1
|
Galdino GT, Mailhot O, Najmanovich R. Understanding and Predicting Ligand Efficacy in the μ-Opioid Receptor through Quantitative Dynamical Analysis of Complex Structures. J Chem Inf Model 2024; 64:8549-8561. [PMID: 39496284 DOI: 10.1021/acs.jcim.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The μ-opioid receptor (MOR) is a G-protein coupled receptor involved in nociception and the primary target of opioid drugs. Understanding the relationships among the ligand structure, receptor dynamics, and efficacy in activating MOR is crucial for drug discovery and development. Here, we use coarse-grained normal-mode analysis to predict ligand-induced changes in receptor dynamics with the Quantitative Dynamics Activity Relationship (QDAR) DynaSig-ML methodology, training a LASSO regression model on the entropic signatures (ESs) computed from ligand-receptor complexes. We train and validate the methodology using a data set of 179 MOR ligands with experimentally measured efficacies split into strictly chemically different cross-validation sets. By analyzing the coefficients of the ES LASSO model, we identified key residues involved in MOR activation, several of which have mutational data supporting their role in MOR activation. Additionally, we explored a contact-only LASSO model based on ligand-protein interactions. While the model showed predictive power, it failed at predicting efficacy for ligands with low structural similarity to the training set, emphasizing the importance of receptor dynamics for predicting ligand-induced receptor activation. Moreover, the low computational cost of our approach, at 3 CPU s per ligand-receptor complex, opens the door to its application in large-scale virtual screening contexts. Our work contributes to a better understanding of dynamics-function relationships in the μ-opioid receptor and provides a framework for predicting ligand efficacy based on ligand-induced changes in receptor dynamics.
Collapse
Affiliation(s)
- Gabriel T Galdino
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| | - Olivier Mailhot
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| | - Rafael Najmanovich
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, Room 3147, Pavillon Paul-G.-Desmarais 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| |
Collapse
|
2
|
Brueckner AC, Shields B, Kirubakaran P, Suponya A, Panda M, Posy SL, Johnson S, Lakkaraju SK. MDFit: automated molecular simulations workflow enables high throughput assessment of ligands-protein dynamics. J Comput Aided Mol Des 2024; 38:24. [PMID: 39014286 DOI: 10.1007/s10822-024-00564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Molecular dynamics (MD) simulation is a powerful tool for characterizing ligand-protein conformational dynamics and offers significant advantages over docking and other rigid structure-based computational methods. However, setting up, running, and analyzing MD simulations continues to be a multi-step process making it cumbersome to assess a library of ligands in a protein binding pocket using MD. We present an automated workflow that streamlines setting up, running, and analyzing Desmond MD simulations for protein-ligand complexes using machine learning (ML) models. The workflow takes a library of pre-docked ligands and a prepared protein structure as input, sets up and runs MD with each protein-ligand complex, and generates simulation fingerprints for each ligand. Simulation fingerprints (SimFP) capture protein-ligand compatibility, including stability of different ligand-pocket interactions and other useful metrics that enable easy rank-ordering of the ligand library for pocket optimization. SimFPs from a ligand library are used to build & deploy ML models that predict binding assay outcomes and automatically infer important interactions. Unlike relative free-energy methods that are constrained to assess ligands with high chemical similarity, ML models based on SimFPs can accommodate diverse ligand sets. We present two case studies on how SimFP helps delineate structure-activity relationship (SAR) trends and explain potency differences across matched-molecular pairs of (1) cyclic peptides targeting PD-L1 and (2) small molecule inhibitors targeting CDK9.
Collapse
Affiliation(s)
| | - Benjamin Shields
- Molecular Structure & Design, Bristol Myers Squibb, Princeton, NJ, 08540, USA
| | - Palani Kirubakaran
- Biocon Bristol Myers Squibb R&D Centre, Bangalore, 560099, Karnataka, India
| | - Alexander Suponya
- Molecular Structure & Design, Bristol Myers Squibb, Princeton, NJ, 08540, USA
| | - Manoranjan Panda
- Molecular Structure & Design, Bristol Myers Squibb, Princeton, NJ, 08540, USA
| | - Shana L Posy
- Molecular Structure & Design, Bristol Myers Squibb, Princeton, NJ, 08540, USA
| | - Stephen Johnson
- Molecular Structure & Design, Bristol Myers Squibb, Princeton, NJ, 08540, USA
| | | |
Collapse
|
3
|
Hacisuleyman A, Erman B. Synergy and anti-cooperativity in allostery: Molecular dynamics study of WT and oncogenic KRAS-RGL1. Proteins 2024; 92:665-678. [PMID: 38153169 DOI: 10.1002/prot.26657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
This study focuses on investigating the effects of an oncogenic mutation (G12V) on the stability and interactions within the KRAS-RGL1 protein complex. The KRAS-RGL1 complex is of particular interest due to its relevance to KRAS-associated cancers and the potential for developing targeted drugs against the KRAS system. The stability of the complex and the allosteric effects of specific residues are examined to understand their roles as modulators of complex stability and function. Using molecular dynamics simulations, we calculate the mutual information, MI, between two neighboring residues at the interface of the KRAS-RGL1 complex, and employ the concept of interaction information, II, to measure the contribution of a third residue to the interaction between interface residue pairs. Negative II indicates synergy, where the presence of the third residue strengthens the interaction, while positive II suggests anti-cooperativity. Our findings reveal that MI serves as a dominant factor in determining the results, with the G12V mutation increasing the MI between interface residues, indicating enhanced correlations due to the formation of a more compact structure in the complex. Interestingly, although II plays a role in understanding three-body interactions and the impact of distant residues, it is not significant enough to outweigh the influence of MI in determining the overall stability of the complex. Nevertheless, II may nonetheless be a relevant factor to consider in future drug design efforts. This study provides valuable insights into the mechanisms of complex stability and function, highlighting the significance of three-body interactions and the impact of distant residues on the binding stability of the complex. Additionally, our findings demonstrate that constraining the fluctuations of a third residue consistently increases the stability of the G12V variant, making it challenging to weaken complex formation of the mutated species through allosteric manipulation. The novel perspective offered by this approach on protein dynamics, function, and allostery has potential implications for understanding and targeting other protein complexes involved in vital cellular processes. The results contribute to our understanding of the effects of oncogenic mutations on protein-protein interactions and provide a foundation for future therapeutic interventions in the context of KRAS-associated cancers and beyond.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Burak Erman
- Department of Chemical and Biological Engineering Koc University, Istanbul, Turkey
| |
Collapse
|
4
|
Li Z, Liu J, Dong F, Chang N, Huang R, Xia M, Patterson TA, Hong H. Three-Dimensional Structural Insights Have Revealed the Distinct Binding Interactions of Agonists, Partial Agonists, and Antagonists with the µ Opioid Receptor. Int J Mol Sci 2023; 24:ijms24087042. [PMID: 37108204 PMCID: PMC10138646 DOI: 10.3390/ijms24087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The United States is experiencing the most profound and devastating opioid crisis in history, with the number of deaths involving opioids, including prescription and illegal opioids, continuing to climb over the past two decades. This severe public health issue is difficult to combat as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive. Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is primarily responsible for the analgesic cascade. This review describes available 3D structures of the µ opioid receptor in the protein data bank and provides structural insights for the binding of agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding site in these structures was conducted and distinct binding interactions for agonists, partial agonists, and antagonists were observed. The findings in this article deepen our understanding of the ligand binding activity and shed some light on the development of novel opioid analgesics which may improve the risk benefit balance of existing opioids.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
5
|
Fan L, Zhang X, Wang J, Wang C, Li S, Zhao YH, Martyniuk CJ. Relationship between photolysis mechanism and photo-enhanced toxicity to Vibrio Fischeri for neonicotinoids with cyano-amidine and nitroguanidine structures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106443. [PMID: 36863154 DOI: 10.1016/j.aquatox.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/07/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Neonicotinoids are widely used pesticides that contaminate aquatic environments. Although these chemicals can be photolyzed under sunlight radiation, it is unclear for the relationship between photolysis mechanism and toxicity change in aquatic organisms. This study aims to determine the photo-enhanced toxicity of four neonicotinoids with different main structures (acetamiprid, and thiacloprid for cyano-amidine structure, imidacloprid and imidaclothiz for nitroguanidine). To Achieve the goal, photolysis kinetics, effect of dissolved organic matter (DOM) and reactive oxygen species (ROSs) scavengers on photolysis rates, photoproducts, and photo-enhanced toxicity to Vibrio fischeri were investigated for four neonicotinoids. The results showed direct photolysis plays a key role in the photo-degradation of imidacloprid and imidaclothiz (photolysis rate constants are 7.85 × 10-3 and 6.48 × 10-3 min-1, respectively), while the photosensitization process of acetamiprid and thiacloprid was dominated by ·OH reactions and transformation (photolysis rate constants are 1.16 × 10-4 and 1.21 × 10-4 min-1, respectively). All four neonicotinoid insecticides exerted photo-enhanced toxicity to Vibrio fischeri, indicating photolytic product(s) posed greater toxicity than their parent compounds. The addition of DOM and ROS scavengers influenced photo-chemical transformation rates of parent compounds and their intermediates, leading to diverse effects on photolysis rates and photo-enhanced toxicity for the four insecticides as a result of different photo-chemical transformation processes. Based upon the detection of chemical structures of intermediates and Gaussian calculations, we observed different photo-enhanced toxicity mechanisms for the four neonicotinoid insecticides. Molecular docking was used to analyze the toxicity mechanism of parent compounds and photolytic products. A theoretical model was subsequently employed to describe the variability of toxicity response to each of the four neonicotinoids.
Collapse
Affiliation(s)
- Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Xujia Zhang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Shaochen Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611 United States
| |
Collapse
|
6
|
Ślusarz MJ. Molecular insights into the mechanism of sugar-modified enkephalin binding to opioid receptors. Comput Biol Chem 2022; 101:107783. [DOI: 10.1016/j.compbiolchem.2022.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
7
|
Zádor F, Király K, Essmat N, Al-Khrasani M. Recent Molecular Insights into Agonist-specific Binding to the Mu-Opioid Receptor. Front Mol Biosci 2022; 9:900547. [PMID: 35769909 PMCID: PMC9234319 DOI: 10.3389/fmolb.2022.900547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Opioid agonists produce their analgesic effects primarily by acting at the µ-opioid receptor (µOR). µOR agonists with different efficacies exert diverse molecular changes in the µOR which dictate the faith of the receptor’s signaling pathway and possibly it’s the degree of desensitization. Since the development of the active conformations of the µOR, growing data have been published in relation to ligand-specific changes in µOR activation. In this regard, this review summarizes recent data regarding the most studied opioid agonists in in silico µOR activation, including how these ligands are recognized by the µOR, how their binding signal is transmitted toward the intracellular parts of the µOR, and finally, what type of large-scale movements do these changes trigger in the µOR’s domains.
Collapse
Affiliation(s)
- Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- *Correspondence: Ferenc Zádor,
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Computational Methods for Understanding the Selectivity and Signal Transduction Mechanism of Aminomethyl Tetrahydronaphthalene to Opioid Receptors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072173. [PMID: 35408572 PMCID: PMC9000250 DOI: 10.3390/molecules27072173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Opioid receptors are members of the group of G protein-couple receptors, which have been proven to be effective targets for treating severe pain. The interactions between the opioid receptors and corresponding ligands and the receptor’s activation by different agonists have been among the most important fields in opioid research. In this study, with compound M1, an active metabolite of tramadol, as the clue compound, several aminomethyl tetrahydronaphthalenes were designed, synthesized and assayed upon opioid receptors. With the resultant compounds FW-AII-OH-1 (Ki = 141.2 nM for the κ opioid receptor), FW-AII-OH-2 (Ki = 4.64 nM for the δ opioid receptor), FW-DI-OH-2 (Ki = 8.65 nM for the δ opioid receptor) and FW-DIII-OH-2 (Ki = 228.45 nM for the δ opioid receptor) as probe molecules, the structural determinants responsible for the subtype selectivity and activation mechanisms were further investigated by molecular modeling and molecular dynamics simulations. It was shown that Y7.43 was a key residue in determining the selectivity of the three opioid receptors, and W6.58 was essential for the selectivity of the δ opioid receptor. A detailed stepwise discovered agonist-induced signal transduction mechanism of three opioid receptors by aminomethyl tetrahydronaphthalene compounds was proposed: the 3–7 lock between TM3 and TM7, the DRG lock between TM3 and TM6 and rearrangement of I3.40, P5.50 and F6.44, which resulted in the cooperative movement in 7 TMs. Then, the structural relaxation left room for the binding of the G protein at the intracellular site, and finally the opioid receptors were activated.
Collapse
|
9
|
Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function. Handb Exp Pharmacol 2022; 271:3-21. [PMID: 33754230 PMCID: PMC9013522 DOI: 10.1007/164_2021_433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides a general introduction to the dynorphins (DYNs)/kappa opioid receptor (KOR) system, including DYN peptides, neuroanatomy of the DYNs/KOR system, cellular signaling, and in vivo behavioral effects of KOR activation and inhibition. It is intended to serve as a primer for the book and to provide a basic background for the chapters in the book.
Collapse
|
10
|
Sudan CRC, Pereira LC, Silva AF, Moreira CPDS, de Oliveira DS, Faria G, Dos Santos JSC, Leclercq SY, Caldas S, Silva CG, Lopes JCD, de Almeida VL. Biological Activities of Extracts from Ageratum fastigiatum: Phytochemical Study and In Silico Target Fishing Approach. PLANTA MEDICA 2021; 87:1045-1060. [PMID: 34530481 DOI: 10.1055/a-1576-4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, the ethanolic extract from aerial parts of Ageratum fastigiatum was evaluated in vitro against epimastigote forms of Trypanosoma cruzi (Y strain), promastigote forms of Leishmania amazonensis (PH8 strain), and L. chagasi (BH400 strain). The extract was also evaluated against Staphylococcus aureus (ATCC 25 923), Escherichia coli (ATCC 11 775), Pseudomonas aeruginosa (ATCC 10 145), and Candida albicans (ATCC 36 802). The phytochemical screening was performed by thin-layer chromatography and high-performance liquid chromatography. The extract was fractionated using flash preparative chromatography. The ethanolic extract showed activity against T. cruzi, L. chagasi, and L. amazonensis and antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans. The phytochemical screening revealed coumarins, terpenes/sterols, and flavonoids in the ethanolic extract. In addition, the coumarin identified as ayapin was isolated from this extract. We also performed in silico prediction of potential biological activities and targets for compounds previously found in A. fastigiatum. Several predictions were confirmed both retrospectively and prospectively by experimental results described here or elsewhere. Some activities described in the in silico target fishing approach were validated by the ethnopharmacological use and known biological properties. Some new activities and/or targets were predicted and could guide future studies. These results suggest that A. fastigiatum can be an interesting source of substances with antiparasitic and antimicrobial activities.
Collapse
Affiliation(s)
| | - Lucas Campos Pereira
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Andréia Fonseca Silva
- Empresa de Pesquisa Agropecuária de Minas, Gerais (EPAMIG), Belo Horizonte, MG, Brazil
| | | | | | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Janete Soares Coelho Dos Santos
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sophie Yvette Leclercq
- Laboratório de Inovação Biotecnológica, Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sergio Caldas
- Serviço de Biotecnologia e Saúde, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Cláudia Gontijo Silva
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Júlio César Dias Lopes
- Chemoinformatics Group (NEQUIM), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vera Lúcia de Almeida
- Serviço de Fitoquímica e Prospecção Farmacêutica, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Mitra A, Sarkar A, Borics A. Universal Properties and Specificities of the β 2-Adrenergic Receptor-G s Protein Complex Activation Mechanism Revealed by All-Atom Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10423. [PMID: 34638767 PMCID: PMC8508748 DOI: 10.3390/ijms221910423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins of high pharmacological relevance. It has been proposed that their activity is linked to structurally distinct, dynamically interconverting functional states and the process of activation relies on an interconnecting network of conformational switches in the transmembrane domain. However, it is yet to be uncovered how ligands with different extents of functional effect exert their actions. According to our recent hypothesis, based on indirect observations and the literature data, the transmission of the external stimulus to the intracellular surface is accompanied by the shift of macroscopic polarization in the transmembrane domain, furnished by concerted movements of highly conserved polar motifs and the rearrangement of polar species. In this follow-up study, we have examined the β2-adrenergic receptor (β2AR) to see if our hypothesis drawn from an extensive study of the μ-opioid receptor (MOP) is fundamental and directly transferable to other class A GPCRs. We have found that there are some general similarities between the two receptors, in agreement with previous studies, and there are some receptor-specific differences that could be associated with different signaling pathways.
Collapse
Affiliation(s)
- Argha Mitra
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Arijit Sarkar
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, 97. Tisza L. krt., H-6722 Szeged, Hungary
| | - Attila Borics
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, 62. Temesvári krt., H-6726 Szeged, Hungary; (A.M.); (A.S.)
| |
Collapse
|
12
|
Huang H, Li X, Xie P, Li X, Xu X, Qian Y, Yuan C, Meng X, Chai J, Chen J, Liu J, Wang W, Li W, Wang Y, Fu W, Liu J. Discovery, Structure-Activity Relationship, and Mechanistic Studies of 1-((3 R,4 S)-3-((Dimethylamino)methyl)-4-hydroxy-4-(3-methoxyphenyl)piperidin-1-yl)-2-(2,4,5-trifluorophenyl)ethan-1-one as a Novel Potent Analgesic. J Med Chem 2021; 64:9458-9483. [PMID: 34152138 DOI: 10.1021/acs.jmedchem.1c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Management of moderate to severe pain relies heavily on opioid analgesics such as morphine, oxycodone, and fentanyl in clinics. However, their prolonged use was associated with undesirable side effects. Many new strategies to reduce side effects have been proposed, but not without disadvantages. Using a hot plate model as a phenotypic screening method, our studies identified (3R,4S)-9d with a new scaffold as a potent analgesic with ED50 values of 0.54 mg/kg and 0.021 mg/kg in hot plate and antiwrithing models, respectively. Mechanistic studies showed that it elicited its analgesic effect via the active metabolite (3R,4S)-10a. The mechanism of (3R,4S)-10a-induced activation of the μ opioid receptor (MOR) was proposed by means of molecular dynamics (MD) simulation.
Collapse
Affiliation(s)
- Huoming Huang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xueping Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Peng Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinwei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - XueJun Xu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanyuan Qian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Congmin Yuan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiangguo Meng
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - JingRui Chai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Chen
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wenli Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - YuJun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinggen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
13
|
Correlated Motions of Conserved Polar Motifs Lay out a Plausible Mechanism of G Protein-Coupled Receptor Activation. Biomolecules 2021; 11:biom11050670. [PMID: 33946214 PMCID: PMC8146931 DOI: 10.3390/biom11050670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/17/2021] [Accepted: 04/28/2021] [Indexed: 02/01/2023] Open
Abstract
Recent advancements in the field of experimental structural biology have provided high-resolution structures of active and inactive state G protein-coupled receptors (GPCRs), a highly important pharmaceutical target family, but the process of transition between these states is poorly understood. According to the current theory, GPCRs exist in structurally distinct, dynamically interconverting functional states of which populations are shifted upon binding of ligands and intracellular signaling proteins. However, explanation of the activation mechanism, on an entirely structural basis, gets complicated when multiple activation pathways and active receptor states are considered. Our unbiased, atomistic molecular dynamics simulations of the μ opioid receptor (MOP) revealed that transmission of external stimulus to the intracellular surface of the receptor is accompanied by subtle, concerted movements of highly conserved polar amino acid side chains along the 7th transmembrane helix. This may entail the rearrangement of polar species and the shift of macroscopic polarization in the transmembrane domain, triggered by agonist binding. Based on our observations and numerous independent indications, we suggest amending the widely accepted theory that the initiation event of GPCR activation is the shift of macroscopic polarization between the ortho- and allosteric binding pockets and the intracellular G protein-binding interface.
Collapse
|
14
|
Wang H, Cao D, Gillespie JC, Mendez RE, Selley DE, Liu-Chen LY, Zhang Y. Exploring the putative mechanism of allosteric modulations by mixed-action kappa/mu opioid receptor bitopic modulators. Future Med Chem 2021; 13:551-573. [PMID: 33590767 PMCID: PMC8027703 DOI: 10.4155/fmc-2020-0308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
The modulation and selectivity mechanisms of seven mixed-action kappa opioid receptor (KOR)/mu opioid receptor (MOR) bitopic modulators were explored. Molecular modeling results indicated that the 'message' moiety of seven bitopic modulators shared the same binding mode with the orthosteric site of the KOR and MOR, whereas the 'address' moiety bound with different subdomains of the allosteric site of the KOR and MOR. The 'address' moiety of seven bitopic modulators bound to different subdomains of the allosteric site of the KOR and MOR may exhibit distinguishable allosteric modulations to the binding affinity and/or efficacy of the 'message' moiety. Moreover, the 3-hydroxy group on the phenolic moiety of the seven bitopic modulators induced selectivity to the KOR over the MOR.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Danni Cao
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - James C Gillespie
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rolando E Mendez
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dana E Selley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
15
|
Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt 1]DALDA, and KGOP01, Binding to the mu Opioid Receptor. Molecules 2020; 25:E2087. [PMID: 32365707 PMCID: PMC7248707 DOI: 10.3390/molecules25092087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the years. This study focuses on three potent peptide and peptidomimetic MOR agonists, DALDA, [Dmt1]DALDA, and KGOP01, and the prototypical peptide MOR agonist DAMGO. We present the first molecular modeling study and structure-activity relationships aided by in vitro assays and molecular docking of the opioid peptide analogues, in order to gain insight into their mode of binding to the MOR. In vitro binding and functional assays revealed the same rank order with KGOP01 > [Dmt1]DALDA > DAMGO > DALDA for both binding and MOR activation. Using molecular docking at the MOR and three-dimensional interaction pattern analysis, we have rationalized the experimental outcomes and highlighted key amino acid residues responsible for agonist binding to the MOR. The Dmt (2',6'-dimethyl-L-Tyr) moiety of [Dmt1]DALDA and KGOP01 was found to represent the driving force for their high potency and agonist activity at the MOR. These findings contribute to a deeper understanding of MOR function and flexible peptide ligand-MOR interactions, that are of significant relevance for the future design of opioid peptide-based analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| |
Collapse
|
16
|
Dumitrascuta M, Bermudez M, Ben Haddou T, Guerrieri E, Schläfer L, Ritsch A, Hosztafi S, Lantero A, Kreutz C, Massotte D, Schmidhammer H, Wolber G, Spetea M. N-Phenethyl Substitution in 14-Methoxy-N-methylmorphinan-6-ones Turns Selective µ Opioid Receptor Ligands into Dual µ/δ Opioid Receptor Agonists. Sci Rep 2020; 10:5653. [PMID: 32221355 PMCID: PMC7101422 DOI: 10.1038/s41598-020-62530-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/21/2020] [Indexed: 11/12/2022] Open
Abstract
Morphine and structurally-derived compounds are µ opioid receptor (µOR) agonists, and the most effective analgesic drugs. However, their usefulness is limited by serious side effects, including dependence and abuse potential. The N-substituent in morphinans plays an important role in opioid activities in vitro and in vivo. This study presents the synthesis and pharmacological evaluation of new N-phenethyl substituted 14-O-methylmorphinan-6-ones. Whereas substitution of the N-methyl substituent in morphine (1) and oxymorphone (2) by an N-phenethyl group enhances binding affinity, selectivity and agonist potency at the µOR of 1a and 2a, the N-phenethyl substitution in 14-methoxy-N-methylmorphinan-6-ones (3 and 4) converts selective µOR ligands into dual µ/δOR agonists (3a and 4a). Contrary to N-methylmorphinans 1-4, the N-phenethyl substituted morphinans 1a-4a produce effective and potent antinociception without motor impairment in mice. Using docking and molecular dynamics simulations with the µOR, we establish that N-methylmorphinans 1-4 and their N-phenethyl counterparts 1a-4a share several essential receptor-ligand interactions, but also interaction pattern differences related to specific structural features, thus providing a structural basis for their pharmacological profiles. The emerged structure-activity relationships in this class of morphinans provide important information for tuning in vitro and in vivo opioid activities towards discovery of effective and safer analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tanila Ben Haddou
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lea Schläfer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Sandor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, H-1092, Budapest, Hungary
| | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000, Strasbourg, France
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Fan L, Huang Y, Huang T, Zhao K, Zhang YN, Li C, Zhao YH. Photolysis and photo-induced toxicity of pyraclostrobin to Vibrio fischeri: Pathway and toxic mechanism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105417. [PMID: 31958710 DOI: 10.1016/j.aquatox.2020.105417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/16/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Pyraclostrobin is a fungicide used widely across the world. However, its photolysis pathway and toxic mechanism is unclear. In this study, photolysis and photo-induced toxicity of pyraclostrobin to Vibrio fischeri were determined. The results showed that direct photolysis dominated the degradation of pyraclostrobin. Gas Chromatography-Mass spectrometry and quantum chemical calculation revealed that the pyraclostrobin was firstly photo-degraded into Methyl N-phenyl-carbamate and 1-(4-chlorophenyl)-3-hydroxy-1H-pyrzole, synthetic intermediates of pyraclostrobin, then into aniline, benzoquinone and acids. Toxicity assay showed that bioluminescent inhibition rate to V. fischeri fluctuated with radiation/illumination time and the toxicity curve can be classified into three phases (Phase I: 0-10 min, incline; Phase II: 10-60 min, decline; Phase III: 60-120 min, incline). The up-and-down curve indicates the change of parent compound during the photolysis. Simulation of molecular docking showed that the CDOCKER interaction energy of pyraclostrobin (-44.71) lower than other intermediate products (>-30.00), indicating that the parent compound is more toxic than its intermediates. An increased toxicity observed in the toxicity curve was attributed to the generation of benzoquinone with log1/EC50 of 6.73, which can greatly change structure of target luciferase in Vibrio fischeri. In addition, the addition of radical scavengers can inhibit the bioluminescence of the tested solutions, indicating the involvement of radicals in the transformation of intermediates. This paper reveals that one of photochemical transformation products of pyraclostrobin can cause more toxic than its parent compound to bacteria. Environmental risk assessment should consider not only the parent compound, but also its metabolites.
Collapse
Affiliation(s)
- Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ying Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuan Hui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
18
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
19
|
Zou Y, Ewalt J, Ng HL. Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery. Int J Mol Sci 2019; 20:E4237. [PMID: 31470676 PMCID: PMC6747122 DOI: 10.3390/ijms20174237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are critical drug targets. GPCRs convey signals from the extracellular to the intracellular environment through G proteins. Some ligands that bind to GPCRs activate different downstream signaling pathways. G protein activation, or -arrestin biased signaling, involves ligands binding to receptors and stabilizing conformations that trigger a specific pathway. -arrestin biased signaling has become a hot target for structure-based drug discovery. However, challenges include that there are few crystal structures available in the Protein Data Bank and that GPCRs are highly dynamic. Hence, molecular dynamics (MD) simulations are especially valuable for obtaining detailed mechanistic information, including identification of allosteric sites and understanding modulators' interactions with receptors and ligands. Here, we highlight recent MD simulation studies and enhanced sampling methods used to study biased G protein-coupled receptor signaling and their conformational dynamics as well as applications to drug discovery.
Collapse
Affiliation(s)
- Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - John Ewalt
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
20
|
Molecular dynamics of fentanyl bound to μ-opioid receptor. J Mol Model 2019; 25:144. [DOI: 10.1007/s00894-019-3999-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022]
|
21
|
|
22
|
Zhang X, Yuan Y, Wang L, Guo Y, Li M, Li C, Pu X. Use multiscale simulation to explore the effects of the homodimerizations between different conformation states on the activation and allosteric pathway for the μ-opioid receptor. Phys Chem Chem Phys 2018; 20:13485-13496. [PMID: 29726867 DOI: 10.1039/c8cp02016g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, oligomers of G-protein coupled receptors (GPCRs) have been an important topic in the GPCR fields. However, knowledge about their structures and activation mechanisms is very limited due to the absence of crystal structures reported. In this work, we used multiscale simulations to study the effects of homodimerization between different conformation states on their activation, dynamic behaviors, and allosteric communication pathways for μ-OR. The results indicated that the dimerization of one inactive monomer with either one inactive monomer or one active one could enhance its constitutive activation. However, the conformation state of the other protomer (e.g., active or inactive) can influence the activated extent. The dimerization between the two inactive protomers leads to a negative cooperativity for their activation, which should contribute to the asymmetric activation of GPCR dimers observed in some experiments. On the other hand, for the active monomer, its dimerization with one inactive receptor could alleviate its deactivation, whereby negative and positive cooperativities can be observed between the two subunits of the dimer, depending on the different regions. Observations from protein structure network (PSN) analysis indicated that the dimerization of one inactive monomer with one active one would cause a significant drop in the number of main pathways from the ligand binding pocket to the G-protein coupled region for the inactive protomer, while the impact is minor for the active protomer. But, for the active monomer or the inactive one, its dimerization with one inactive monomer would significantly change the types of residues participating in the pathway with the highest frequency.
Collapse
Affiliation(s)
- Xi Zhang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Longrong Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| |
Collapse
|
23
|
Tosh D, Ciancetta A, Mannes P, Warnick E, Janowsky A, Eshleman AJ, Gizewski E, Brust TF, Bohn LM, Auchampach JA, Gao ZG, Jacobson KA. Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists. ACS OMEGA 2018; 3:12658-12678. [PMID: 30411015 PMCID: PMC6210068 DOI: 10.1021/acsomega.8b01237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
While screening off-target effects of rigid (N)-methanocarba-adenosine 5'-methylamides as A3 adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). In an effort to increase OR and decrease AR affinity by structure activity analysis of this series, antagonist activity at κ-(K)OR appeared in 5'-esters (ethyl 24 and propyl 30), which retained TSPO interaction (μM). 7-Deaza modification of C2-(arylethynyl)-5'-esters but not 4'-truncation enhanced KOR affinity (MRS7299 28 and 29, K i ≈ 40 nM), revealed μ-OR and DOR binding, and reduced AR affinity. Molecular docking and dynamics simulations located a putative KOR binding mode consistent with the observed affinities, placing C7 in a hydrophobic region. 3-Deaza modification permitted TSPO but not OR binding, and 1-deaza was permissive to both; ribose-restored analogues were inactive at both. Thus, we have repurposed a known AR nucleoside scaffold for OR antagonism, with a detailed hypothesis for KOR recognition.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Antonella Ciancetta
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Philip Mannes
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Eugene Warnick
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Aaron Janowsky
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Amy J. Eshleman
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Elizabeth Gizewski
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Tarsis F. Brust
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - Laura M. Bohn
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - John A. Auchampach
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
24
|
Abstract
This themed section of the British Journal of Pharmacology stems from an International Narcotics Research Conference (INRC) meeting held in July 2016 at The Assembly Rooms in Bath, UK. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Chris P Bailey
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| |
Collapse
|
25
|
Heifetz A, Southey M, Morao I, Townsend-Nicholson A, Bodkin MJ. Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery. Methods Mol Biol 2018; 1705:375-394. [PMID: 29188574 DOI: 10.1007/978-1-4939-7465-8_19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects.
Collapse
Affiliation(s)
- Alexander Heifetz
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK. .,Division of Biosciences, Research Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | - Michelle Southey
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Inaki Morao
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - Andrea Townsend-Nicholson
- Division of Biosciences, Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Mike J Bodkin
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ, UK
| |
Collapse
|
26
|
Wang L, Yuan Y, Chen X, Chen J, Guo Y, Li M, Li C, Pu X. Probing the cooperative mechanism of the μ–δ opioid receptor heterodimer by multiscale simulation. Phys Chem Chem Phys 2018; 20:29969-29982. [DOI: 10.1039/c8cp06652c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The activation-cooperativity of the μ–δ opioid receptor heterodimer was probed by multiscale simulation coupled with a protein structure network.
Collapse
Affiliation(s)
- Longrong Wang
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuan Yuan
- College of Management
- Southwest University for Nationalities
- Chengdu 610041
- P. R. China
| | - Xin Chen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Jiangfan Chen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yanzhi Guo
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Menglong Li
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Chuan Li
- College of Computer Science
- Sichuan University
- Chengdu
- P. R. China
| | - Xuemei Pu
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| |
Collapse
|
27
|
Erli F, Guerrieri E, Ben Haddou T, Lantero A, Mairegger M, Schmidhammer H, Spetea M. Highly Potent and Selective New Diphenethylamines Interacting with the κ-Opioid Receptor: Synthesis, Pharmacology, and Structure-Activity Relationships. J Med Chem 2017; 60:7579-7590. [PMID: 28825813 PMCID: PMC5601360 DOI: 10.1021/acs.jmedchem.7b00981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/26/2022]
Abstract
We previously reported on a series of small molecules targeting the κ-opioid (KOP) receptor featuring a diphenethylamine scaffold and showed the promise of these ligands as effective analgesics with reduced liability for adverse effects. This study expands the structure-activity relationships on our original series by presenting several modifications in the lead compounds 1 (HS665) and 2 (HS666). A library of new diphenethylamines was designed, synthesized, and pharmacologically evaluated. In comparison with 1 and 2, the KOP receptor affinity, selectivity, and agonist activity were modulated by introducing bulkier N-substituents, a 2-fluoro substitution, and additional hydroxyl groups at positions 3' and 4'. Several analogues showed subnanomolar affinity and excellent KOP receptor selectivity acting as full or partial agonists, and one as an antagonist. The new diphenethylamines displayed antinociceptive efficacies with increased potencies than U50,488, 1 and 2 in the writhing assay and without inducing motor dysfunction after sc administration in mice.
Collapse
Affiliation(s)
| | | | - Tanila Ben Haddou
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aquilino Lantero
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael Mairegger
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Helmut Schmidhammer
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
28
|
Kapoor A, Martinez-Rosell G, Provasi D, de Fabritiis G, Filizola M. Dynamic and Kinetic Elements of µ-Opioid Receptor Functional Selectivity. Sci Rep 2017; 7:11255. [PMID: 28900175 PMCID: PMC5595830 DOI: 10.1038/s41598-017-11483-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
While the therapeutic effect of opioids analgesics is mainly attributed to µ-opioid receptor (MOR) activation leading to G protein signaling, their side effects have mostly been linked to β-arrestin signaling. To shed light on the dynamic and kinetic elements underlying MOR functional selectivity, we carried out close to half millisecond high-throughput molecular dynamics simulations of MOR bound to a classical opioid drug (morphine) or a potent G protein-biased agonist (TRV-130). Statistical analyses of Markov state models built using this large simulation dataset combined with information theory enabled, for the first time: a) Identification of four distinct metastable regions along the activation pathway, b) Kinetic evidence of a different dynamic behavior of the receptor bound to a classical or G protein-biased opioid agonist, c) Identification of kinetically distinct conformational states to be used for the rational design of functionally selective ligands that may eventually be developed into improved drugs; d) Characterization of multiple activation/deactivation pathways of MOR, and e) Suggestion from calculated transition timescales that MOR conformational changes are not the rate-limiting step in receptor activation.
Collapse
Affiliation(s)
- Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerard Martinez-Rosell
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, Barcelona, 08003, Spain
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gianni de Fabritiis
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, Barcelona, 08003, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Perry CJ, Lawrence AJ. Hurdles in Basic Science Translation. Front Pharmacol 2017; 8:478. [PMID: 28769807 PMCID: PMC5513913 DOI: 10.3389/fphar.2017.00478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
In the past century there have been incredible advances in the field of medical research, but what hinders translation of this knowledge into effective treatment for human disease? There is an increasing focus on the failure of many research breakthroughs to be translated through the clinical trial process and into medical practice. In this mini review, we will consider some of the reasons that findings in basic medical research fail to become translated through clinical trials and into basic medical practices. We focus in particular on the way that human disease is modeled, the understanding we have of how our targets behave in vivo, and also some of the issues surrounding reproducibility of basic research findings. We will also look at some of the ways that have been proposed for overcoming these issues. It appears that there needs to be a cultural shift in the way we fund, publish and recognize quality control in scientific research. Although this is a daunting proposition, we hope that with increasing awareness and focus on research translation and the hurdles that impede it, the field of medical research will continue to inform and improve medical practice across the world.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, ParkvilleVIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, MelbourneVIC, Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental Health, ParkvilleVIC, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
30
|
Lynch DL, Hurst DP, Shore DM, Pitman MC, Reggio PH. Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction. Methods Enzymol 2017; 593:449-490. [PMID: 28750815 PMCID: PMC5802876 DOI: 10.1016/bs.mie.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cannabinoid type 1 and 2 G-protein-coupled receptors are currently important pharmacological targets with significant drug discovery potential. These receptors have been shown to display functional selectivity or biased agonism, a property currently thought to have substantial therapeutic potential. Although recent advances in crystallization techniques have provided a wealth of structural information about this important class of membrane-embedded proteins, these structures lack dynamical information. In order to fully understand the interplay of structure and function for this important class of proteins, complementary techniques that address the dynamical aspects of their function are required such as NMR as well as a variety of other spectroscopies. Complimentary to these experimental approaches is molecular dynamics, which has been effectively used to help unravel, at the atomic level, the dynamics of ligand binding and activation of these membrane-bound receptors. Here, we discuss and present several representative examples of the application of molecular dynamics simulations to the understanding of the signatures of ligand-binding and -biased signaling at the cannabinoid type 1 and 2 receptors.
Collapse
Affiliation(s)
- Diane L Lynch
- University of North Carolina at Greensboro, Greensboro, NC, United States.
| | - Dow P Hurst
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Derek M Shore
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Mike C Pitman
- University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Patricia H Reggio
- University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
31
|
Marino KA, Shang Y, Filizola M. Insights into the function of opioid receptors from molecular dynamics simulations of available crystal structures. Br J Pharmacol 2017; 175:2834-2845. [PMID: 28266020 DOI: 10.1111/bph.13774] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023] Open
Abstract
The opioid receptors are key targets in the treatment of acute and chronic pain, and the development of novel analgesics with reduced side effects is crucial in the search for more effective medications. The crystal structures of opioid receptors have provided a wealth of knowledge on many aspects of opioid receptor pharmacology and function, including ligand binding poses, location of the sodium allosteric binding site, conformational changes associated with activation and putative dimeric interfaces. These crystal structures also offer a starting point for molecular dynamics (MD) simulations to capture one aspect of drug design that static structures cannot resolve, namely protein dynamics. With the increase in computing power, MD simulations of crystal structures have become an influential tool in understanding the function of GPCRs in general. Here, we discuss lessons learned from MD simulations of opioid receptor crystal structures with reference to (i) the binding pathway of sodium to its crystallographic allosteric site, (ii) the dynamics of ligand-receptor and receptor-receptor interactions, both at the ligand- and G protein-binding sites, (iii) the binding pathway and binding pose of novel ligands, and (iv) opioid receptor oligomerization. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Kristen A Marino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yi Shang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|