeh A, Moghadam-Ahmadi A, Bazmandegan G, Allahtavakoli M. JZL184, as a monoacylglycerol lipase inhibitor, down-regulates inflammation in a cannabinoid pathway dependent manner. Biomed Pharmacother 2018; 103:1720-1726. [DOI: 10.1016/j.biopha.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
|
22
|
Contribution of CB1Rs in anxiety-related behaviors but not locomotor deficits induced by methamphetamine. Neurosci Lett 2018; 665:240-245. [DOI: 10.1016/j.neulet.2017.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/06/2023]
|
23
|
Dahmardeh N, Asadi-Shekaari M, Arjmand S, Kalantaripour T, Basiri M, Shabani M. Modulation of sphingosine-1-phosphate receptor ameliorates harmaline-induced essential tremor in rat. Neurosci Lett 2017. [PMID: 28627375 DOI: 10.1016/j.neulet.2017.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Essential tremor (ET) is one of the most common movement disorders with unknown etiology. Despite lack of effective clinical treatments, some potential therapeutic factors and modulation of some neurotransmitters have been utilized to ameliorate motor symptoms in the animal models of tremor. In the current study, male Wistar rats (n=10 in each group) weighing 40-60g were divided into vehicle control groups (saline or DMSO), saline/DMSO+harmaline (30mg/kg, i.p.)+fingolimod (FTY720) (1mg/kg, i.p, 1h before harmaline injection) groups. Open field, rotarod, wire grip and foot print tests were used to evaluate motor function. The results demonstrated that administration of FTY720 can improve harmaline-induced tremor in rats. Moreover, FTY720 ameliorated gait disturbance. The results showed that FTY720 can recover step width, left and right step length; however, FTY720 failed to recover mobility duration. FTY720 also improved falling time and time spent in wire grip and rotarod, respectively. The current study provides the first evidence for the effectiveness of FTY720 on motor function in the harmaline model of ET. Furthermore, neuroprotective effects of FTY720 demonstrated in this study offer sphingosine-1-phosphate receptor (S1PR) modulators as a potential neuroprotective candidate against substance-induced tremor and a possible strategy for the treatment of patients with tremor.
Collapse
Affiliation(s)
- Narjes Dahmardeh
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran; Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Shokouh Arjmand
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Tajpari Kalantaripour
- Department of Physiology, School of Medicine, Islamic Azad University, Branch of Kerman, Kerman, Iran
| | - Mohsen Basiri
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Intracellular Recording Lab, Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
24
|
Ramshini E, Dabiri S, Arjmand S, Sepehri G, Khaksari M, Ahmadi-Zeidabadi M, Shabani M. Attenuation Effect of Cannabinoid Type 1 Receptor Activation on Methamphetamine-Induced Neurodegeneration and Locomotion Impairments among Male Rats. ADDICTION & HEALTH 2017; 9:206-213. [PMID: 30574283 PMCID: PMC6294485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND A number of neuroimaging studies on human addicts have revealed that abuse of Methamphetamine (METH) can induce neurodegenerative changes in various brain regions like the cerebral cortex and cerebellum. Although the underlying mechanisms of METH-induced neurotoxicity have been studied, the cellular and molecular mechanisms of METH-induced neurotoxicity remain to be clarified. Previous studies implicated that cannabinoid type 1 receptors (CB1Rs) exert neuroprotective effects on several models of cerebral toxicity, but their role in METH-induced neurotoxicity has been rarely investigated. Moreover, the cerebellum was considered as a potential target to evaluate the effects of cannabinoids on locomotion activity as the CB1Rs are most widely distributed in the molecular layer of cerebellum. Therefore, the present study was carried out to evaluate whether neurodegeneration induced in the cerebellum tissue implicated in locomotion deficit induced by METH. METHODS In the current study, open field test was used to examine locomotor activity. Using hematoxylin and eosin (H&E) staining, morphology of the cerebellar vermis was investigated after repeated exposure to METH. Then, the effects of CB1Rs antagonist [SR17141A, 10 mg/kg, intraperitoneally (IP)] and CB1Rs agonist [WIN55, 212-2 (WIN), 3 mg/kg] against METH-induced neurodegeneration and locomotor deficit were assessed. FINDINGS The results of the present study demonstrated that repeated exposure to METH increased cerebellar degeneration level as compared to the saline and dimethyl sulfoxide (DMSO) groups. In addition, METH-treated rats showed hyperactivity as compared to the saline and DMSO groups. Pretreatment with WIN significantly attenuated neurodegeneration and hyperactivity induced by METH. CONCLUSION The findings of this study provided evidence that CB1Rs may serve as a therapeutic strategy for attenuation of METH-induced locomotor deficits.
Collapse
Affiliation(s)
- Effat Ramshini
- PhD Candidate, Department of Physiology AND Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Professor, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shokouh Arjmand
- Pharmacist, Intracellular Recording Lab, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Professor, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Professor, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Assistant Professor, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Associate Professor, Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran,Correspondence to: Mohammad Shabani PhD,
| |
Collapse
|
25
|
Abbassian H, Whalley BJ, Sheibani V, Shabani M. Cannabinoid type 1 receptor antagonism ameliorates harmaline-induced essential tremor in rat. Br J Pharmacol 2016; 173:3196-3207. [PMID: 27545646 DOI: 10.1111/bph.13581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Essential tremor (ET) is a neurological disorder with unknown aetiology. Its symptoms include cerebellar motor disturbances, cognitive and personality changes, hearing and olfactory deficits. Hyperactivity of excitotoxic cerebellar climbing fibres may underlie essential tremor and has been induced in rodents by systemic harmaline administration. Cannabinoid (CB) receptor agonists can cause motor disturbances; although, there are also anecdotal reports of therapeutic benefits of cannabis in motor disorders. We set out to establish the effects of CB receptor agonism and antagonism on an established rodent model of ET using a battery of accepted behaviour assays in order to determine the risk and therapeutic potential of modulating the endocannabinoid system in ET. EXPERIMENTAL APPROACH Behavioural effects of systemic treatment with a CB receptor agonist (0.1, 0.5 and 1 mg kg-1 WIN55, 212-2) or two CB1 receptor antagonists (1 mg kg-1 AM251 and 10 mg kg-1 rimonabant) on tremor induced in rats by harmaline (30 mg kg-1 ; i.p.), were assessed using tremor scoring, open field, rotarod, grip and gait tests. KEY RESULTS Overall, harmaline induced robust tremor that was typically worsened across the measured behavioural domains by CB receptor agonism but ameliorated by CB1 receptor antagonism. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence of the effects of modulating the endocannabinoid system on motor function in the harmaline model of ET. Our data suggest that CB1 receptor manipulation warrants clinical investigation as a therapeutic approach to protection against behavioural disturbances associated with ET.
Collapse
Affiliation(s)
- Hassan Abbassian
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Benjamin J Whalley
- Department of Pharmacy, School of Chemistry, Food and Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire, UK.
| | - Vahid Sheibani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran. ,
| |
Collapse
|